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ABSTRACT

With the increased availability of condition monitoring data
on the one hand and the increased complexity of explicit sys-
tem physics-based models on the other hand, the application
of data-driven approaches for fault detection and isolation
has recently grown. While detection accuracy of such ap-
proaches is generally very good, their performance on fault
isolation often suffers from the fact that fault conditions affect
a large portion of the measured signals thereby masking the
fault source. To overcome this limitation, we propose a hy-
brid approach combining physical performance models with
deep learning algorithms. Unobserved process variables are
inferred with a physics-based performance model to enhance
the input space of a data-driven diagnostics model. The re-
sulting increased input space gains representation power en-
abling more accurate fault detection and isolation.

To validate the effectiveness of the proposed method, we gen-
erate a condition monitoring dataset of an advanced gas tur-
bine during flight conditions under healthy and four faulty
operative conditions based on the Aero-Propulsion System
Simulation (C-MAPSS) dynamical model. We evaluate the
performance of the proposed hybrid methodology in combi-
nation with two different deep learning algorithms: deep feed
forward neural networks and Variational Autoencoders, both
of which demonstrate a significant improvement when ap-
plied within the hybrid fault detection and diagnostics frame-
work.

The proposed method is able to outperform pure data-driven
solutions, particularly for systems with a high variability of
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operating conditions. It provides superior results both for
fault detection as well as for fault isolation. For the fault
isolation task, it overcomes the smearing effect that is com-
monly observed in pure data-driven approaches and enables a
precise isolation of the affected signal. We also demonstrate
that deep learning algorithms provide a better performance on
the fault detection task compared to the traditional machine
learning algorithms.

1. INTRODUCTION

Increasing amounts of condition monitoring (CM) data from
complex engineered systems, both in terms of the number of
sensors as well as in terms of the sampling frequency, and ad-
vancements in machine and deep learning algorithms provide
an untapped potential to extract information on asset health
condition. Concretely, deep learning algorithms have demon-
strated an excellent ability to learn the system behaviour di-
rectly from large volumes and variety of the condition moni-
toring signals and therefore decreased the need of manual fea-
ture engineering. As a result, deep learning-based solutions
have been increasingly applied to complex learning tasks in
prognostics and system health management (PHM) of com-
plex systems (R. Zhao et al., 2016; Khan & Yairi, 2018).

Since machine and deep learning algorithm rely on learning
patterns from representative examples, one of the major chal-
lenges in applying deep learning algorithm for fault detection
and diagnostics tasks is the lack of labeled data, i.e. a lack
of a sufficient number of representative samples of known
fault patterns. Only a representative dataset of possible fault
types would enable the algorithms to learn all the characteris-
tic patterns of the specific faults and provide very good fault
detection and isolation capabilities. Because faults are rare in
complex safety critical systems, such as aviation propulsion
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systems, it is unfeasible to obtain sufficient samples from all
possible fault types that can potentially occur. However, most
of the previous research in fault detection and diagnostics has
been focusing on defining the problem of fault detection and
diagnosis as a classification task and rather tackling the prob-
lem of imbalanced datasets for the faulty classes (S. Wang,
Minku, & Yao, 2013; Xu, Chow, & Taylor, 2007; Zhang, Li,
Gao, Wang, & Wen, 2018).

In this paper, we consider the case where we have only in-
formation on the healthy class, the number and nature of the
fault classes are, however, not known in advance. This is a
more realistic task for the practical applications but also a
more difficult task compared to the case where the available
labeled data samples already cover the essential information
on the number and type of classes and the new observation
only fall in the category of already known classes. As an
additional degree of difficulty, we focus particularly on sys-
tems that are operated under varying conditions that are fre-
quently changing. An example for such systems are aircraft
engines experiencing continuous changes (transients) on the
flight conditions.

