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ABSTRACT 

One of the most significant research trends in the last 

decades of the aeronautic industry is the effort to move 

towards the design and the production of “more electric 

aircraft”. Within this framework, the application of the 

electrical technology to flight control systems has seen a 

progressive, although slow, increase: starting with the 

introduction of fly-by-wire and proceeding with the partial 

replacement of the traditional hydraulic/electro-hydraulic 

actuators with purely electro-mechanical ones. This 

evolution allowed to obtain more flexible solutions, reduced 

installation issues and enhanced aircraft control capability.  

Electro-Mechanical Actuators (EMAs) are however far from 

being a mature technology and still suffer from several 

safety issues, which can be partially limited by increasing 

the complexity of their design and hence their production 

costs. The development of a robust Prognostics and Health 

Management (PHM) system could provide a way to prevent 

the occurrence of a critical failure without resorting to 

complex device design. This paper deals with the first part 

of the study of a comprehensive PHM system for EMAs 

employed as primary flight control actuators; the 

peculiarities of the application are presented and discussed, 

while a novel approach, based on short pre-flight/post-flight 

health monitoring tests, is proposed. Turn-to-turn short in 

the electric motor windings is identified as the most 

common electrical degradation and a particle filtering 

framework for anomaly detection and prognosis featuring a 

self-tuning non-linear model is proposed. Features, anomaly 

detection and a prognostic algorithm are hence evaluated 

through state-of-the art performance metrics and their 

results discussed. 

1. INTRODUCTION 

Following the latest developments of the aviation industry, 

Electro-Mechanical Actuators (EMAs) are slowly replacing 

the traditional electro-hydraulic or hydraulic solution for 

fly-by-wire flight controls in military and civilian 

applications. EMAs allow for the elimination of leakage 

issues, simplify both installation and maintenance and 

provide weight-competitive solutions, hence resulting 

attractive for both suppliers and flight operators (Pratt, 

2000). However, due to safety issues, their use as primary 

flight control actuators is still limited to experimental 

aircraft or UAVs (Jensen, Jenney & Dawson, 2000), 

(Derrien, Tievs, Senegas & Todeschi, 2011), (Roemer & 

Tang, 2015), while they are more rapidly advancing in non-

safe critical applications such as flap/slats control surfaces  

(Christmann, Seemann & Janker, 2010), (Recksieck, 2012). 

In order to overcome the afore-mentioned safety issues, one 

of the possible solutions is to build a robust Prognostics and 

Health Management (PHM) system able to rapidly detect 

the insurgence of one or more faults and to provide a 

sufficiently accurate estimate of the Remaining Useful Life 

(RUL) of the degraded component(s). Several research 

efforts can be found in the literature, addressing the electric 

motor (Nandi, Tolivat & Li, 2005), (Brown, Georgoulas, 

Bole, Pei, Orchard, Tang, Saha, Saxena, & Goebel, 2009),  

(Belmonte, Dalla Vedova & Maggiore, 2015), mechanical 

components (Balaban, Saxena, Goebel, Watson, Bharadwaj 

& Smith, 2009), (Balaban, Saxena, Narasimhan, 

Roychoudhury, Goebel & Koopmans, 2010), (Lessmeier, 

Enge-Rosenblatt, Bayer & Zimmes, 2014), (Van Der 

Linden, Dreyer & Dorkel, 2016) and Electronic Power Unit 

(EPU) (Brown, Abbas, Ginart, Ali, Kalgren & 

Vachtsevanos, 2010), (Li, Chen & Vachtsevanos, 2014). 

Electro-mechanical actuators can be subjected to a large 

number of possible failure modes, involving both the 

hardware components, that is the focus of this research, and 

the control software. Bonnet and Soukup (1991) and as 

_____________________ 

Andrea De Martin et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

2 

remarked in (Cruz & Cardoso, 2002) and in (Nandi et al., 

2005), the most common failures in the electric drives occur 

in the EPU, in the motor windings and in the motor 

bearings. Focusing on the winding failures, three major 

failure modes can be defined: turn-to-turn short, phase-to-

phase short and phase-to-ground short. Each of these failure 

modes is related to the degradation of the insulating coating, 

which prevents the contact between the turns and other 

conductive components. The most frequent winding failure 

mode is the turn-to-turn short, as assessed through FMECA 

analysis in (De Martin, Jacazio & Vachtsevanos, 2016): its 

inception can be due to sudden, unpredictable occurrences, 

such as mechanical overloads and/or undesired overheating, 

but it is more commonly caused by the progressive 

degradation of the insulator due to heat and chemical 

aggression, while its progression may evolve into one of the 

other fault types (Nandi et al., 2005). The present work 

proposes a feasible solution to perform the early detection 

and the prognosis of the turn-to-turn fault for the EMAs 

governing a primary flight control surface for a regional 

transport aircraft. Introducing a PHM system for flight-

control components comes with several challenges that are 

emphasized by the adoption of the electro-mechanical 

technology. The first one is the lack of available 

experimental data: EMAs are still rarely employed in flight-

control systems, so that reliable, historical data are not 

available. Other issues are related to the limitations of the 

computational power embarked on the vehicle, that impose 

the choice of simple, computationally inexpensive features 

and fault detection algorithms to detect the health status of 

each monitored subsystem within the aircraft. Moreover, the 

unpredictable nature of the command imposed to the 

actuators and the presence of random loads due to gust and 

turbulence make it difficult to extract significant data during 

flight, while the number of sensor has to be kept to a 

minimum to avoid cost increases and reliability issues. 

