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ABSTRACT

Prognostics and Health Management (PHM) systems are usu-
ally only considered and set up in the late stage of design
or even during the system’s lifetime, after the major design
decision have been made. However, considering the PHM
system’s impact on the system failure probabilities can bene-
fit the system design early on and subsequently reduce costs.
The identification of failure paths in the early phases of en-
gineering design can guide the designer toward a safer, more
reliable and cost-efficient design. Several functional failure
modeling methods have been developed recently. One of their
advantages is to allow for risk assessment in the early stages
of the design. Risk and reliability functional failure analy-
sis methods currently developed do not explicitly model the
PHM equipment used to identify and prevent potential sys-
tem failures. This paper proposes a framework to optimize
prognostic systems selection and positioning during the early
stages of a complex system design. A Bayesian network, in-
corporating the PHM systems, is used to analyze the func-
tional model and failure propagation. The algorithm devel-
oped within the proposed framework returns the optimized
placement of PHM hardware in the complex system, allow-
ing the designer to evaluate the need for system improve-
ment. A design tool was developed to automatically apply
the proposed method. A generic pressurized water nuclear
reactor primary coolant loop system is used to present a case
study illustrating the proposed framework. The results ob-
tained for this particular case study demonstrate the promise
of the method introduced in this paper. The case study no-
tably exhibits how the proposed framework can be used to
support engineering design teams in making better informed
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decisions early in the design phase.

1. INTRODUCTION

An increasing number of systems use Prognostics and Health
Management (PHM) hardware to detect future failures and
allow for preventive maintenance and recovery actions, au-
tomated or manual. However, the hardware is often added
after the system has been built or during the late stages of
the design. In the early stages of the design, PHM is cur-
rently not seriously considered, despite the consequent im-
pact it can have on the design choices made for the system.
The goal of PHM is to allow systems operators to catch in-
cipient failures early enough to be able to prevent or correct
them. The consideration of PHM hardware in the early phase
of engineering design can optimize the system design toward
this goal. PHM systems can effectively be used to reduce the
likelihood of failure of a component. Hence, a system can be
designed with PHM hardware instead of expensive redundan-
cies while maintaining a similar system reliability. The earlier
in the design phase a potential system fault is discovered, the
less costly the design required modifications can be (Chang,
2002). Being able to consider prognosis in the early phases by
modeling the impact of PHM hardware allows the designer to
limit the costly system changes while increasing the system
reliability.

Existing risk and reliability analysis methods are either too
rigid and require an advanced design, or cannot model a PHM
system. For example, the widely used Probabilistic Risk As-
sessment (PRA) method is able to model failure detection and
recovery actions, but is limited by its rigidity, time-consuming
changes, and by its use in the late phases of design. Func-
tional failure methods can be used in the early phases of de-
sign by considering only the functionality of a system, with
no specific component requirements. However, these meth-
ods presents inherent difficulties to model PHM systems.
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The Prognostics and Health Analysis to Support Engineering
Design (PHASED) method is proposed in this paper. The
PHASED method creates a framework that enables the use of
a functional failure method in various stages of design, no-
tably early on, coupled with PHM hardware considerations.
A Bayesian network representing the interaction between the
components in the system is used to compute the functional
failure propagation probabilities. An optimized configuration
for PHM equipment positioning in the system is automati-
cally given to the system designer, who can then decide to
move forward with it or modify the system, according to the
system failure probability returned by the algorithm. A de-
sign tool was developed to automatically apply the proposed
method.

Section 2 presents the context of this paper and introduces
various methods used throughout this paper. It additionally
summarizes the state of the art for accounting for the pres-
ence of PHM systems during different design phases. In sec-
tion 3, the proposed methodology is presented. A case study
representing a simplified pressurized water reactor plant is
defined within the scope of this paper in section 4. It is used
to demonstrate the proposed methodology. The method re-
sults and future work are discussed in section 5. Finally, the
conclusion is given in section 6.

2. BACKGROUND

2.1. Prognostics and Health Management

Prognostics and Health Management (PHM) as a field was in-
troduced by NASA in 1990 (Elattar, Elminir, & Riad, 2016).
PHM analyzes past failure data to devise ways to assess the
system health based on current monitoring data. It can con-
sequently allow for informed condition-based maintenance
and extend the system lifetime or prevent failure, thus lim-
iting cost of maintenance and allowing for a safer, more pre-
dictable system (Sun, Zeng, Kang, & Pecht, 2012), (Agar-
wal, Lybeck, Pham, Rusaw, & Bickford, 2015). More and
more complex systems already make extensive use of PHM
systems, across various industries such as automotive, aero-
nautics or nuclear (Coble, Ramuhalli, Bond, Hines, & Upad-
hyaya, 2015), but widespread industry application is still lag-
ging behind (López, Márquez, Fernández, & Bolaños, 2014).
Those systems are mainly used to reduce maintenance costs
by moving toward a more condition-based maintenance sched-
ule. PHM is often added to a system as an afterthought, in
order to solve reliability and risks issues when they start aris-
ing. PHM system modeling can, however, also be used in the
design phase to make important decisions, drive the proba-
bility of failure of components down, and avoid unnecessary
design costs.

Most of the developments in the PHM field aim at improv-
ing the diagnosis and prognosis capability in various systems.
This is seen through the development of sensors and mea-

surement techniques (Lin, Zakwan, & Jennions, 2017; Xiao,
2016), more adequate data analysis methods (Sankavaram et
al., 2016) and the introduction of decision algorithms for smart
manufacturing processes (Choo, Adams, Weiss, Marvel, &
Beling, 2016). The potential impact on the design of the ap-
plication of PHM techniques during the early design phase is
rarely considered.

2.2. Bayesian network

A Bayesian network is a directed acyclic graphical probabilis-
tic model that represents a set of variables and their condi-
tional dependencies (Pearl, 1985). It is composed of a set of
nodesX , a directed and acyclic graph to link them, and a con-
ditional distribution for each node given its parents, P (Xi|
Parents(Xi)). Within the scope of the work presented in
this paper, the conditional distribution are represented by con-
ditional probability tables, giving the distribution over the
states ofXi for each combinations of parent values. A Bayes-
ian network being acyclic by definition, several models rep-
resenting the various components’ interaction and feedback
loops in the system have to be considered.

Bayesian networks have been the subject of a growing popu-
larity to model systems and conduct reliability analysis (Doguc
& Ramirez-Marquez, 2009; Torres-Toledano & Sucar, 1998),
and have shown significant advantages when compared to
widespread methods such as Reliability Block Diagram (RBD)
or Fault Tree Analysis (FTA) (Langseth & Portinale, 2007). We-
ber, Medina-Oliva, and Simon (2012) gives a useful overview
of the use of Bayesian networks in the risk and reliability
field.

2.3. Functional model

In order to model a system in the early conception phase,
functional models were developed, and with them various
functional failure analysis approaches were devised. These
functional models are gaining traction within the industry due
to their ability to discover faults and propagation paths early
on in the design process, cutting costs to make the product
evolve toward a safe and reliable prototype.

A functional model is a graphical representation of a sys-
tem functionalities (Eisenbart, Blessing, & Gericke, 2012). It
comprises a set of functions performed within the system and
the flows connecting them together. The Functional Basis for
Engineering Design (FBED), developed by Stone and Wood
(2000), defines a specific taxonomy allowing for widespread
and unified use of this type of model. In this taxonomy, for
example, a tank of water would be characterized by “Pro-
vision - Store - Contain”. One of the main advantages of
this system definition is its applicability throughout all de-
sign stages, notably in the very early conception stages, when
the specific components and requirements are yet to be de-
termined, and when erroneous costly decisions can be taken
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by engineering teams. The present paper uses the taxon-
omy developed within the FBED method and generates func-
tional models based on the Functional Flows Block Diagram
(FFBD) method. FFBD was developed in the late 50s for US
defense applications. It introduces logical gates in a block
diagram.

2.4. PHM in risk and reliability analyses

Prognostic and Health Management systems are not com-
monly considered in the early stages of design due to the
lack of adequate analysis methods. With relation to PHM
systems modeling in a system, two categories of risk and re-
liability analyses appear: PHM-potential methods and non-
PHM methods.

2.4.1. PHM-potential methods

The PHM-potential methods can be used to account for PHM
hardware within a system. However, those methods are ei-
ther limited by the need for an advanced existing design or
by the lack of flexibility when implementing PHM hardware
modeling.

Probabilistic Risk Assessment (PRA) methods (Smith et al.,
2005) identify and analyze the consequences of initiating events
in a system, by playing out the accident sequence and com-
puting the probability of the system being safe. The use of
this method is, for example, required in the nuclear industry
to justify the plant safety in a variety of initiating events (U.S.
NRC, 2016). PRA can account for fault detection and cor-
rective action success in each specific accident sequence. It
cannot be effortlessly modified to compare the outcome of
different selection and position of PHM hardware within the
system and can be cumbersome to modify.