One of the previously most common approaches for the case
when only healthy system conditions are available for model
development is based on signal reconstruction and the sub-
sequent analysis of the residuals between the monitored and
reconstructed signals (Baraldi, Di Maio, Turati, & Zio, 2015;
Hu, Palmé, & Fink, 2017). Robust decision boundaries are
crucial in this case for the performance of the algorithms.
If condition monitoring signals are highly correlated, a so
called smearing effect can occur influencing not only signals
directly affected by the fault but also causing deviations in
correlated signals that do not contain any information on the
fault. This effect makes it difficult or even impossible to iso-
late the root cause of the fault if the fault isolation is solely
based on the residuals (Hu et al., 2017).

Recently, a new integrated fault diagnosis approach was in-
troduced, combining feature learning with a one-class classi-
fication for the fault detection and a subsequent analysis of
the residuals for the fault isolation task (Michau, Palmé, &
Fink, 2017). This solution strategy aims to map the observed
healthy operation to a healthy class and later discriminate if
the operating condition of interest with unknown health state
follows the learned pattern of the healthy system conditions.
The detection accuracy of such approaches is generally very
good when the available healthy operating conditions used
for training are clearly representative of the conditions under
analysis.

Varying operating conditions create a shift in the underlying
distributions of the CM data. Training an algorithm on the
combined representation of these operating conditions with
a limited number of samples may result in an unsatisfactory
performance of the algorithms since the fault characteristics

may be masked by the variability of operating conditions.

If the operating conditions are too dissimilar, a possible way
to address this challenge would be to develop dedicated algo-
rithms for each of the operating conditions and switch be-
tween the different algorithms depending on the operating
condition of the current observation. Another way to bene-
fit from the experience of several operating conditions is to
apply domain adaptation and align the underlying distribu-
tions in the feature space (Q. Wang, Michau, & Fink, 2019),
enabling thereby the transfer of the experience between the
different operating conditions. However, such alignment re-
quires at least some labels in the training dataset for the fault
types which we don’t have for the selected problem setup.

In this work, we focus on the challenging problem of fault
detection and diagnostics under varying operating conditions
and highly correlated signals. We propose a framework and a
method that combines physics-based models and deep learn-
ing algorithms and is particularly targeting the case when
faulty samples are not available during model development.

Complex systems can be modelled at various levels of detail,
ranging from simple algebraic relations to full 3D-description
of the process. In this range, thermodynamic models (a.k.a.
0-D models) of different levels of fidelity are generally avail-
able for design or control of complex systems. These models
typically a moderate computational load and yet are able to
predict process measurements (e.g., temperatures, pressures,
air mass flow rates, rotational speeds) as well as global sys-
tem performance (e.g. efficiencies and power). Furthermore,
system performance models offer access to unmeasured vari-
ables that might be more sensitive to fault signatures and con-
sequently can improve fault detection and isolation.

In the proposed framework, unobserved process variables are
inferred with a physics-based performance model to enhance
the input space of a data-driven diagnostics model. The re-
sulting increased input space gains representation power en-
abling more accurate fault detection and isolation.

The focus of the proposed method is on fault detection and
isolation for complex industrial assets that are operated under
varying conditions. The main benefit of the proposed method
arises particularly for systems for which we don’t have suffi-
cient labels to develop classification algorithms and for which
pure data-driven approaches with a single model combining
data from all the operating conditions provide unsatisfactory
performance for fault detection and isolation.

The proposed hybrid framework can be combined with any
deep learning algorithm. To demonstrate this, we combine it
with a feed-forward neural network, a Variational Autoen-
coder and a vanilla autoencoder. To validate the fault de-
tection and isolation capability of the proposed method, we
generate a new dataset of an turbofan engine during flight
conditions under healthy and four faulty operative conditions.
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The dataset was synthetically generated with the Commercial
Modular Aero-Propulsion System Simulation (C-MAPSS) dy-
namical model (Frederick, Decastro, & Litt, 2007). Real flight
conditions as recorded on board of a commercial jet were
taken as input to the C-MAPSS model (DASHlink - Flight
Data For Tail 687, 2012).The evaluated case study comprises
simulated flight conditions under healthy and four faulty op-
erating conditions.