Finally, both the monitored system and the degradation 

mode under study are heavily non-linear and affected by 

non-Gaussian noise; the prognostic algorithm must hence be 

able to mirror this behavior to limit the prediction 

uncertainty and maximize its accuracy.   

2. SYSTEM CONFIGURATION 

The system configuration considered for the analysis is 

depicted in Fig. 1. Two electro-mechanical actuators, each 

featuring a brushless electric motor supplied through its own 

EPU and a mechanical transmission composed by a satellite 

gearbox and a roller screw, move the flight control surface 

which equivalent translational mass is approximately      . 
Each electric motor may convey up to 1 kW of power, while 

the overall transmission ratio of the mechanical organs is 

equal to 2.51 rad/mm. Control of each actuator is performed 

by three nested regulation loops working on the electric 

motor currents, driving the shaft speed and the end-user 

linear position.  

 

Figure 1. EMA Configuration 

Feedback signals for each loop come from dedicated current 

sensors, a resolver positioned on the electric motor shaft and 

one or more linear position sensors (usually LVDTs) 

connected to the translating element of the power screw. 

Two inter-communicating Flight Control Computers (FCCs) 

provide the position command. The motion control is 

performed through an active/active strategy, which means 

that both devices are simultaneously actuated in position. 

This control scheme allows to obtain better dynamics 

response and/or to decrease the intensity of the current 

required by the motors, but suffers from force fighting 

occurrence. This dangerous phenomenon is due to the 

unavoidable small differences between the two actuators in 

terms of motor characteristics, friction parameters and 

clearances in the mechanical transmission: it usually shows 

up under low-load conditions, whenever one of the actuator 

begins to exert an action opposite to the commanded motion 

which is hence driven by the other electro-mechanical 

actuators. This may lead to windings overheating, further 

shortening the motor operative life. Force fighting can be 

compensated by motor current equalization or, if possible, 

by monitoring the force applied to each actuator using a 

proper set of transducers: their signal, filtered and sampled, 

can then be employed by a dedicated proportional-

integrative controller working either on the position or the 

speed loop (Wang, Maré & Fu, 2012). For the studied 

system, force sensors are expected. 

3. SYSTEM MODEL 

To overcome the lack of historical data, we relied on a high-

fidelity dynamic model of the system prepared in the 

Matlab/Simulink environment. The model has been used to 

approximate the system behavior in a wide array of 

operating conditions to provide the basis for the PHM 

framework proposed in this paper. In this section, we 

introduce a brief overview of the mathematical model of the 

system and highlight the modifications used to describe the 

occurrence of a growing turn-to-turn short. 

3.1. Electric drive model 

The dynamic model of the electric drive is made of three 

main subsystems: the Electronic Control Unit (ECU), the 

Electronic Power Unit (EPU) and the brushless electric 

model. The model of the Electronic Power Unit makes use 

of a functional description of the PWM modulated inverter. 

It receives the commands from the ECU, which is 
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responsible for the motor current control in the d-q-0 axis, 

and modulate the electric power exchanged with the motor. 

The d-q axis control features PI regulators receiving as input 

the current command and the filtered current feedback 

subjected to Park’s transformation. The output of the 

controllers is then transformed back to the three-phase 

system and used inside a PWM modulator, based on a 

triangular bipolar wave carrier that generates the digital 

control signal for each of the three commutation poles, 

namely q1, q2 and q3. 

Neglecting the power MOSFET dynamics, it is possible to 

compute the three motor phase voltages va, vb and vc as 

follows (Mohan, 2003): 
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Where Vdc is the DC-link voltage used to supply the 

actuation system and EPU is the EPU efficiency used to 

model the power dissipation due to resistive and 

commutation losses. The motor dynamics, under nominal 

conditions, are described through Eq. (2): 
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Where  is the magnetic flux, which instantaneous value 

depends on its spatial distribution and on rotor angular 

position, while R is the electric resistance and Lxy is the 

mutual inductance between phases x and y, as shown in the 

electric schematic reported in Fig. 2. 

 

Figure 2. Brushless Motor Scheme 

Given the number of pole pairs, Zp, the electromagnetic 

torque can be obtained according to the following general 

relation (Hanselman, 2006): 
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It is finally possible to estimate the windings’ thermal 

behavior: 
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Where              is the temperature difference 

between the motor windings and the external environment, 

while Hth and Cth are the thermal conductivity and the 

thermal capacity, respectively. According to (Brown, 

Georgoulas, Bole, Pei, Orchard, Tang, Saha, Saxena, 

Goebel & Vachtsevanos, 2009), it is possible to model the 

presence of a turn-to-turn short in one of the motor phases 

by inserting the ratio wf in the electrical dynamic equation, 

thus modifying the motor circuit. This parameter may range 

between 0 and 1 and represents the ratio between the 

number of healthy windings over the total number of 

windings for the selected phase. 