The Functional Failure Identification and Propagation (FFIP)
propagates failures through a functional model using Flow
State Logic (FSL) (Jensen, Tumer, & Kurtoglu, 2009; Kur-
toglu & Tumer, 2008). Representing the impact of PHM
hardware in the system requires the modification of the func-
tional model and the FSL associated, an expensive (both in
time and resources) undertaking.

In order to circumvent the limitations from FFIP, a method to
integrate PHM system in a functional model and optimize the
selection of the hardware was developed by Stack and Van
Bossuyt (2015), the Prognostic System Variable Configura-
tion Comparison (PSVCC). It introduced an algorithm allow-
ing a designer to define potential PHM hardware to set up in
the system and essentially performed a modified FFIP analy-
sis on the new system created. This method did not consider
a number of parameters such as the management and main-
tenance team decisions, or the use of generic databases. It
based its failure propagation on the FFIP method, rendering
the method challenging to scale up. PSVCC was considered

an inspiration for the proposed method in the present paper,
even though the two methods have little in common.

Continuous Time Bayesian Network (CTBN) can be used to
account for loops in a Bayesian network by considering the
time component (Gopalratnam, Kautz, & Weld, 2005; Nodel-
man, Shelton, & Koller, 2002). A reliability analysis based on
CTBN was developed by Boudali and Dugan (2006). More
recently, a prognostics method based on CTBN was intro-
duced to account for PHM sensors in a system (Perreault,
Thornton, Strasser, & Sheppard, 2015). This method was ap-
plied to a system in order to predict faults and act on them
to prevent system failure. While adequate — though com-
putionally very intensive even for small complex systems —
for use during the system operational lifetime, it is not appli-
cable in the early stages of a design, when the discrete time
component for the functions states in the system is not known.
It is also not made to select an optimized sensor configuration
through a system. Finding a way to reconcile the Prognostics
CTBN with the method proposed in this paper represent an
interesting future direction for this field.

A methodology for probabilistic prognosis of a system using
a dynamic Bayesian Network was recently proposed (Bar-
tram & Mahadevan, 2015). A Hybrid Bayesian Network (HBN)
framework was introduced (Neil & Marquez, 2012) to ac-
count for repair time and derive system availability. This
method is again applicable on finished and operating designs
only, consequently limiting its use in the design stages.

2.4.2. Non-PHM methods

Fault Tree Analysis (FTA) is often included in PRA. It can
also be used independently, which allow its use in earlier
stages of the design, although still pretty advanced (Ericson,
1999). Indeed, the components must be known in order to
create the fault tree. Besides the need for an advanced de-
sign, this analysis method cannot be used to model corrective
actions after a fault detection.

Failure Modes and Effect Analysis (FMEA) and its variant
Failure Modes, Effects and Criticality Analysis (FMECA) (U.S.
Department of Defense, 1949), are widely used risk and re-
liability analysis methods (Liu, Liu, & Liu, 2013). They are
based on the computation of a risk probability number com-
puted from several parameters, the probability of a failure,
its detectability, its severity, and its criticality for a FMECA.
PHM systems can be considered by the engineers while de-
riving the different parameters but no framework is provided
naturally. A few frameworks which could account for health
management sensors within FMECA were developed (Con-
roy, Stecki, & Thorn, 2016; Kacprzynski, Roemer, & Hess,
2002). However, these methods exhibit the weakness of a
FMECA analysis, namely the needs for an advanced design
and for a variety of experts, subject to bias.
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The Functional Failure Design Method (FFDM) (Stone, Tumer,
& Wie, 2005) and the Risk in Early Design (RED) (Lough,
Stone, & Tumer, 2009) are among the main methods of func-
tional failure analyses, based on functional models. These
methods are based on historical functional failure data to iden-
tify the weak points of a system. The PHM systems cannot
be modeled using these methods.

2.5. Human Reliability Analysis

Human Reliability Analysis (HRA) is used in the proposed
framework to compute database information about the prob-
ability of success of corrective actions undertaken following
PHM data analysis. It estimates the contribution of human
failure to the system risk and reliability. Several noteworthy
methods of HRA have been developed over the years, specifi-
cally for the nuclear industry, such as the THERP method (Sw-
ain & Guttmann, 1983), the SPAR-H method (Gertman, Black-
man, Marble, Byers, & Smith, 2005) or ATHEANA (Cooper
et al., 1996).

When considering maintenance and recovery actions, HRA is
an important analysis to perform in order to account for hu-
man mistakes. Numerous HRA methods are criticized for not
being plant-specific enough and relying on potentially out-
dated data (Spurgin & Lydell, 2002). SPAR-H, a more recent
and now widespread method in the industry, is used in this
paper.

In the SPAR-H method, the Human Error Probability (HEP)
is defined from the combination of the Performance Shap-
ing Factors (PSF ) corresponding to different essential parts
of the maintenance success such as stress factor or task com-
plexity (Boring & Blackman, 2007). It follows Eq. (1). NHEP
is defined in HRA as being equal to 0.001 for action-based
maintenance. The PSF includes the available time to per-
form a task, the associated stress, the team’s experience and
training, the complexity of the task, the ergonomics of the
systems, the quality of available procedures, the team’s fit-
ness for duty and the work processes. The PSF values used
in this paper are taken from the SPAR-H method.

HEP =
NHEP ∗ PSF

NHEP ∗ (PSF − 1) + 1
(1)

2.6. Review

Functional models form a category of systems modeling that
can allow for risk and reliability analysis in the early stages of
a design. Bayesian networks provide a mathematical frame-
work that can be used to represent such system models and
to propagate failure probabilities through the models. PHM
equipment’s goal is to catch incipient failures early enough
to attempt to correct them. HRA methods evaluate the likeli-
hood of success of a correction.

3. METHODOLOGY

The PHASED methodology presented in this paper aims at
incorporating PHM hardware in a system during the early
phase of engineering design. The probabilities of failure of
a critical point in the system are obtained for various PHM
hardware configuration through the system and the optimized
configuration is computed. The method can be divided into
five main parts, as seen in Figure 1. These five parts include a
logical functional model, databases, trees finding, PHM sen-
sor selection and Bayesian network solver.

The PHASED method is based upon a functional represen-
tation of a system as developed by Stone and Wood (2000),
augmented with Success Tree Analysis (STA). STA is the in-
verse of the FTA (Andrews & Dunnett, 2000). It describes
the various steps needed to lead to a healthy system. Logi-
cal gates are introduced to define the steps connectivity. Five
distinct databases are necessary to represent various system
information. Recommended approaches to be used in or-
der to populate these databases are presented. The databases
shown in this paper fall into two categories, system-specific
and generic. The generic databases comprise information
about PHM hardware efficiency, emergent function weaknesses
and impacts of function failure on subsequent linked flows
quality. The system-specific databases tie the probability of
corrective action success to each particular system function
and flow, as well as code the management decision making
towards maintenance tasks, the reliance on scheduled main-
tenance and PHM sensors indications. The different trees
representing the system are obtained using a combined risk-
critical and reliability-critical approach. For each computed
tree, the selection and positioning of PHM hardware through
the designed system is generated. The Bayesian network rep-
resenting the given tree through the complex system is conse-
quently built and a risk and reliability analysis is performed.
The positioning of PHM equipment is then iterated to com-
pute the best possible system configuration. The best con-
figuration of the configurations obtained for all paths is then
selected and can be used to support the decision making.

This framework has been automated to facilitate the design-
ers’ task (L’Her, 2016). It can be noted that the use of a func-
tional representation of the system allows for the applicability
of the proposed method in various stages of design, including
the early phases.

3.1. Logical Functional model

The functional model is based on the Functional Basis for
Engineering Design (FBED) method, and can be constructed
from an existing Pipe and Instrumentation Diagram (P&ID)
or from a conceptual design. A functional model can be ef-
fectively built in the very early stages of design.

In this paper, the concept of a logical functional model is
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Figure 1. Methodology (dashed lines represent inputs)

introduced based upon FBED taxonomy and evolved FFBD
method. FBED does not consider the use of logical gates
linking several flows to functions. The method developed in
this paper adds logical gates within the functional model rep-
resenting the system. By default, if no gate is represented,
an AND-gate is assumed, i.e. the receiving function needs
all input flows to operate. A logical functional model allows
for the input of more detailed information from the desired
system. Figure 2 exhibits the difference between a logical
functional model and its classical equivalent.

In the logical functional model shown in Figure 2, flows 14,
24 and 34 respectively connect the functions 1, 2 and 3 to
the function 4 using a Voting-Or (k-of-N) logical gate. If the
function 4 nominal operation depends on all three incoming
flows to be in a nominal state, this gate becomes an AND-
gate. If only one of the three flows is necessary to the nominal
function 4 operation, this gate becomes an OR-gate.

The use of a logical functional model permits the encoding

of information such as redundancies and fail-safe functions,
prevalent in complex systems, to a functional model.