To assess the effectiveness of the proposed hybrid framework,
we first evaluate different deep learning architectures and then
compare the performance to 1) pure deep learning algorithms
with the same architecture as those applied within the hy-
brid approach; 2) a standard machine learning algorithm, the
one-class support vector machines (OC-SVM) (Schölkopf,
Williamson, Smola, Shawe-Taylor, & Piatt, 2000); 3) an al-
ternative hybrid framework based on residuals between the
performance model and the real observed condition monitor-
ing data in combination with the real condition monitoring
data as input.

We demonstrate that the proposed framework is able to out-
perform pure data-driven solutions, particularly for systems
with a high variability of operating conditions. It provides
superior results both for fault detection as well as for fault
isolation. For the fault isolation task, it overcomes the smear-
ing effect that is commonly observed in pure data-driven so-
lutions and enables a precise isolation of the affected signal.
We also demonstrate that deep learning algorithms provide a
better performance on the fault detection task.

2. RELATED WORK

Data-driven and physics-based approaches have their advan-
tages and limitations when applied as stand-alone approaches.
While physics-based approaches do not require large amounts
of data and retain the interpretability of a model, they are gen-
erally limited by their high complexity or incompleteness. On
the contrary, data-driven approaches are simple to implement
and are able to discover complex patterns from large volumes
of data but are limited by the representativeness of the training
datasets. The combined use of data-driven and physics-based
approaches has the potential to lead to performance gains by
leveraging the advantages of each method.

Different solutions have been proposed to combine physics-
based models and data-driven algorithms. Depending on what
type of information is processed and how the pieces of infor-
mation are combined, different types of hybrid architectures
can be created. In the following, some of the proposed archi-
tectures that are the most comparable to the proposed frame-
work are presented and discussed.

Frank et al. (2016) explore the use of a hybrid approach
where synthetic data of a healthy and faulty system are gen-
erated with a high-fidelity system model and used as input

to traditional data-driven algorithms. Within the hybrid ar-
chitecture, a range of traditional data-driven machine learn-
ing algorithms with an additional feature engineering step
was explored, including random forests and support vector
machines. The output of the system model is subsequently
combined with residuals between measurements and system
performance estimation from a statistical model (i.e. gener-
ated based on historical data). This architecture (see Figure
1) is applied to diagnostics problems of abnormal energy con-
sumption in buildings resulting from faulty equipment such as
faults of air conditioners, chillers, dampers, and fan motors.

Figure 1. Overall architecture of the hybrid diagnostics ap-
proach in (Frank et al., 2016). The traditional machine learn-
ing algorithms take as input synthetic data of a healthy and
faulty system that are generated with a system model and
combined with the residuals between measurements and sys-
tem performance estimation from a statistical model.

Hanachi et. al. (2017) use a parallel hybrid approach to di-
agnostics of gas turbines. In this approach, empirical (i.e.
data-driven) fault transition models and physics-based system
models perform the state assessment of the process at hand.
Particle filter is used as a fusion mechanism to aggregate the
diagnostic results from the measurement signals and degra-
dation models (see Figure 2).

Figure 2. Overall architecture of the parallel hybrid diagnos-
tics framework in (Hanachi et al., 2017). A particle filter is
used as a fusion mechanism to aggregate the diagnostic re-
sults from measurement signals and degradation models.

A further possible architecture combining model-based and
data-driven approaches uses first the system model to reason
over the process and then a data-driven classifier that dis-
tinguishes between the different fault classes. Rausch et al.
(2005) use such an architecture for online fault diagnostics of
turbofan engines (see Figure 3). In their approach, features
engineered from the residuals between estimates of Extended
Kalman Filter (EKF) and sensor readings are used as input to
a machine learning classifier (SVM model).
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Figure 3. Overall architecture of the residual-based hybrid
diagnostics in (Rausch et al., 2005). Feature engineering is
carried out for the residuals between Kalman Filter estimates
and sensor readings and are used as input to an SVM classi-
fier.