Equation (2) is then modified as follows: 
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(5) 

Where       √        . We address as “fault ratio” the 

reciprocal index Wf = 1-wf, which represents the number of 

faulted windings over the total number of windings for the 

phase under analysis. The effects of the fault progression on 

the phase currents are depicted in Fig. 3. The faulted 

winding signal tends to increase leading to current 

asymmetry and torque irregularity. 

 

Figure 3. Effect of Turn-to-Turn Short on Phase Currents 
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Turn-to-turn degradation can be triggered and driven by 

several causes, such as mechanical stresses, chemically 

aggressive environment, water ingress or excessive 

humidity (Nandi et al., 2005). However, the most significant 

and common origin is the insulator’s thermal degradation  

(Brown et al.,  2009). According to these authors, it is 

possible to describe the fault length L, expressed in [mm], as 

a function of the operating time t, the temperature of the 

windings, Tw, and the experimental coefficients  and  

through an elaboration of the Arrhenius law (Gokdere, 

Bogdanov, Chiu, Keller & Vian, 2006): 

{
     

    

       
 (6) 

Dividing the first expression of Eq. (6) by the critical length 

of the defect, it is possible to obtain a similar relation for the 

fault rate 

{
        

    

       
 (7) 

Where Wf = 1-wf and Wf,0 are respectively the instantaneous 

and the initial fault ratios for the degraded phase. 

3.2. Mechanical transmission model 

The mechanical transmission is modelled, including the 

non-linear friction law and a customizable elasto-backlash, 

following the approach proposed in (Nordin, Gallic & 

Gutman, 1997). Each gearbox is described through its 

dynamic equilibrium equation: 

       
   
 
            ̈   (8) 

Where   is the transmission ratio, gb is the meshing 

efficiency function of the operative temperature and of the 

gear dimensions; Jgb is the moment of inertia and Tfr,gb is the 

friction torque dependent on temperature and  on the 

actuator speed: the friction law has been approximated 

through the non-linear Eq. (9) to avoid discontinuities: 

          (                
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Where Tfr,gbS and Tfr,gbD are the static and the sliding friction 

torques, XF is a customizable scaling factor and cgb is the 

speed dependent friction coefficient. 

The torque transmitted to the actuator power screw, Trs, 

depends on the relative position between the gearbox output 

shaft and the screw angular position as described by Eq. 

(10). 

{
                                                 
           ̇                   

 (10) 

Where k and c are the stiffness and damping coefficients of 

the contact zone, while bmin and bmax determine the 

beginning and the end of the backlash. By selecting the 

proper combination of values for these parameters it is 

possible to simulate wear progression in the mechanical 

transmission. 

Each power screw is modelled according to Eq. (11): 

         
 

  
            ̈   (11) 

Where Fs is the linear force acting on the actuator; the 

friction torque is computed through Eq. (12). 

          (                
 

   ̇  
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3.3. Flight control surface model 

The aerodynamic surface is modelled according to the 

diagram shown in Fig. 4, while The dynamic equilibrium of 

this component can then be expressed through Eq. (13). 

  (    )    (    )    ( ̇   ̇)
   ( ̇   ̇)        ̈ 

(13) 

Where ks and cs are the aerodynamic surface stiffness and 

damping factor, FA is the aerodynamic force acting on the 

actuators and ms the control surface equivalent mass. 

 

Figure 4. Control Surface Scheme 

Where ks and cs are the aerodynamic surface stiffness and 

damping factor, FA is the aerodynamic force acting on the 

actuators and ms the control surface equivalent mass. 

4. HEALTH MONITORING STRATEGY 

To develop and evaluate a reliable prognostics and health 

management system it is fundamental to find one or more 

features or characteristic indicators from raw data able to 

comprehensively describe the health status of the monitored 

subsystem during its operating life.  

For the turn-to-turn short fault, several possibilities are 

available in the literature (Nandi et al., 2005). Some of them 

make exclusive use of current analysis, while others involve 

a measure of the phase voltages. Voltage measurements are 

not available in the case under analysis; to avoid the 
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introduction of additional sensors, current-based features are 

hence employed. We focused on simple, computationally 

inexpensive features to allow for on-board calculations.   

Three features have been preliminary selected by combining 

in different ways the RMS of the three current signals as in 

Eq. (14). 