3.2. Databases

The objective of this paper is to propose a method to model
and optimize positioning of PHM hardware throughout a com-
plex system and obtain failure propagation paths using a Bay-
esian network. It does not aim at developing a set of values
and rules to populate the aforementioned databases. Conse-
quently, in this paper the databases are populated using val-
ues derived from expert opinion and industry resources for
the purpose of illustrating the method; these specific values
should not be used as-is for safety-critical analysis.

Five independent databases are to be used in this method. It
is interesting to note that three of these databases are generic
and not system-dependent, meaning that they can be reused
across various systems. This ensues from the use of the uni-
fied taxonomy developed within FBED.
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Figure 2. Classical Functional model (left) and Logical Functional model (right).

Name Function or Flow
Efficiency

False alarm
Failure

Concern
low high

1 Function A ε1,A - - e1,A

...

n
Function A εn,A - - en,A

Flow Z εn,f,Z εn,l,Z εn,h,Z en,Z

Table 1. PHM hardware database architecture - P

The p-database, noted P, contains information relative to the
type of PHM hardware available to the system. This includes
the efficiency ε of the hardware to identify different flow and
function weaknesses and the false alarm rate e. The efficiency
represents the probability that a PHM hardware will correctly
detect a flow or function weakness. The efficiency of a par-
ticular PHM hardware depends on the function or flow it is
surveilling. The architecture of P can be found in Table 1.
This database represents the specific hardware manufacturing
specification data. However, it often happens that this data is
not available to the designer. In such cases, values based on
historical performance of functionally similar equipment can
prove sufficient.

The m-database, noted M, contains information relative to the
maintenance team management and decisions. This database
accounts for potential team shortages or a managerial deci-
sion to ignore PHM data (γ). It also allows to account for
scheduled maintenance not condition-based (µ).

This database permits a better refinement of the simulation. In
the case M is not given, the algorithm considers the manage-
ment to be in total support of the PHM hardware warnings.
A maintenance team would thus be sent to repair a function
or flow every time a weakness is detected by the PHM equip-
ment. This database represents a challenge to populate effi-
ciently. Indeed, the µ values should be considered to account
for the maintenance of directly dependent function or flows,
and the distinction between direct and indirect dependance of
functions and flows can be subject to interpretation by the de-

System Function or Flow
[ID]

Correction success
Mishandling

Failure
Concern

low high

Function A category
[ID A]

ρA - - βA

...

Flow Z category
[ID Z]

ρf,Z ρl,Z ρh,Z βZ

Table 2. Correction success database architecture - H

signers. In this paper, only the immediately connected flows
and functions were considered impactful and as such, inte-
grated in the µ values computation.

The h-database, noted H, contains information relative to the
corrective actions. For each function and flow in the con-
structed functional model, the designer computes a likelihood
of timely repair ρ in the case of a successful detection by
the PHM hardware. The designer also generates a likeli-
hood of mishandling β if the PHM signal originated from a
false alarm. Maintenance or repair actions are dependent on
the system itself. Hence, this database is considered system-
specific and often cannot be reused.

To populate H, two approaches are possible: the automatic
pre-planned actions and the human (maintenances, repairs,
manual switches to redundant systems, etc.) actions. The
HRA methodology can be applied to the studied system to
account for the human side of corrective actions. The main
question to answer when computing HRA probability is: Can
the risk-critical and the reliability-critical functions defined
for the system be protected? When a weakness is detected by
a PHM sensor, different parameters (time to repair, mainte-
nance team experience and training, work processes, proce-
dures, etc.) are considered to compute a probability of suc-
cessful action. In the case of automatic actions, their rele-
vance and time efficiency can be obtained using various meth-
ods such as a simplistic PRA model. Table 2 presents the
database structure.
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Function Flow
Flow quality

Failure
Concern

Nominal
low high

Function A
Flow 1 λf,A→1 λl,A→1 λh,A→1 λn,A→1

...
Flow N λf,A→N λl,A→N λh,A→N λn,A→N

...

Table 3. Function failure link database architecture - F

The f-database, noted F, links a function failure to an outgo-
ing flow weakness. Its goal is to indicate to the simulation
the likelihood λ of failure type propagation through the sys-
tem. Within this study, a function state is considered binary.
It is either in a failed state or in a nominal state. However, a
function failure exhibits a non-binary interaction with the out-
going flows, due to various potential physical causes, giving
way to the notion of flow quality. In this paper, the outgoing
flows’ quality from a failed function can be categorized in the
following subset s of probability λ: failed (probability λf ),
of low concern (probability λl), of high concern (probability
λh), or nominal (probability λn). The database architecture
is explicited in Table 3.

The flow quality can then be detected with varying degrees of
efficiency by PHM equipment, according to data in P. This
modifies the propagation probabilities of the failure through
the system. For each function in the system, the designers
compute the probability of the output flows quality being in
each of the states of s. Populating F can prove challenging
to the designer and mostly rest on expert judgment. Conse-
quently, the designer may skip this step for the unresolved
function failure’s impact. The algorithm will then automati-
cally modify s by rendering it binary: failed or nominal flow.

The w-database, noted W, contains information relative to
the independent function failure probability. It is similar to
the database used in methods such as FFIP or FFDM, and
the populating algorithms are identical. In this paper, it is as-
sumed that there is no independent internal flow failure prob-
ability, but there is an independent external flow failure prob-
ability λ. The external flow failure probability links the func-
tional model to the system boundaries. In other words, in the
proposed method, a flow within the system can only fail if
its parents function fail. However, the functions beyond the
system boundaries are not simulated explicitly. The potential
failure of such functions is thus carried into the system by
independent failure probabilities of external flows.

W can be populated using component-level historical failure
data and mapping each component failure to a function or
flow failure. This mapping function is not straightforward, as
physical effects from component specifications can affect the
function or flow failure.

In this study, illustrative rates of occurence have been se-
lected, based on expert elicitation. The correctness of the data

Function or external Flow
(Deepest level)

Emergent weakness probability
(per year or per use)

Failure
Concern

low high

Function A ωA - -

...

Flow Z ωf,A ωl,A ωh,A

Table 4. Emergent weakness database architecture - W

considered does not impact the methodology algorithm.

3.3. Trees computing

A tree represent a path through a functional system. In order
to compute all the possible paths through a system, several
trees might be needed.

The paths are computed by going through the given model
using the following algorithm A.1:

(A.1) Step 1 The entry points are identified. An entry point
is a function or a flow within the logical functional model for
which the parent functions or flows are either the boundary or
non-defined. An entry point represent a point of entry for a
complex system.

(A.1) Step 2 The risk-critical point and the reliability-critical
point are defined by the design team. The risk-critical point
is the function or flow which represent a failure of the system
leading to a safety issue. The reliability-critical point is the
function or flow which represent the failure of the system to
operate as designed.

(A.1) Step 3 Starting from each entry point in turn, an algo-
rithm computes the tree leading to the risk-critical point, as
well as the tree leading to the reliability-critical point.

A simplified mockup of a functional model can be seen in
Figure 3. This mockup is used to illustrate the algorithm used
to compute the various paths through a system. The letters
represent functions, while the connections between the letters
represent flows. In the simple logical functional model of
interest, two gates are considered, OR and AND. The system
is considered isolated, not receiving input from outside its
boundary. In this simplified example, the function set S is
populated with S = {A,F} (step 1). The risk-critical point
is selected to be the function A, and the reliability-critical
point is given to be the function E (step 2).

Figure 3. Simplified mockup example
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Starting from function A, the algorithm computes the possi-
ble next function in the tree. Only B is possible. From B, two
distinct paths can be followed. The first one goes back to A.
This is a loop, and the tree is thus discarded. The second pos-
sibility is to go to C, and then D. From D, two more paths can
be followed. The first one goes back to B, again generating
a closed loop. Consequently, the longest possible tree PA,rel
to attain the reliability-critical point E is shown in figure 4.
The longest tree PA,ris to attain the risk-critical point A is
obviously the tree containing only the node A.

Figure 4. PA,rel tree through the system

Starting from function F and following the same algorithm,
the longest non-looping tree PF,ris to get to risk-critical point
A is obtained. The longest tree PF,rel to the reliability-critical
point E is also computed. Both paths are presented in figure 5.

Figure 5. PF,ris (top) and PF,rel (bottom) trees through the
system

In order to avoid redundancies, the algorithm then combines
the obtained trees to eliminate the subtrees. A subtree is a
computed tree that appears fully in another computed tree. In
the example considered, it is easy to see that PA,ris is a sub-
tree of PF,ris, and that PF,rel is a subtree of PA,rel. Conse-
quently, in the simplified illustrative example considered, the
combination of the two trees PA,rel and PF,ris represents the
whole system, from a risk point of view and from a reliability
point of view.

3.4. PHM hardware positions

Theoretically, in order to select the best possible combination
of PHM hardware and their position in the system, each com-
bination has to be considered, analyzed, and compared with
the others. This is, however, not practical, due to computa-
tional time issues. Consequently, an algorithm is devised to
select the best possible combinations of the PHM hardware
positions throughout the system from a reduced list.