Residual-based approaches are the standard for model-based
diagnostics of aircraft engines. A generic residual-based di-
agnostics approach involves two major tasks. First, discrep-
ancies between measurements and the expected healthy model
responses are computed. In a second step, the residuals, that
encode the potential the impact of degraded or faulty system
behaviour, are processed with a fault detection and isolation
(FDI) logic to create the diagnosis report (Borguet, 2012).
Concretely, residuals can be fed as input to a deep-learning
diagnostic algorithm in addition or instead of the measure-
ments. Therefore, the fault detection and isolation logic is
discovered by a deep neural network. Figure 4 shows a block
diagram of a residual-based hybrid diagnostics framework
where deep learning diagnostics algorithm receives as input
the scenario-descriptor operating conditions and the residual
between sensor readings and estimated model responses.

Figure 4. Overall architecture of the residual-based diagnos-
tics approach. The deep learning diagnostics model receives
as input the system inputs (i.e. scenario-descriptor operating
conditions) and the residual between sensor readings and es-
timated model responses δxs

Recently, several approaches of physics-guided machine learn-
ing have been proposed, where physical principles are used
to inform the search of a physically meaningful and accu-
rate machine learning model. The architecture proposed in
(Jia et al., 2018), for example, enhances the input space to a
data-driven system model with outputs from a physics-based
system model. As a result, the dynamical behaviour of the
system could be approximated more accurately.

In another variation of the physics-guided machine learning
idea, a recurrent neural network cell was modified to incor-
porate the information from the system model at an internal
state of the dynamical system (see Figure 5). A related idea
was applied to a variety of prognostics problems, such as in
(Nascimento & Viana, 2019; Dourado & Viana, 2019; Yuce-

san & Viana, 2019).

Figure 5. Overall architecture of the physics-informed recur-
rent neural network in (Nascimento & Viana, 2019)

Contrary to previous hybrid architectures, the framework pro-
posed in this paper leverages inferred unobserved virtual
sensors and the unobservable model parameters to enhance
the input space to a tailored deep learning-based FDI algo-
rithm (see Figure 6).

3. PROPOSED METHODOLOGY

3.1. Calibration-Based Hybrid Diagnostics

Physics-based performance models of different levels of fi-
delity are generally available for design or control of com-
plex engineered systems. System performance models are
represented mathematically as coupled systems of nonlinear
equations. The inputs of the model are divided into scenario-
descriptor operating conditions w and model parameters θ.
The output of the system model is not limited to estimates of
measured physical properties values x̂s but also provides un-
measured properties xv (i.e. virtual sensors). As there is no
description given by an explicit formula, the nonlinear per-
formance model is denoted as

[x̂s, xv] = S(w, θ) (1)

Performance models provide additional information that is
not part of the condition monitoring signals and may be rele-
vant for detecting faults. Therefore, we propose to make use
of modelled variables [x̂s, xv, θ] as input to the deep learning
diagnostics algorithm. Hence, the resulting hybrid diagnostic
approach combines information from physics-based models
with CM data (i.e. [w, xs]) and uses this enhanced input for
subsequent fault detection and isolation with a deep learning
algorithm.

However, to maximize the amount of relevant model infor-
mation available for the generation of a data-driven diagnos-
tics model, we propose to calibrate the system performance
model S(w, θ). Model calibration involves inferring the val-
ues of the model parameters θ that make the system response
to reproduce closely the observations xs. Hence, the infor-
mation about system degradation (and ideally the fault sig-
nature) is encoded within the estimated model correcting pa-
rameters θ̂. The calibrated model also provides high confi-
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dence estimates of process variables x̂v that may be sensi-
tive to fault signatures. Therefore, we propose to enhance
the input space for the deep-learning diagnostic model with
the process variables [x̂s, x̂v, θ̂] inferred with the system per-
formance model. Figure 6 shows a block diagram of the
proposed calibration-based hybrid diagnostic approach. The
deep learning diagnostics model receives scenario-descriptor
operating conditions w and model variables [x̂s, x̂v, θ̂] as in-
put. The feedback arrow to the system model represents the
calibration process for updating the model calibration param-
eters θ̂. Model calibration is a standard approach in several
technical areas including traditional model-based diagnostics
(Brunell, Mathews, & Aditya Kumar, 2004), model-based
control and performance analysis of system models (Arias
Chao, Lilley, Mathé, & Schloßhauer, 2015).