{
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Where RMSi and RMSi are respectively: 
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The current samples number is ns, while each of their values 

is denoted as ij. Addressing with fi a generic feature 

computed through post-processing of the current measure, 

the following dependence can be expressed as: 

     (      ) (17) 

Where xc is the system health status,  is the measurement 

noise and  the process noise. Ideally, the dependence of the 

health index over the two noise types should be null. The 

measurement noise can be reduced in practice by using 

properly-designed low-pass filters on the sensor signals and 

eventually post-processing the obtained data. The process 

noise is instead more difficult to handle and mainly depends 

on the nature of the feature, variability of the operating 

conditions, adopted control scheme and effects of external 

disturbances. The influence of the operating conditions on 

the current measurements can be easily understood by 

observing the simplified model reported in Eq. (5). As 

reported by Hanselman (2006), the temperature may have a 

significant influence on the motor parameters, while non-

constant speed conditions may cause a significant variation 

of the current measurements because of the back-

electromotive force effect. The aerodynamic force 

eventually acting on the control surface and the overall 

friction torque sensed at the motor shaft may provide a 

major contribution to the process noise as well because of 

the presence of the closed-loop control system. For the same 

reasons, inertial load may have a critical effect as well. 

Primary flight controls lack of an established usage pattern 

during the flight; the number, duration and nature of the 

actuation associated with each mission are completely 

unpredictable a priori. In a similar way, the temperature 

profile experienced by the actuators can be extremely 

variable.  

To overcome these issues and limit the process noise, 

Jacazio, Maggiore, Della Vedova and Sorli (2010) proposed 

the use of dedicated pre-flight/post-flight procedure for the 

Electro-Hydraulic Actuators. Following this approach, it is 

not only possible to limit the uncertainties due to 

environmental conditions, but also to stimulate the actuators 

with a predefined set of commands optimized to extract the 

required features and emphasize the effects of a fault 

occurrence. In this case, a slow ramp position command, 

with rate equal to 20% of the motor maximum speed, is 

imposed to the “monitored” actuator, where this low value 

is chosen to limit the influence of the back electromotive 

force over the measured current. The second “opposing” 

actuator is controlled in force, taking advantage of the force 

sensors already present for the force-fighting compensation. 

Through this approach it is possible to reduce the influence 

of friction over the force exerted by the second actuator. The 

commanded force is again a ramp saturated at 40% of the 

nominal value that is high enough to enhance the current 

analysis while remaining far enough from saturation 

conditions, which would make the current measurements 

useless. The influence of random gust loads during the test 

performed on the airport track can be considered negligible 

and can be eventually cancelled through the implementation 

of a simple force compensation making use of the available 

force sensors.  The proposed pre-flight test is 1-second-long, 

while the acquisition is performed over the last 0.5 s. Once 

completed, the operation is repeated inverting the roles of 

the two actuators. 

4.1. Feature selection 

Three feature candidates have been proposed.  Each feature 

behavior has been preliminarily investigated by performing 

several simulations while considering a large number of 

external disturbances and parameters variations. In 

particular, the environmental temperature has been 

randomly chosen from a uniform distribution ranging 

between -40°C and 40°C, while each coefficient used to 

determine the friction behavior and its dependence on the 

temperature is subjected to a variation determined by a 

normal distribution with standard deviation equal to 40% of 

their nominal value. A similar approach has been used for 

the electric motor parameters, whereas the standard 

deviation has been set to 1%. Finally, the external load has 

been simulated as a step signal occurring in a random 

moment during the pre-flight test; its intensity has been 

chosen each time from a normal distribution set with 0N 

mean and standard deviation equal to 20% of the maximum 

value. Simulations have been performed using the 

Matlab/Simulink implementation of the dynamic model 

presented in Section 3; while acquiring current signals, the 

fault ratio Wf has been slowly increased from 0 up to 0.7.  
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Figure 5. Feature Candidates’ Behaviour  

Results of the feature candidates’ behavior are reported in 

Fig. 5. The performance of the selected features is analyzed 

through two dedicated metrics: the accuracy measure and 

the precision measure. Accuracy is defined as the linear 

correlation between the generic feature fi and the fault ratio 

Wf. Precision is instead computed as the relative mean error 

associated with the functions used to interpolate the 

features’ behavior. Feature candidate fi
1 

has shown overall 

better performance, averaging an accuracy measure equal to 

0.932 and a precision metrics of 3.94%. The other options, 

fi
2
 and fi

3
, exhibit worse accuracy (0.925 and 0.921) and 

worse precision (over 9% in both cases). 

5. ANOMALY DETECTION 

A generic Prognostic and Health Management framework is 

depicted in Fig. 6. The first stage of any health monitoring 

operation is always the fault diagnosis: this includes three 

main tasks, namely, fault detection, fault isolation and 

finally fault severity (or identification). It implies that the 

system must be able to detect the occurrence of one or more 

faults or incipient failures, address the targeted 

component(s) and finally assess the fault severity as for the 

specified performed measures (Vachtsevanos, Lewis, 

Roemer, Hess & Wu, 2006). In this process, the knowledge 

of the degradation process obtained through off-line studies 

is fundamental to define the diagnosis method and 

eventually to perform the diagnosis itself. Since this paper 

deals with a single-fault scenario, only the fault detection is 

addressed herein. Once a fault has been declared, data are 

analyzed by the prognostic algorithm(s) that estimates the 

Remaining Useful Life (RUL) of the damaged component. 