The combinations list reduction is rendered possible by using
several assumptions. The first assumption is that each par-
ticular PHM equipment can only monitor specific categories
of flows and functions with varying efficiency. This allows
the algorithm to not link incompatible functions or flows and
PHM hardware. The second assumption, which is optional,
is that the inventory available to the designer is limited, for
example, by incompatible hardware size or cost. Hence, the
designer can inform the algorithm that only n sensors of type
X are at its disposal. The third assumption is that the best re-
sults will be obtained with the maximum possible number of
sensors in the system. Finally, a fourth assumption accounts
for potential constraints, forcing a function or flow to be mon-
itored by a specific hardware or to not be monitored.

Assumptions 1 and 2 are easily justified. Assumption 3 can
be argued with, based on the hardware efficiency and espe-
cially its false alarm rate for a given function or flow be-
ing monitored. An inadequate PHM sensor could theoreti-
cally increase failure probability of a function, if the false
alarm rate is high enough and the correction success rate low
enough. That said, the approximation holds sufficiently well
most of the time, allowing the designer to converge on a rea-
sonable functional model. At this point, the designer can
lift the third assumption and compute a final optimization for
PHM positions in the system, the first two assumptions limit-
ing the number of possible permutations to keep the compu-
tation time within reason.

3.5. Bayesian network nodes

We can recall that a Bayesian network is composed of nodes,
linked together by relationships. Each node probabilistic out-
come impacts its daughter nodes. Consequently, in a Bay-
esian network, knowing the state of the parents (e.g. P (W )
and P (C)) automatically gives the state of the children (e.g.
P (F |W,C)). The model does not need to know anything else
other than the parent nodes’ states about the system. This
presents a certain advantage for a complex system by not re-
quiring extensive computer memory use.

In this paper, three categories of Bayesian network nodes
are considered from within the logical functional model: the
gates, the functions, and the flows. The functions and flows
categories are each divided into four nodes to account for
the potential presence of PHM hardware. The four different
nodes associated to a function or a flow are (1) weakness, (2)
detection, (3) correction and (4) failure. Logical gate nodes
can be used to model system redundancies or requirements.
Each specific node can be attributed a database. The weak-
ness nodes use W, the detection nodes use P, and the correc-
tion nodes use H. The failure nodes use F to link with their
child weakness nodes.

Figure 6 presents an excerpt of a system based on the func-
tional prognostics Bayesian network model. In this subsys-
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Figure 6. Example of conditional probability tables in the
proposed prognostic bayes net.

F14 Y N
F24 Y N Y N
F34 Y N Y N Y N Y N

Gate Y 1 0 0 0 0 0 0 0
N 0 1 1 1 1 1 1 1

Table 5. Conditional Probability Table for an AND-gate of
size 3.

tem, an emergent weakness of a monitored component is con-
sidered with a rate of 0.001 per year (ω = 0.001). The PHM
hardware used has a 94% efficiency to detect a weakness of
the particular function or flow, and a 0.001 chance of signal-
ing a false alarm (ε = 0.94 and e = 0.001). Every time the
sensor detection model gives a positive signal, the mainte-
nance team is sent to repair the function or flow, or the auto-
matic corrective actions devised are activated. The corrective
action success rate is set at 85%, and the maintenance team
failing the function or flow even though the signal was only a
false alarm is considered to happen 5% of the time (ρ = 0.85
and β = 0.05).

The gates category is simply used to model a more complex
flows-to-function relationship in the system design. In that
sense, a gate node can only take two probabilistic outcomes:
true or false. Tables 5, 6 and 7 show respectively, for an AND-
gate, an OR-gate and a Voting-Or gate, how a gate is modeled
in the functional Bayesian network representation of the log-
ical functional model from Figure 2. In those tables, Y repre-
sents a nominal state and N represents a failure state.

The nodes associated with the functions category are consid-
ered binary events in this paper. A binary event is defined as
a node being in one of two states. Consequently, a function
node (weakness, detection, correction, and failure nodes) can
only be in one of two states, true or false. Each state carries
a specific probability, dependent on the states of the parents’
nodes.

F14 Y N
F24 Y N Y N
F34 Y N Y N Y N Y N

Gate Y 1 1 1 1 1 1 1 0
N 0 0 0 0 0 0 0 1

Table 6. Conditional Probability Table for an OR-gate of size
3.

F14 Y N
F24 Y N Y N
F34 Y N Y N Y N Y N

Gate Y 1 1 1 0 1 0 0 0
N 0 0 0 1 0 1 1 1

Table 7. Conditional Probability Table for a 2-of-3 gate.

For the flows weakness nodes, four flow quality states are
considered, from the ensemble s. We recall that the ensemble
s represents the following flow quality states: failed, of low
concern, of high concern, or nominal. The nodes associated
with flow quality from s are named s-events. The PHM hard-
ware efficiency and error rate is impacted by the flow quality,
following the data given in P. The four-states weakness node
eventually translates to a binary event representing the flow
failure node, using inputs from the binary events modeling
the detection node and the correction node. The four-states
weakness is thus used to refine the flow failure probability.

In order to illustrate the algorithm presented, a small example
is given. Figure 7 presents a very simple functional model,
and Figure 8 represents its translation into the proposed method
model, provided each function and flow are linked to a PHM
device. The interaction with the various databases, F, H, M,
P and W is also shown in Figure 8. If the designer were to
force the flow f12 not to be equipped with a PHM hardware,
the nodes Detection f12 and Correction f12 would disappear
from the model, along with the connections.

3.6. Bayesian network algorithm

The Bayesian network used to describe the whole system is
based upon the following algorithm A.2 steps. Steps 1 through
4 are applied to a function. Step 5 links a function with its out-
going flows. Steps 6 through 8 are applied to a flow. Step 9-a
links a flow with its receiving function. Step 9-b is applied to
a gate.

(A.2) Step 0 This step is optional. In a Bayesian network,
the designer can set the states of several functions and flows.
While not particularly useful in generating the risk and reli-
ability analysis on the system during the early design phase,
it can be noted that this feature can be used simultaneously
as a Prognostics and Diagnostics tool during the operational
lifetime of the system.

9



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Figure 7. Simple functional model.

(A.2) Step 1 The algorithm computes the probability of a
function weakness, given the observed evidence (step 0) or
W. The function weakness node is a binary event, meaning
that it can only take one of two potential states. Consequently,
either there is a weakness (state SW = Y ) or the function is
in a nominal state (SW = N ), as represented by W in Eq. (2)
for the function f1.

P (Wf1) =

{
ωf1 if SW = Y

ω̄f1 = 1− ωf1 if SW = N
(2)

(A.2) Step 2 The weakness probability associated with f1

has been computed in step 1. The probability of being in a
state of detection by a PHM hardware can now be calculated.
Several potential states can be described to link a weakness
of a function to its detection. There could effectively be a
weakness, and this weakness could be detected according to
the attached hardware efficiency εphm,f1 . The probability of
this event will be noted dε,f1 . Alternatively, there might be no
function weakness, but a false alarm is raised by the hardware
according to its false alarm rate ephm,f1 . The probability of
this event will be noted de,f1 . The combination of these two
events forms the probability of a detection.

The probability of being in the state of non detection, is obvi-
ously the complement of the probability of detection. Either
the weakness is present and not detected, or there is no weak-
ness, and no false alarm is raised. The different probability
paths leading to the probability of detection are represented
in Table 8.

Given the function weakness probability, the detection condi-
tional probability matrix P (Df1 |Wf1) obtained is displayed
in Eq. (3).

P (Df1 |Wf1) =

{
dε,f1 + de,f1 if SD = Y

d′ε,f1 + d′e,f1 if SD = N
(3)

Where:

dε,f1 = ωf1εphm,f1

de,f1 = (1− ωf1)ephm,f1

d′ε,f1 = ωf1(1− εphm,f1)

d′e,f1 = (1− ωf1)(1− ephm,f1)

This step is performed if and only if the function of interest is
equipped with a PHM hardware. Indeed, if a PHM hardware

is not attached to the function, the detection is obviously non-
existent, implying εphm,f1 = 0 and ephm,f1 = 0. Entering
these numbers in Eq. (3), we obtain Eq. (4).

P (Df1 |Wf1) =

{
0 if SD = Y

1 if SD = N
(4)

(A.2) Step 3 The weakness probability and the detection
probability have been computed respectively in step 1 and
step 2. This third step estimates the probability of a correc-
tive action being attempted. The potential scenarios leading
to the corrective action are treated by the conditional proba-
bility table presented in Table 8. In the case of an actual weak-
ness, the detector could detect the weakness (dε,f1 ). Then,
the maintenance team is sent to repair according to a deci-
sion probability γf1 given by M. Alternatively, the weakness
is not detected (d′ε,f1 ) but a scheduled non required mainte-
nance is done on the function, according to a probability µf1
also given by M. The combination of these two events trans-
late to a probability noted cω,f1 . Maintenance can also be
carried out on the function if no weakness actually happened.
This event is true if a false alarm (de,f1 ) caused the mainte-
nance team to mobilize or if a scheduled non required main-
tence is performed. These two events can be combined to
obtain a probability noted cω̄,f1 . Finally, the corrective action
probability can be calculated by combining cω,f1 with cω̄,f1 .