Figure 6. Overall architecture of the calibration-based hybrid
diagnostics framework. The deep learning diagnostics algo-
rithm takes as input the scenario-descriptor operating condi-
tions w, estimates of the condition monitoring signals (x̂s)
and the virtual sensors (x̂v) and model parameters (θ).

The extended representation provided by the calibrated sys-
tem model also provides additional interpretability and abil-
ity to isolate potential degradation root causes. The model
parameters θ are indeed model tuning of the system compo-
nents and hence a deteriorated behaviour of a sub component
is precisely encoded in only one component of θ (i.e. θk)
while it is at the same time manifested in the condition mon-
itoring data and virtual sensors. As it will be shown in the
case study (Section 5), this feature avoids the smearing char-
acteristic of data-driven diagnostics models. An additional
advantage of including the calibration processing step is that
errors in the sensor readings can be detected and removed and
therefore diagnostics process is more robust to sensor faults.

In addition to the model calibration, a diagnostic report re-
quires a clear fault detection and isolation algorithm, beyond
the standard threshold-based logic. Therefore, we propose a
tailored deep learning-based FDI algorithm shown in Figure
7. The proposed algorithm uses as input the extended rep-
resentation provided by the calibrated system model (x =
[w, x̂s, x̂v, θ]) and computes a similarity score sI(x(j);β).
Fault detection is performed based on a clear logic on sI(x(j);β).
The enhanced input signal x is reconstructed with an autoen-
coder network and fault isolation is performed based on the
similarity score dI(x

(j)
k ; νk). A detailed description of the

proposed algorithm is covered in Section 4.

Figure 7. Block diagram of the proposed fault detection and
isolation algorithm within the proposes hybrid diagnostics
framework. The FDI algorithm takes x = [w, x̂s, x̂v, θ] as
input. A functional mapping G from the input (x) or an em-
bedding representation of the input (z) to a target T is used
to generate a similarity score sI(x(j);β). Fault detection is
performed based on sI(x(j);β). The enhanced input signal is
reconstructed (̄(x)) with an autoencoder network. Fault iso-
lation is performed based on the similarity score dI(x

(j)
k ; νk).

The variables in green are specific to the proposed hybrid ap-
proach.

4. METHODS

4.1. Problem Statement

We aim at developing a diagnostic model able to detect and
isolate fault types on complex systems operated under a large
range of changing operating conditions. In our problem, we
consider the situation where at model development time ta,
we have access to a dataset of condition monitoring signals
and system model estimates of process variables. Certainty
about healthy operative conditions are only known until a past
point in time tb when an assessment of the system health was
performed and declared healthy. Hence, at model develop-
ment time, we only have access to the true healthy class for a
portion of our data and fault signatures of an unknown num-
ber of fault types may be present in the remaining dataset. In
particular, we consider the scenario where an evolving fault
condition is actuality present but has not been detected due
to the low intensity of the fault. In addition to the unlabelled
data, an independent test set with increased levels of com-
ponent degradation is provided. Our task is then to the de-
tect the fault types in both, the unlabelled dataset and the test
set. It should be noted that at ta an incomplete knowledge
of the world is present. Hence, we have an open set problem
(Scheirer, de Rezende Rocha, Sapkota, & Boult, 2013) where
we only know the initial healthy state but do not have any
information on the faulty conditions. Therefore, not all pos-
sible classes are know at the model development stage and it
is not even known how many fault classes may evolve. The
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formulation of the diagnostic problem addressed in this paper
is formally introduced in the following.