In order to set up the basis for a reliable prognostic 

algorithm, fault diagnosis must be able to minimize the false 

positive and false negative errors while providing early 

defect detection. The adopted fault diagnosis method 

provides a diagnostic result at a customer specified accuracy 

(confidence) with a given false alarm rate. Two approaches 

are evaluated to perform the anomaly detection: a purely 

data-driven method and a particle-filtering framework. Both 

systems are detailed and results compared. 

 

Figure 6. General scheme for PHM framework 

5.1. Operational scenario 

As described by Eqs. (6-7), the evolution in time of the 

Turn-to-Turn Short fault is mainly dependent on the 

temperature of the windings. This means that the external 

environmental temperature, the external load and the local 

thermal exchange conditions govern the fault progression. 

Each of these factors is in turn dependent on the aircraft 

class, take-off/landing areas and weather conditions. For this 

work, a generic regional transport aircraft, a vehicle moving 

passengers or goods over mid-range routes, is considered. 

The average loads and the duration of each flight phase 

(pre/post flight, take-off, cruise, landing) has been defined 

as the sum of a constant value and a random variable 

inserted to simulate the effects of different weather 

conditions and unpredicted delays in the operating schedule. 

The average flight duration has been set equal to 1.5 hours. 

Atmospheric temperature during take-off and landing has 

been assumed to be linearly varying between the ground 

value, chosen randomly between -40°C and +40°C, and -

54°C during cruise (Phillips, 2004). Those considerations 

have been used in a simulation framework making use of 

the system model and the feature behavior described in Fig. 

7. During each simulation cycle, the duration tfs of each 

flight segment is stored, while the average temperature of 

the windings is evaluated through Eq. (4); this value is then 

used to evaluate the fault ratio Wf. and to compute its 

evolution over the entire mission by iterating Eq. (7) for 

each flight segment. In order to ensure the fault occurrence, 

the initial instant Wf0 is non zero and is set to a value of 10
-4

.  

5.2. Anomaly detection through data-driven approach 

The first approach presented in this paper is a purely data-

driven one (Vachtsevanos et al., 2006). A baseline 

representing the feature behavior under healthy conditions is 

built upon the first 100 data points and an automatic, 

customizable threshold is set to a value covering 95% of the 

baseline probability distribution. Simulation data are then 

streamed in and compared to the initial baseline; the 

anomaly detection flag is raised when the new distribution 

differs from the baseline by a customizable confidence level 

equal to or greater than 95%. This approach has been 

applied to 20 data sets with different environmental 

conditions. The selected feature fi
1
 shows an average fault 
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ratio at detection of 12.71%. An example of the behavior of 

the data-driven method for an extremely slow degradation is 

reported in Fig. 7. As expected, the detection confidence 

tends to oscillate for a low value of the fault ratio, hence 

increasing in a consistent way once the degradation begins 

to accelerate. The fault is declared with a detection 

confidence equal to 95%. Hence, the Type I error, defined 

by the user, is fixed at 5% while the Type II error under 

these conditions has a value equal to 5%. 

 

 

Figure 7. Output of the fault detection framework 

5.3. Anomaly detection through particle-filtering 

framework 

Particle filtering is a powerful Bayesian estimator that 

allows to approximate non-linear dynamic processes 

affected by non-Gaussian noise and is hence well suitable 

for the examined problem; its characteristics can be 

exploited to perform anomaly detection making use of a 

reduced particle population to represent the state probability 

density function (Orchard, 2007). This framework provides 

an estimate of the probability masses associated with each 

fault mode, as well as a pdf estimate for meaningful 

physical variables in the system. Once this information is 

available within the diagnostic module, it is conveniently 

processed to generate proper fault alarms and to inform 

about the statistical confidence of the detection routine. 

Customer specifications are translated into acceptable 

margins for the type I and II errors in the detection routine. 

The algorithm itself will indicate when the type II error 

(false negatives) has decreased to the desired level. The 

particle filtering approach is based upon the following 

general nonlinear dynamic state model 

{

  (   )    (  ( )  ( ))           

  (   )    (  ( )   ( )  ( ))

  ( )    (  ( )   ( )  ( ))      

 (18) 

Where fb, ft and ht are non-linear mappings, xd is a collection 

of Boolean states associated with the presence of a 

particular operating condition in the system (normal 

operation, fault type #1, #2, etc.), xc is a set of continuous-

valued states that describe the evolution of the system given 

those operating conditions, fp is a feature measurement,  

and  are non-Gaussian distributions that characterize the 

process and feature noise signals, respectively. The function 

ht is a mapping between the feature value, fp(t), and the fault 

state xc(t). At any given instant of time, this framework 

provides estimates of fault detection only when customer 

specified confidence and false alarm metrics are met.  

Furthermore, pdf estimates for the system continuous-

valued states may be used as initial conditions in failure 

prognostic routines resulting in a swift transition between 

the two modules (FDI and prognosis). This approach has 

been employed only for the selected feature fi
1
.  The ft 

expression is derived from theory and is linked to Eq. (13). 