Considering the fact that the corrective action is a binary event,
the probability of no corrective action being carried out is ob-
viously the complement of the probability that a corrective
action is performed.

Given the function weakness probability P (Wf1) and the de-
tection probability matrice P (Df1 |Wf1), the conditional cor-
rective action matrice obtained is displayed in Eq. (5).

P (Cf1 |Wf1 , Df1) =

{
cω,f1 + cω̄,f1 if SC = Y

c′ω,f1 + c′ω̄,f1 if SC = N
(5)

Where:

cω,f1 = dε,f1γf1 + d′ε,f1µf1

cω̄,f1 = de,f1γf1 + d′e,f1µf1

c′ω,f1 = dε,f1(1− γf1) + d′ε,f1(1− µf1)

c′ω̄,f1 = de,f1(1− γf1) + d′e,f1(1− µf1)

(A.2) Step 4 Based on the weakness probability and the cor-
rective action probability calculated respectively in step 1 and
step 3, the algorithm computes the probability of the func-
tion failure using the conditional probability table displayed
in Table 8. In the case of an actual weakness, the path leading
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Figure 8. Translation of a simple function model (Figure 7) to its functional prognostic Bayesian network form.

P (Df1 |Wf1) Weakness f1 Y N

Detection f1
Y εphm,f1 ephm,f1

N 1− εphm,f1 1− ephm,f1

P (Cf1 |Wf1 , Df1)
Weakness f1 Y N
Detection f1 Y N Y N

Correction f1
Y γf1 µf1 γf1 µf1

N 1− γf1 1− µf1 1− γf1 1− µf1

P (Ff1 |Wf1 , Cf1)
Weakness f1 Y N
Correction f1 Y N Y N

Failure f1
Y 1− ρf1 1 βf1 0
N ρf1 0 1− βf1 1

Table 8. Conditional probability tables for the weakness detection, correction and failure of a function f1

to a failure can be that no corrective action was performed
(c′ω,f1 ), or that a corrective action was performed (cω,f1 ) but
was unsuccessful, according to the ρf1 value given in H. Al-
ternatively, a function can fail if there was no weakness but a
corrective action was still performed (cω̄,f1 ) and generated a
function failure according to the mishandling probability βf1
given by H. The failure probability of f1 is obtained by com-
bining these different scenarios.

The probability that the function does not fail is obtained by
combining the following three possibilities. A weakness was
present but was corrected following the ρf1 value. No weak-
ness was present and no action was performed. No weakness
was present and the performed action did not fail the func-
tion, according to the mishandling probability βf1 . This cor-
responds to the complement of the probability of failure.

Given the function weakness probability P (Wf1) and the cor-
rection probability matrice P (Cf1 |Wf1 , Df1), the conditional

failure matrice obtained is displayed in Eq. (6).

P (Ff1 |Wf1 , Cf1) =

{
ff1 if SF = Y

f ′f1 if SF = N
(6)

Where:

ff1 = cω,f1(1− ρf1) + c′ω,f1 + cω̄,f1βf1

f ′f1 = cω,f1ρf1 + c′ω̄,f1 + cω̄,f1(1− βf1)

(A.2) Step 5 A function failure can be linked to different
outgoing flow qualities. The flow quality represents a state
of weakness and is modeled by an s-event. An s-event is an
event that can take four distinct states of flow quality. The
quality of a flow can be categorized as failed (λf ), of low
concern (λl), of high concern (λh), or nominal (λn). The
algorithm considers that the quality of a flow cannot sponta-
neously change. The quality of a flow can only change when
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the function it originates from is in a failed state. This rep-
resents a limitation of the simulation, as it does not allow for
the treatment of failure flows going through a function with-
out failing it.

F contains the detailed data for each specific function-flow
connection. The probability of weakness P (Wf12 |Ff1) is dis-
played in Eq. (7).

P (Wf12 |Ff1) =


wf,f12 if SW = f

wl,f12 if SW = l

wh,f12 if SW = h

wn,f12 if SW = n

(7)

Where:

wf,f12 = λf,f12ff1

wl,f12 = λl,f12ff1

wh,f12 = λh,f12ff1

wn,f12 = ff1 + f ′f1 −
∑
i∈[f,h,l] ff1λi

(A.2) Step 6 The weakness probability of f12 has been com-
puted in step 5. The probability of a detection can now be
calculated. Similar to step 2, several potential states can be
described to link a weakness of a flow to its detection. There
could effectively be a flow quality weakness, which is de-
tected according to the attached hardware efficiencies. The
hardware efficiencies for a flow are given for the three states
of degraded operation, low concern (εphm,l,f12 ), high con-
cern (εphm,h,f12 ) and failed (εphm,f,f12 ). The probability of a
scenario in which a weakness is present and detected will be
noted dεi,f12 , for i ∈ [f, l, h]. Alternatively, a detection might
occur if there is no flow weakness, but a false alarm is raised
by the hardware according to its false alarm rate ephm,f12 .
The probability of this event will be noted de,f12 . The com-
bination of these two events forms the probability of a detec-
tion. This can be seen in Table 9.

The probability of not having a detection is the complement
of the probability of having a detection. Indeed, if the flow
quality is not nominal, the detector might fail to detect it, with
a probability depending on its efficiency. If the flow quality
is nominal, the detector can also not signal any issue, based
on its false alarm rate.

Given the flow weakness probability, the detection conditional
probability matrice P (Df12 |Wf12) obtained is displayed in
Eq. (8).

P (Df12 |Wf12) =

{∑
i∈[f,h,l] dεi,f12 + de,f12 if SD = Y∑
i∈[f,h,l] d

′
εi,f12

+ d′e,f12 if SD = N

(8)

Where:

dεi,f12 = ωi,f12εphm,i,f12

de,f12 = ωn,f12ephm,f12

d′εi,f12 = ωi,f12(1− εphm,i,f12)

d′e,f12 = ωn,f12(1− ephm,f12)

This step is performed if and only if the function of interest is
equipped with a PHM hardware. Indeed, if a PHM hardware
is not attached to the function, the detection is obviously in a
false state.

(A.2) Step 7 The flow weakness probability and the detec-
tion probability have been computed respectively in step 5
and step 6. This next step estimates the probability of a cor-
rective action being attempted. The potential scenario lead-
ing to the corrective action is treated by the conditional prob-
ability table presented in Table 9. In the case of an actual
weakness, the detector could detect the weakness according
to the corresponding hardware efficiency for each flow quality
(dεi,f12 for i ∈ [f, l, h]). If the event is detected, the mainte-
nance team is sent to repair according to a decision probabil-
ity γi,f12 for i ∈ [f, l, h], based on the team management and
the detected flow quality weakness. The decision probability
is given by M. Alternatively, the weakness could be unde-
tected (d′εi,f12 for i ∈ [f, l, h]) but a scheduled non required
maintenance could be performed on the system which would
impact the flow, according to a probability µf12 also given by
M. The combination of these two events translates to a proba-
bility noted cω,i,f12 for i ∈ [f, l, h]. Maintenance can also be
carried out on the system, with a direct impact on the flow f12

if no weakness actually happened. This event is true if a false
alarm (de,f12 ) caused the maintenance team to mobilize or if
a scheduled non required maintence is performed. These two
events can be combined to obtain a probability noted cω̄,f12 .
Finally, the corrective action probability can be calculated by
combining cω,i,f12 with cω̄,f12 for i ∈ [f, l, h].

The probability that no corrective action is attempted is the
complement of the probability that a corrective action is car-
ried out.

Given the flow weakness probability P (Wf12 |Ff1) and the
detection probability matrice P (Df12 |Wf12), the conditional
corrective action matrice obtained is displayed in Eq. (9).

P (Cf12 |Wf12 , Df12) =

{∑
i∈[f,l,h,n] cωi,f12 if SC = Y∑
i∈[f,l,h,n] c

′
ωi,f12

if SC = N

(9)

Where, for i ∈ [f, l, h]:
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P (Df12
|Wf12

) Weakness f12 Failed Low concern High concern Nominal

Detection f12
Y εphm,f,f12

εphm,l,f12
εphm,h,f12

ephm,f12

N 1− εphm,f,f12
1− εphm,l,f12

1− εphm,h,f12
1− ephm,f12

P (Cf12
|Wf12

, Df12
)

Weakness f12 Failed Low concern High concern Nominal
Detection f12 Y N Y N Y N Y N

Correction f12
Y γf,f12 µf,f12

γl,f12 µl,f12
γh,f12

µh,f12
γn,f12

µn,f12

N 1− γf,f12 1− µf,f12
1− γl,f12 1− µl,f12

1− γh,f12
1− µh,f12

1− γn,f12
1− µn,f12

P (Ff12
|Wf12

, Cf12
)

Weakness f12 Failed Low concern High concern Nominal
Correction f12 Y N Y N Y N Y N

Failure f12
Y 1− ρf,f12 1 1− ρl,f12 1 1− ρh,f12

1 βf12
0

N ρf,f12 0 ρl,f12 0 ρh,f12
0 1− βf12

1

Table 9. Conditional probability tables for the weakness detection, correction and failure of a flow f12

cωi,f12 = dεi,f12γi,f12 + d′εi,f12µf12

cωn,f12 = de,f12γn,f12 + d′e,f12µf12

c′ωi,f12
= dεi,f12(1− γi,f12) + d′εi,f12(1− µf12)

c′ωn,f12
= de,f12(1− γn,f12) + d′e,f12(1− µf12)

(A.2) Step 8 Based on the flow weakness probability and the
corrective action probability calculated respectively in steps
5 and 7, the algorithm computes the probability of the flow
failure using the conditional probability table displayed in Ta-
ble 9.

In the case of an actual weakness, either of low concern, of
high concern, or failed, the path leading to a failure can be
that no corrective action was performed

(∑
i∈[f,l,h] c

′
ωi,f12

)
,

or that a corrective action was performed
(∑

i∈[f,l,h] cωi,f12

)
but was unsuccessful, according to the ρi,f12 values for i ∈
[f, l, h] given in H. Alternatively, the flow can fail if there was
no weakness but a corrective action was still performed on the
system (cωn,f12 ) and generated a function failure according to
the mishandling probability βf12 given by H.

Given the function weakness probability P (Wf1) and the cor-
rection probability matrice P (Cf1 |Wf1 , Df1), the conditional
failure matrice obtained is displayed in Eq. (10).

P (Ff12 |Wf12 , Cf12) =

{
ff12 if SF = Y

f ′f12 if SF = N
(10)

Where:

ff12 = cωn,f12βf12 +
∑
i∈[f,l,h] cωi,f12(1− ρi,f12) + c′ωi,f12

f ′f12 = cωn,f12(1− βf12) + c′ωn,f12
+
∑
i∈[f,l,h] cωi,f12ρi,f12

If the next Bayesian node in the model is a logical gate, the
algorithm goes to step 9-b, otherwise, it goes to step 9-a.

(A.2) Step 9-a A failed flow is considered to fail a receiv-
ing function since the function will not be able to perform

its task without a necessary flow. The failure probability ob-
tained in step 8 for the flow is thus passed fully to the next
function in the model. The emergent weakness of the next
function in the model is also considered. Consequently, given
P (Ff12 |Wf12 , Cf12), the weakness probability seen by the
next function is displayed in the conditional failure matrice
in Eq. (11).

P (Wf2 |Ff12) =

{
ff12 + ωf2 if SW = Y

f ′f12 − ωf2 if SW = N
(11)

The algorithm returns to step 1.

(A.2) Step 9-b Logical gates can combine several flows and
compute the next function weakness associated. Consider an-
other flow, f32, supplying a redundant flow to function f2. An
OR-gate is placed in the model, so that only one flow, f12 or
f32 is needed for function f2 to operate nominally.

The probability that the flow failures propagate through the
gate g12,32 to the next function weakness, P (Ff2 |Ff12 , Ff32),
is shown in Eq. (12).

P (Fg12,32 |Ff12 , Ff23) ={
ff12ff32 if SF = Y

f ′f12ff32 + ff12f
′
f32

+ f ′f12f
′
f32

if SF = N

(12)

The gate failure probability becomes the new flow failure
probability. The algorithm returns to step 9-a.

3.7. Engineering decision framework

For each specific permutations retained, and for each tree
computed through the system, the prognostic functional Bay-
esian network is automatically updated by the algorithm. In
order to compare the various possibilities, a score must be
computed for each possibility. This score is defined as the
failure probability of the critical failure point. The critical
failure point is the reliability-critical point or the risk-critical
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Trees Configuration A Conf. B Conf. C

A P (fA|CA) P (fA|CB) P (fA|CC)

B P (fB |CA) P (fB |CB) P (fB |CC)

C P (fC |CA) P (fC |CB) P (fC |CC)

Table 10. Combination of the optimized configurations

point, depending on the tree considered, defined by the design
team in the algorithm A.1. It can be a function or a flow. The
failure probability of the critical failure point englobes all of
its ancestors’ failure probabilities. It can thus be equated to
the system’s failure probability, according to the critical fail-
ure point identified by the design team.

The goal of the engineering decision framework is to opti-
mize the PHM sensor selection and locations. The critical
failure point is consequently used as an objective function for
the optimization algorithm. The PHM sensors’ availability is
considered as the constraint.

For each tree computed, an optimized PHM sensor selections
and locations map is obtained. These configurations may dif-
fer depending on the considered tree. In order to reconcile
the configurations and compute the optimized configuration
and final failure probabilities for the system as a whole, the
following algorithm A.3 is adopted:

(A.3) Step 1 The engineering team decides on some thresh-
olds probabilities for the risk-critical failure probability and
for the reliability-critical failure probability.

(A.3) Step 2-a If one of these thresholds is not met, the sys-
tem design is to be modified. The available sensors cannot
be used to lower the probabilities under the thresholds, the
system is consequently considered insufficient.

(A.3) Step 2-b If the thresholds are met, the combination of
the configurations can be attempted. For each individual tree
computed, the optimized configurations obtained for all the
other trees are applied, as shown in Table 10.

(A.3) Step 3 A configuration is eliminated if the resulting
probability of critical node failure passes above the defined
threshold. The engineering team can then select the most ap-
propriate configuration for their system. It is possible that
no configurations can satisfy the threshold for each and ev-
ery tree. In such a case, the system is considered insufficient.
The specific failing configurations can be analyzed to deter-
mine the best course of action for the design team.

3.8. Automatic framework

A framework was developed to facilitate the application of the
PHASED method (L’Her, 2016). This framework was devel-
oped mostly using Python and the pgmpy package (Ankan &
Panda, 2015) and is not computationally optimized. The soft-

ware allows users to easily input the various identified trees
for a logical functional model and populate the databases us-
ing an open source human readable data serialization lan-
guage, YAML. The software then computes the user-defined
critical points failure probabilities and outputs the results.

3.9. Review

The PHASED methodology has been divided into six main
steps. A logical functional model is built for the system and
databases are created. Trees parsing the logical functional
model are computed. Various PHM hardware configuration
are obtained for each tree, and the resulting model is trans-
lated into Bayesian networks. The Bayesian network are solved
and output the probability of failures of user-defined critical
points in the model. The engineering team combines the dif-
ferent results obtained for each tree to generate the optimum
PHM hardware configuration. Informed design decisions can
then be made to improve upon it. Table 11 reviews the main
points of the PHASED methodology presented in this paper.

4. CASE STUDY

To illustrate the PHASED method introduced in this paper, a
simplified pressurized water reactor case study is discussed.
The Piping and Instrumentation Diagram (P&ID) is drawn in
Figure 9. Only the top-level components are considered, to
represent an early design phase. The system studied contains
the nuclear reactor core. One primary pump is designed, sup-
plied in electricity by either a derivation of the main generator
output or by one of two backup diesel generators. The wa-
ter in the primary vessel is kept liquid by a pressurizer. The
steam generated by a steam generator activates the turbine,
which feeds into the electricity generator. The vapor is then
condensed back to liquid using a condenser, and pumped back
to the steam generator using a pump only fed by the electric-
ity generator.

This system intentionally does not correspond to an existing
PWR design. This section demonstrates how to use the pro-
posed method to assess the power plant early design consider-
ing prognostic and health management conducted throughout
the system lifetime. Various design improvement are conse-
quently analyzed, such as removing or adding redundancies
into the system and observing their impact.

This case study illustrates how the proposed tool can be used
by a designer from the project onset. The following steps will
be demonstrated for the study:

1. Construction of the logical functional model,
2. Definition of the system risk-critical and reliability-critical

nodes,
3. Computation of the spanning trees,
4. Description of the available PHM hardware inventory,
5. Population of the databases,
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Logical functional model A logical functional model is built to represent the system.

Databases

Five databases are created, to encode information about:
• the PHM hardware (P),
• the function failure rates (W),
• the corrective actions likelihood of success (H),
• the management style (M),
• the link between a function failure and its outgoing flow qualities (F).

Trees Trees representing various paths through the system are computed in order to parse
the whole system, to compensate for the fact that a Bayesian network cannot model
feedback loops and to account for both a system risk and a system reliability point of
view.

PHM hardware selection The possible configurations of PHM harware selection and positioning in the system
are computed. The optimized configuration will be obtained from the set of the possi-
ble configurations, reduced according to several assumptions.