The ht mapping has been investigated by making use of the 

symbolic regression method based on a genetic algorithm 

provided by (Schmidt, Lipson, 2009), hence obtaining the 

polynomial expression reported in Eq. (19) 

  
     

     
        (19) 

By exploiting the particle filtering framework, it is possible 

to obtain appreciable performance benefits for the diagnosis 

procedure; the average fault ratio associated with the 

detection time, computed over the 20 data sets, is in fact 

reduced to 10.48%, when using the same percentage 

thresholds applied to the purely data driven case. However, 

due to the reliance on a simplified degradation model, the 

Type I and Type II errors tend to increase up to 8.1% and 

6.7%, respectively. As such, the simpler data-driven 

approach has been selected and implemented in the 

prognostic and health management framework. 

6. PARTICLE FILTERING FOR PROGNOSIS 

The prognostic framework takes advantage of a nonlinear 

process (fault / degradation) model, a Bayesian estimation 

method using particle filtering and real-time measurements 

(Vachtsevanos, et al., 2006). Prognosis is achieved by 

performing two sequential steps, prediction and filtering 

(Orchard, 2007), (Orchard & Vachtsevanos, 2009). 

Prediction uses both the knowledge of the previous state 

estimate and the process model to generate the a priori state 

pdf estimate for the next time instant, 

 (    |      )

 ∫ (  |    ) (      |      )         
(  ) 

Unfortunately, this expression does not have an analytical 

solution in most cases (Roemer, Byngton, Kackprszynski, 

Vachtsevanos & Goebel, 2011). Instead, Sequential Monte 

Carlo (SMC) algorithms (Arumpalan, Maskell, Gordon & 

Clapp, 2002), or particle filters, are used to numerically 

solve this equation in real-time with efficient sampling 

strategies. The workflow of the employed particle filtering 

method is reported in Fig. 8. 
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Figure 8. The Prognostic Framework 

The particle filter approximates the state pdf using samples 

or “particles” having associated discrete probability masses 

(“weights”) as,  

 (  |    )   ̃ (    
 ) (         

 )        (21) 

where x
i
0:t is the state trajectory and y1:t are the 

measurements up to time t. According to Orchard (2007), 

the simplest implementation of this algorithm, the 

Sequential Importance Re-sampling (SIR) particle filter, 

updates the weights using the likelihood of yt as  

        (  |  ) (22) 

Long-term predictions are used to estimate the probability 

of failure in a system given a hazard zone that is defined via 

a probability density function with lower and upper bounds 

for the domain of the random variable, denoted as Hlb and 

Hup, respectively. The probability of failure at any future 

time instant is estimated by combining both the weights 

w
(i)

t+k of predicted trajectories and specifications for the 

hazard zone through the application of the Law of Total 

Probabilities. The resulting RUL pdf, where tRUL refers to 

RUL, provides the basis for the generation of confidence 

intervals and expectations for prognosis, 

 ̂     ∑ (       |   ̂    
( )         )

 

   

 (23) 

As shown in Fig. 9, this approach makes use of degradation 

models that are tuned or their parameters adjusted to 

compute the current a-priori state of the system, 

 (  |      )  and to perform the iterative calculation that 

leads to the long term prediction  (    |    ). Auto-tuned 

models are required to describe and follow changes in the 

degradation process and to describe, in the best possible 

way, the process and measurement noise. So, in order to 

match the model behavior to the real system, as closely as 

possible, one time-dependent tunable model is used, 

following an approach similar to that described in (Li & 

Vachtsevanos, 2015). Degradation detection and prediction 

algorithms rely on data, a model of the degradation process 

and an estimation method that, given the current state of the 

system, predicts its evolution over the next time step. Such 

models are typically based on first principles while others 

are built on the basis of data. We exploit in this effort a 

modeling framework called Symbolic Regression. Symbolic 

Regression searches the space of mathematical expressions 

to find the model that best fits a given dataset, both in terms 

of accuracy and simplicity. No particular model is provided 

as a starting point to the algorithm. Instead, initial 

expressions are formed by randomly combining 

mathematical building blocks such as mathematical 

operators, analytic functions, constants, and state variables. 

(Usually, a subset of these primitives will be specified by 

the operator, but that is not a requirement of the technique.) 

New equations are then formed by combining previous 

ones, using genetic programming. In linear regression, the 

dependent variable is a linear combination of the parameters 

(but need not be linear in the independent variables). 

Nonlinear Symbolic Regression and other regression 

techniques incorporating uncertainty are based on similar 

principles. We take advantage of the Symbolic Regression 

tool provided in (Schmidt & Lipson, 2009) to represent an 

expression linking the selected feature fi
1
 to operating time: 

  
 ( )             (24) 

The model parameters can be tuned on-line as data is 

streaming in, following an iterative procedure featuring a 

recursive least square algorithm over a moving time window 

involving the last 100 data points. Fitting quality and most 

significantly the time required to converge to the real data 

sequence depend on the initial guess for the model 

parameters and on the size of the moving window. An 

example of model tuning for a slow degradation is shown in 

Fig. 9. 