Bayesian network nodes The logical functional model is enhanced with the PHM hardware selection and posi-
tion through the system. The resulting system is translated to a Bayesian network.

Bayesian network algorithm The properties of Bayesian networks are used to compute the failure probabilities for
every node (function or flow) in the model, using data from the given databases.

Engineering decision For each identified tree, an optimized PHM hardware configuration is obtained, along
with a failure probability of the user-defined critical point. Engineers combine these
configurations to select the best PHM-enhanced system for their design or to modify
the system if no acceptable configuration is obtained.

Table 11. Review of the PHASED methodology

6. Desired results and analysis

4.1. Logical functional model

A formalism, based on open source human readable data seri-
alization language, namely YAML, has been adopted to facil-
itate the designers’ task. An integrated drawing tool will be
important to ensure comfort and improved quality assurance.

Figure 10 (appendix) translates the P&ID from Figure 9 into
the logical functional model introduced in section 3.1. Due to
the very nature of a Bayesian network, feedback loops can-
not be taken into account. This is shown using the discon-
nected links (dotted lines). To simulate those feedbacks, the
flows are considered to go out of the system boundaries be-
fore coming back. Effectively, this limits the case study to
once-through cycles for each identified trees.

Several flows are indicated in the system using unused links
(dashed lines). These flows are not relevant to any failure
propagation. However, they can be important in regard to the
PHM modeling of the system by giving precious informa-
tion on the system health by monitoring a priori uninteresting
flows. One example of such flows would be, in our study, the
acoustic energy.

Some flows can also be considered to have multiple direc-
tions. This is the case of the equilibrium reaction resulting
in thermal exchange. Heat is added to one function but sub-

stracted from another (cooling), displaying, in effect, a bidi-
rectional flow. A thermal flow is considered unidirectional if
the effect of one direction can be neglected. For example, the
heat sink is considered large enough that the heat gained from
cooling the secondary circuit does not impact the temperature
of the heat sink significantly.

4.2. Critical nodes

The critical nodes, used to compare the various PHM hard-
ware selection and position combinations, can be identified
as the main function or flow of interest of our system. In
the considered case study (Figure 10), this corresponds to
two different functions or flows, the risk-critical one, and the
reliability-critical one, which are different. The reliability-
critical point selected is the electricity generation function,
exhibiting a little gray square. The risk-critical point is cho-
sen to be the vessel function, marked with a little red square.

4.3. Spanning trees

The trees representing the system as a whole, from a risk
standpoint as well as from a reliability standpoint, are com-
puted. The entry nodes set is obtained, composed of Signal -
Control (flow to the Core); Convert - Convert (Pressurizer);
Provision - Supply (Heat sink); and Material - Liquid (flow to
the backup generators).

From each of these functions, the trees needed to reach the
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Figure 9. Case study - Simplified P&ID of a Nuclear Power
Plant.

risk-critical point and the reliability-critical point are com-
puted. The different trees computed for this example are
given in the appendix, in Figures 11 and 12. Two trees can
represent the whole system. Indeed, the trees emanating from
the Convert - Convert (Pressurizer), from the Material - Liq-
uid (flow to the backup generators), the risk-critical tree start-
ing from Signal - Control (flow to the Core) and the reliability-
critical tree starting from Provision - Supply (Heat sink) are
subtrees of the ones displayed.

4.4. PHM hardware inventory

Several categories of PHM equipment have been considered
in this study. Table 12 presents an excerpt of P used in this
particular study. Note again that the PHM harware and their
displayed values are fictional. They are only used for illustra-
tive purposes. As explained in section 3.6, function weakness
nodes are a binary event, while flow weakness nodes are s-
events, pointing to the fact that a PHM hardware associated
to a function is defined to only have a relevant failure detec-
tion efficiency. The function and flow name set can be of
various degrees of specification, according to the taxonomy
introduced by Stone and Wood (2000). If a PHM hardware
is entered in the database with relation to Gas (Material-Gas
flow) only, a flow defined as Material in the logical functional
model cannot use that sensor. If, on the contrary, a PHM hard-
ware is linked to Material, it can be used with any Material
flow defined in the system (e.g liquid, gas, solid, ...) with the
same efficiency and false alarm parameters. It is important to
note that this is a factor in computation time reduction. The
more precise the database P, the more adequate and succinct
the PHM selection and position combinations analyzed will
be.

Function or Flow
Efficiency

False alarm
Failure

Concern
low high

PHM 1 Convert 0.95 - - 0.01

PHM 2 Energy - Thermal 0.999 0.90 0.98 0.1

PHM 3

Control Magnitude 0.995 - - 0.02
Branch 0.995 - - 0.02
Channel 0.995 - - 0.02
Material 0.5 0.4 0.45 0.2

Table 12. Inventory of the PHM hardware

Function or external Flow
(Deepest level)

Emergent weakness probability
(per year or per use)

Failure
Concern

low high

Divide 1× 10−5 - -

Extract 1× 10−5 - -

Remove 1× 10−5 - -

Separate 3× 10−5 - -

Distribute 1× 10−5 - -

...

Thermal 1× 10−5 1× 10−3 1× 10−4

Table 13. Emergent weakness - W

4.5. Population of the databases

Tables 12, 13, 14 and 15 display the data considered to ana-
lyze the presented case study. For illustrative purposes only,
this subsection goes over an example of a potential algorithm
to populate the database in each case.

For P (Table 12), three pieces of hardware are considered
available. The hardware PHM 2 is shown. It represents a
resistance temperature detector. The manufacturer data, in
correlation with the system desired nominal flow, can be used
to compute its efficiency at detecting flows of various “qual-
ities”. The likelihood of detecting a low concern flow qual-
ity is taken as 90%. An efficiency of 98% is considered for
high concern flow quality. Finally, an efficiency of 99.9% is
obtained for the hardware to detect a failed flow. The false
alarm rate is taken as being 0.1%.

W can be populated using several sources of information. An
excerpt of the database used within the scope of the case study
is presented in Table 13.

Once a weakness is detected for a specific flow or function,
a corrective action can be undertaken to restore the system
health. This corrective action is considered successful if the
flow or function weakness is restored, either by fixing it di-
rectly or by acting on neighboring functions or flows. HRA
can, for example, be used to estimate the probability of a
successful correction following a detected weakness. Take,
for example, the case of a weakness detection in one of the
diesel backup generators (Convert - Convert function). For
this component, one could derive that the maintenance team
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System Function or Flow
[ID]

Correction success
Mishandling

Failure
Concern

low high

Provision - Store - Contain
[Vessel]

0.75 - - 1× 10−2

Provision - Store
[Core]

0.75 - - 1× 10−2

Provision - Store - Contain
[Primary]

0.75 - - 1× 10−2

Convert - Convert
[Pressurizer]

0.75 - - 1× 10−2

Convert - Convert
[SG]

0.75 - - 1× 10−2

...

Energy - Thermal
[Core-Primary]

0.75 0.95 0.85 1× 10−2

Energy - Hydraulic
[Pressurizer-Primary]

0.75 0.95 0.85 1× 10−2

Table 14. Correction success - H

Function Flow Failure
Concern

Nominal
low high

Provision
- Store
- Contain

Energy - Thermal 0.6 0.1 0.3 0.
Material - Liquid 0.7 0.1 0.2 0.

Material - Gas 0.6 0.1 0.3 0.

Table 15. Function failure link database architecture - F

has little spare time to fix the problem (SPAR-H PSF multi-
plier 10) and works under high stress (SPAR-H PSF multi-
plier 2). The task is not difficult (SPAR-H PSF multiplier 1)
and the team is highly trained (SPAR-H PSF multiplier 0.5),
but the procedure is lacking (SPAR-H PSF multiplier 5) and
the system ergonomy is not adequate (SPAR-H PSF multi-
plier 10). Using Eq. (1), a probability of successful repair of
66.6% is derived for this particular weakness.

Some questions, such as the system ergonomy or the team
training, are unknown to the designer during the early phase
of design. This is covered by HRA methodology using a not
enough information category. Similar existing systems could
be used as reference by the design team to obtain meaning-
ful probabilities. The data can be refined when more precise
information is obtained.

Linking a function failure to its impact on outgoing flows can
also be challenging. A potential method is exhibited on the
impact of the failure of a Provision - Store - Contain func-
tion on outgoing flows. In this case, the outgoing flow of
interest is considered to be thermal energy. The failure of the
function could be translated to a small, intermediate or large
leak, which would in turn impact the outgoing flow qual-
ity in different ways. Probabilities of each event can be at-
tributed based on historical data and engineering deduction.
Efficiently and automatically populating F could warrant ad-
ditional research efforts.

The case study presented does not account for the presence of
the m-database M, considering instead a management trust-
ing blindly in the PHM hardware data analysis and moving
away from any form of non-condition based maintenance on
PHM-equipped functions and flows.

4.6. Results

A reference case is computed by considering no PHM hard-
ware anywhere in the system, which is the nominal case in
early design. This reference will be used to estimate the
gain from the possible use of PHM systems throughout the
case study. The trees representing the whole system inter-
actions, reliability-centered and risk-centered, are computed.
For each tree, the optimized PHM sensor configuration is ob-
tained. The combined optimized configuration can then be
defined. For the present case study, one considers the risk-
critical tree optimized PHM configuration to be dominant.
The reliability-critical point failure probability will thus be
dependent on the PHM configuration obtained for the risk
analysis. In most systems with limited redundancies, such
as the one considered in the case study, non-representative
of a real nuclear power station design, PHM can often only
diminish the immediate system reliability due to required of-
fline maintenance operations.

In order to estimate the gain from the possible use of PHM
systems, failure propagation probabilities within the “bare”
functional model design are computed. The failure probabil-
ity for both the risk-critical tree and the reliability-critical tree
are calculated. Given the defined database, the Bayesian net-
work identifies the probability of the risk-critical point failure
to be 1.37× 10−2 y−1. The probability of the reliability-
critical point failure is 3.65× 10−2 y−1.

The optimized PHM hardware selection and positioning is
obtained for the risk-critical tree. The configuration is given
in Figure 10. This configuration is also considered for the
reliability study, as in our case, the most information can be
obtained from the risk analysis.

Using PHM sensors through the systems and the given cor-
rective actions from the database, the probability of failure of
the risk-critical point is reduced by 75%, from 1.37× 10−2

y−1 to 3.35× 10−3 y−1. Simultaneously, the probability of
failure of the reliability-critical point is increased by 70%,
from 3.65× 10−2 y−1 to 6.24× 10−2 y−1.

5. DISCUSSIONS AND FUTURE WORK

The PHASED methodology proposed in this paper, applied
to the considered case study, shows the potential benefit from
considering PHM in the early phase of design. It notably
gives a more realistic analysis of the failure probabilities in
the designed system and helps designers select adequate sen-
sors and associated function or flow to monitor. In the present
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case study, it can be surmised that the reliability can be im-
proved by increasing the number of redundancies. Without
such redundancies, the system can be made safer using PHM
equipments at the expense of the reliability.

The PHASED methodology could be improved by more ef-
ficiently identifying the system weaknesses and guiding the
design team toward potential solutions and to resolve weak
points. In the current state of the proposed methodology, the
design team must identify manually the function or flows to
better monitor them or make them redundant in order to lower
the overall probability of failure. It is also dependent on data
that might prove difficult to obtain with high confidence, such
as a detector efficiency when monitoring a generic function or
flow, covering a varying range of parameters (flow velocity,
component size, etc.). However, this is a common and widely
known issue in risk engineering.

Bayesian networks may also require the use of a significant
amount of data to derive conditional probability tables, es-
pecially when the number of parent nodes increases. This
directly impacts the computer resources needed for the calcu-
lations and can be a limiting factor in the immediate industrial
application of PHASED.

It is interesting to note that the probability of failure of the
reliability-critical point can increase with the use of PHM
hardware to monitor functions or flows, if those are essen-
tial to the reliability-critical point. This is especially true for
non-redundant functions or flows that cannot be repaired on-
line. Indeed, for such functions or flows, no repair actions
can be attempted without shutting down the system. The rate
of reliability failure would be the sum of the failure proba-
bility seen with no sensor and of the probability of a false
alarm, both cases causing a reliability issue. However, if the
false alarm rate is not too high, by itself this does not indicate
a detrimental aspect of the PHM sensors use to the reliability
in the long term. The outage time and cost to repair a detected
weakness would be beneficial in the long term, extending the
component’s lifetime when compared to the outage time and
cost incurred by a sudden unexpected failure. An analysis of
this assumption has not been performed within the frame of
this paper.

An interesting concept from Bayesian networks can be dis-
cussed. The PHASED method proposed in this paper could
eventually be able to replace the real world by simulating
the system. Observed evidence can be used to compute the
failure propagation within the functional Bayesian network.
The observed evidence encodes some simulated knowledge
of the system into the model and observes the consequences
on the final probabilistic states of each node, including par-
ents’ nodes. In this regard, the algorithm developed for the
PHASED methodology could eventually also be used as an
online diagnostic tool, depending on the propagation direc-
tion contemplated, following the flows or not. Consider that

a functional model is constructed representing the real oper-
ating final design. If a failure is observed in the real world,
the information can be coded into the simulation method pro-
posed in this paper. Given this observed evidence, the proba-
bilities of every node throughout the model update to account
for it. The likely cause of the failure could then be identified
more easily. It can provide the engineering team with useful
information about the likely underlying cause. This aspect of
the methodology will be the subject of future work.

Future work could include the use of a continuous time Bay-
esian network instead of the static Bayesian network presented.
This would allow natural feedback loops within the designed
system, eliminating the need for several spanning trees.

A limitation of one PHM hardware monitoring a function or
flow has been applied in this framework. Sensor fusion can
be integrated to the algorithm to remove this limitation and
allow for lowering the false alarm rate while improving the
detection efficiency.

More efficient PHM hardware selection and position algo-
rithm could be devised in order to improve computational
time performances, and hardware costs could also be consid-
ered when building the available inventory.

Adding PHM hardware to a system introduces a new source
of failure and uncoupled flows through the system. Uncou-
pled Failure Flow State Reasoning (UFFSR) defines a method-
ology to account for the uncoupled flows within the scope
of a functional model (O’Halloran, Papakonstantinou, & Van
Bossuyt, 2015; Ramp & Van Bossuyt, 2014). The considera-
tion of such non-nominal failure propagation is of importance
in complex systems. The merging of the proposed method
with UFFSR would be beneficial to the risk and reliability
analysis of a complex system. This represents a potential fu-
ture endeavour, though computational RAM might be a lim-
iting factor for widespread use.

Finally, the development of official, complete functional data-
bases could be undertaken to facilitate the use of the proposed
framework. Uncertainties on the data given in the various
databases, and their impact on the system risk and reliability,
might also be considered.

6. CONCLUSION

The PHASED methodology and the associated automatic frame-
work presented in this paper have been shown to perform ad-
equately in the given objectives. An example of the poten-
tial use of the framework has been introduced using the case
study of a simplified nuclear power plant, demonstrating its
capabilities.

It was shown that the modeling of PHM hardware during
the early design phase can give a more realistic view of the
risk and reliability failure probabilities of the system. The
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PHASED methodology provides the engineering design team
with adaptable risk and reliability analysis, allowing them to
make better informed decisions about the design in the early
phase. The methodology can be used to reduce the cost of
a system by replacing expensive redundancies (upfront cost,
preventive maintenance) with PHM monitoring while uphold-
ing the system’s failure probability.

Existing risk and reliability methods all encounter limitations
when trying to consider PHM systems during the early phase
of design. The work presented in this paper offers a viable so-
lution to this problem within an automated framework. It also
offers the potential to be the basis for a complete integrated
framework for prognostics and health management oriented
design and for online diagnostics simulation.
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NOMENCLATURE

P PHM hardware database

ε PHM hardware efficiency

e PHM hardware false alarm rate

M Management decision database

γ Management decision to ignore PHM data

µ Non-condition-based scheduled maintenance

H Corrective action database

ρ Maintenance success rate

β
Likelihood of mishandling during unnecessary

maintenance

F Link between function and flow failure database

λ Function to flow failure propagation probability

W Weakness database

ω Emergent weakness probability

ACRONYMS

ATHEANA A Technique for Human Event Analysis

CTBN Continuous Time Bayesian Network

FBED Functional Basis for Engineering Design

FFBD Functional Flows Block Diagram

FFDM Function Failure Design Method

FFIP
Function Failure Identification and

Propagation

FMEA Failure Modes and Effects Analysis

FMECA
Failure Modes, Effects, and Criticality

Analysis

FTA Fault Tree Analysis

FSL Function State Logic

HBN Hybrid Bayesian Network

HEP Human Error Probability

HRA Human Reliability Analysis

PHASED
Prognostics and Health Analysis to

Support Engineering Design

PHM Prognostics and Health Management

P&ID Pipe and Instrumentation Diagram

PRA Probabilistic Risk Assessment

PSF Performance Shaping Factors

PSV CC
Prognostic System Variable Configuration

Comparison

PWR Pressurized Water Reactor

RBD Reliability Block Diagram

RED Risk in Early Design

SPAR-H Standardized Plant Analysis Risk-Human

STA Success Tree Analysis

THERP
Technique for Human Error-Rate

Prediction

UFFSR Uncoupled Flow Failure State Reasoning

Y AML YAML Ain’t Markup Language
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APPENDIX

Figure 10. Case study - Simplified logical functional model of a Nuclear Power Plant - Optimized positions of PHM sensors
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Figure 11. Case study - Spanning tree - reliability-critical node.

Figure 12. Case study - Spanning tree - risk-critical node.
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