 

Figure 9. Feature Model – Fitting Results 

6.1. Remaining Useful Life prediction 

The particle filter algorithm estimates the Remaining Useful 

Life (RUL) by iterating its prediction step until the 95% of 

the 500 used particles overcome a user-defined threshold. 

This threshold has been set at 24 A, which is more than four 

times the average healthy value and is associated with a 

mean fault ratio equal to 0.6. The prediction can be 

performed after each mission of the aircraft under study. 

Addressing as tEOL the estimated end of lifetime for the 

electric motor and as tp the prediction time, that is the 

instant at which the RUL prediction is performed, it is 

possible to compute the RUL as (Vachtsevanos et al., 2006): 

             (25) 
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Figure 10. Prognosis results 

An example of the analysis performed over a slow 

degradation is depicted in Fig. 10. Particles have been 

initially defined as a uniform distribution within the [0,1] 

interval. The algorithm tracks the feature trend in a few 

iterations and approximates the data distribution. The RUL 

is often computed with reference to the 50% confidence 

trajectory of the particle filter. Other user-defined limits, 

such as the 5% confidence and the 95% confidence 

trajectories, can be used to define the time to perform early 

or late maintenance, respectively. 

6.2. Prognosis performance 

The performances of the prognostic algorithm are evaluated 

through the metrics proposed by Saxena, Celaya, Balaban, 

Goebel, Sasha and Schwabacher (2008),  and frequently 

adopted in the literature: the relative accuracy, RA, and the 

cumulative relative accuracy CRA. The  analysis has 

been performed as well in order to assess in the best 

possible way the system performance.  

The  analysis is used to visually display and verify that 

the RUL prediction remains (or not) inside the accuracy 

limit for a generic time instant       (       ) , 

where tD is the first prediction time and  a scale factor 

ranging between 0 and 1. In Fig. 11 and in Fig. 12, the RUL 

is normalized with respect to the real RUL at fault detection.  

Observing them, it is possible to highlight how the system 

performance depends on the degradation speed, namely the 

slower the degradation the more stable and precise is the 

algorithm output. The relative accuracy is a measure of the 

algorithm’s capability to estimate precisely the RUL at a 

generic time instant t. 

     
|        |

    
 (26) 

Where RULr is the ground-truth value for the remaining 

useful life. The cumulative value of RA, introduced to better 

evaluate the system accuracy toward the end of life of the 

component, can be defined as: 

    
 

∑   
 
   

∑     

 

   

 (27) 

Where each weight wi has been assumed to be equal to the 

corresponding i. Each index has been evaluated over the 20 

data sets, leading to the results depicted in Fig. 13. The 

mean value of the RA is equal to 86.55%, while the average 

CRA at the end of prediction is 87.84%.  In Fig. 14, the 

CRA values for each data set are reported as well as the 

overall minimum, maximum and average value, for each 

value of Prognosis performance is stable over every 

considered data set, consistently achieving CRA values 

higher than 80% for  higher than 0.4. 

 

Figure 11.  Analysis for a 600 hours degradations  

 

Figure 12.  Analysis for a 315 hours degradations  

 

Figure 13. CRA at End of Prediction and Mean RA for Data 

Set #1-20 
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Figure 14. CRA at Several Prediction Times 

7. SYSTEM LIMITATIONS AND FURTHER DEVELOPMENTS 

The main limitation of the proposed PHM system is related 

to its performance degradation for faults that evolve very 

quickly compared to the framework convergence rate. This 

issue is due to the use of an auto-tuning algorithm for the 

non-linear degradation model employed in the particle filter. 

This routine makes use of the last 30 values of the selected 

feature, each obtained after a pre-flight or post-flight check; 

hence the tuning algorithm might be too slow to converge to 

the optimal solution, leading to inaccurate RUL estimates.  

This issue cannot be solved easily while keeping the 

pre/post flight checks strategy, while it could be overcome 

through the use of the in-flight data; it is clear that a change 

in the PHM strategy will necessarily require the study of 

other features and eventually the use of some additional 

sensors.   

Another limitation is represented by the system behavior in 

multi-fault scenarios. So far the system behavior has been 

studied under the hypothesis of single-fault occurrence, that 

is, no other faults have been considered in the two EMAs. 

Even if we can assume that other systems will be used to 

detect the presence of other degradation processes, it is still 

important to assess the robustness of the presented 

methodology in multi-fault scenarios. A few cases are 

considered: power loss in the supply line, magnets 

degradation in one of the electric motors and a severe 

mechanical efficiency loss in one of the actuators. Motors 

can experience an electric power loss due to multiple causes 

such as issues within the batteries, a fault in the power bus 

or the occurrence of a short in the capacitive DC-link of the 

power converter. Although causing significant issues during 

flight, the occurrence of these faulty situations is not 

harmful to the pre/post flight checks provided that the 

supplied power is still sufficient to perform the required 

movement. The degradation of the motors’ permanent 

magnets could instead affect the pre/post flight checks in a 

more significant way. Thanks to the presence of the force 

sensors its occurrence in the “opposing” actuator is not 

significant as long as the actuator is able to provide the 

required 40% of the nominal load. 

 

Figure 15. Example of a false positive error with a 30% 

degradation of the rotor magnets 

On the other hand, its occurrence in the “monitored” 

actuator may raise false-positive flags: as shown in Fig. 15, 

the motor currents tend to increase to compensate for the 

torque loss hence causing a deviation in the feature normal 

behavior that, consequently, may lead to erroneous results 

of the PHM framework. A similar effect can be observed for 

a significant decrease in the mechanical transmission 

efficiency due to the occurrence of one or more mechanical 

defects, such as yielding of the ballscrew return channel, 

loss of lubricant or deformation of one of the rolling 

elements. To limit the influence of these disturbances, the 

use of a new feature, fi, that makes use of additional voltage 

sensors, is proposed. This novel feature is defined as: 

      (
   [        ̂     ]

   [      ]      
) (28) 

Where  ̂      are the theoretical phase currents,        are the 

phase voltages and      a constant off-set added to avoid 

division by zero and numerical issues when the measured 

quantities are near the minimum quantization error. The 

theoretical currents are obtained by applying the Park anti-

transform to the d-q-0 axis quantities, computed by the 

motor control electronics, while neglecting the common 

node component.  

The behavior of this novel feature with respect to the fault 

ratio is reported in Fig. 16. Repeating the procedure 

performed over the previously selected feature, it is 

observed that even the new one follows a time-dependent 

law of the type reported in Eq. (24).  

 

Figure 16. New feature behaviour 
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Using the new feature in the proposed scheme for the data-

driven fault detection and particle filter prognosis gives 

results similar to those obtained with previously selected 

feature, when considering single-fault scenarios. On the 

same 20 data sets, the average mean fault ratio at detection 

is 11.75%; the mean RA is equal to 87.91% while the mean 

CRA at the end of prediction is 93.1%.  However, results 

are much more robust when considering the presence of 

other degradations; as shown in Fig. 16, the influence of 

uniform degradation in the rotors’ magnets on the new 

feature is extremely limited, since it remains inside the 

process noise determined in its absence. An example of the 

framework’s behaviour with the new feature is reported in 

Figs. 17 and 18. 

 

Figure 17. Fault detection 

 

Figure 18. Output of the prognostic framework 

7.1. Validation plans 

Although we did not provide any experimental results to 

support the proposed framework, a few indications 

regarding its validation plan can be reported. EMAs are still 

rarely used for flight control system; as such, historical data 

are lacking. The validation of the proposed PHM system 

will have hence to rely on laboratory tests. The test bench 

will feature the two parallel EMAs connected to the 

equivalent translational mass through elastic joints to 

simulate the mechanical properties of the aerodynamic 

surface. A third actuator controlled in force may be added to 

simulate the effect of the wind. To validate the PHM 

algorithm we need two study the behavior of the selected 

feature in response to the fault inception and how the fault 

propagates in time. The first study can be pursued by 

inserting an external variable resistance in parallel with one 

of the motor’s phases to mimic the fault inception and 

propagation without damaging its windings. Data would be 

obtained by progressively decreasing the value of the 

parallel resistance and performing the command sequence 

described in Section 4 under varying operating temperature. 

This approach has the advantage of being non-destructive, 

but lacks of any information regarding the temporal scale of 

the fault-to-failure process, which is critical for the 

validation of the prognostic algorithm. To pursue this 

objective, the only viable solution is to physically seed the 

fault and study the motor behavior during several flight 

simulations on the test bench or, preferably, on a dedicated 

iron-bird.   

8. CONCLUSIONS 

The turn-to-turn short has been identified as the most 

probable fault for brushless electric motors employed in 

flight control actuators. The physics of its inception and 

growth have been introduced and the issues related to its 

early detection in widely varying environmental conditions 

have been highlighted. In order to solve these issues, a novel 

set of pre-flight commands able to excite the system while 

enhancing the fault detectability has been proposed. Hence, 

a high-fidelity model of the system has been presented and 

used to supply to the lack of historical data. The 

macroscopic effects of the fault inception and the fault 

growth have been studied and a feature representative of the 

system health status has been chosen among a few 

candidates. This feature, based on simple current 

measurements, has been used to evaluate two possible 

anomaly detection methods: one following a data-driven 

approach and the other employing a particle filter algorithm. 

The first method, while slower in performing the fault 

detection, has proven to be more reliable and has as such 

been selected. On this basis, a particle filtering framework, 

based on auto-tuning the non-linear degradation model, has 

been developed for the prognosis of the turn-to-turn short 

failure mode. Performance has been evaluated through state-

of-the-art metrics in single fault scenarios. Considering a 

few multi-faults scenarios, weakness in the system 

robustness has emerged; a new feature, based on the use of 

additional voltage sensors, has been hence introduced and 

its usage justified. The use of pre/post flight checks to limit 

data dispersion appears to be promising in performing the 

fault detection, tracking and prognosis for slow degradation 

patterns. However, the limited amount of data available, 

(only two measurements for each mission), makes this 

method less effective for fast degradation processes. 
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