Given is a multivariate time-series of condition monitoring
sensors readings from one unitXs = [x

(1)
s , . . . , x

(m)
s ]T , where

each observation x
(i)
s ∈ Rp is a vector of p raw measure-

ments taken at operative conditions w(i) ∈ Rs. In addition
we have available residuals between measurements and esti-
mated healthy system responses (i.e. δx

(i)
s ) and the output

of a calibrated system model that provides inferred values
of the model tuners θ(i) and estimates of the sensors read-
ings x̂(i)s and virtual sensors x̂(i)v . Hence, in compact form,
we denote the complete set of measured and inferred inputs
as X = {(w(i), x̂

(i)
s , x̂

(i)
v , θ̂(i), δ

(i)
m ))}mi=1. At model devel-

opment time, the corresponding true system’s health state is
partially known and denoted as Hs = [h

(1)
s , . . . , h

(m)
s ]T with

h
(i)
s ∈ {0, 1} where the healthy class is labeled as h(i)s =

1. Therefore, our partial knowledge of the true health al-
lows to define two subsets of the available data: a labeled
dataset DL = {(x(i), h(i)s )}ui=1 with h(i)s = 1 correspond-
ing to known healthy operative conditions and an unlabeled
sample DU = {x(i))}mi=u+1 with unavailable health labels.
In particular, we consider scenarios where K unknown faults
types are present in DU . The fault types correspond to in-
creasing intensities of the same fault mode (i.e. step-wise
increases). The level of component degradation in DU is low
(i.e. ≤ −1% nominal conditions) and therefore we represent
the situation where faults signatures are present but are not yet
detected at analysis time. In addition, we test the generaliza-
tion capability of our model to detect K∗ new faults of higher
intensity in a test dataset DT = {(x(j)∗ }Mj=1. An schematic
representation of the problem is provided in Figure 8.

Given this set-up we first consider the problem of detecting
the faulty operative within {DU , DT } given only our healthy
dataset DL at time ta. Hence our initial task is to estimate
the health state (i.e ĥs) on {DU , DT }. Furthermore, we aim
to provide an isolation of the fault mode present. We refer
to V = {Vj |j = 1, . . . , R} as the partition of {DU ,DT }
according to the R = K + K∗ + 1 true but unknown fault
types we aim to detect. For simplicity we will refer to the
dataset {DU , DT } as the combined test set that we denote as
DT+.

4.2. System Model Calibration

A conventional way to ensure that the system response fol-
lows observations Xs is to infer the values of the model cor-
recting parameters θ solving an inverse problem. Since both
the measurement data and model parameters are uncertain,
the process of estimating optimal correcting parameters is a
stochastic calibration problem. Ideally, the calibration pro-
cess aims at obtaining the posterior distribution of the calibra-
tion factors given the data p(θ|w,Xs). However, computing
the whole distribution is generally computationally very ex-

Figure 8. Schematic representation of the problem. Training
dataset D has labelled (DL) and unlabelled data (DU ). The
test set (DT ) has only unlabelled samples. The true health
condition any point in time is represented by the HS bar.
Healthy condition are represented in blue and faulty in red.
The true operative condition type within the data are repre-
sented by the V bar. The healthy condition is shown in green;
each fault type appear in a different color. K fault classes are
present in DU and K∗ in DT .

pensive and therefore in most cases, point value estimations
of the parameters are inferred. A typical compromise is to
resort to the mode of the posterior distribution that is called
the maximum a posteriori estimation (MAP), described by

θ̂MAP = arg max
θ
p(θ|w,Xs) (2)

Several calibration methods have been proposed and the large
majority of them can be classified as probabilistic matching
approaches. Some of the most commonly used calibration
methods include weighted linear and non-linear least squares
schemes, maximum likelihood estimates or Bayesian infer-
ence methods (e.g. Markov Chain Monte Carlo, Particle and
Kalman filters) (Arias Chao et al., 2015). These methods dif-
fer in the level of complexity and the computational cost.

In this work, we propose an Unscented Kalman Filter (Julier
& Uhlmann, 1997) to infer the values of the model correcting
parameters θ̂ since our models of interest are nonlinear. How-
ever, the task can be also performed with other approaches.
Hence, rather than focusing on one particular model calibra-
tion method, we evaluate the impact of different levels of cal-
ibration accuracy in the performance of the proposed fault
detection and isolation algorithm and therefore in the frame-
work proposed.

Model-based estimation of the sub-model health parameters
from a transient data stream can be addresses with a tradi-
tional state-space formulation. In particular we consider an
UKF where the state vector comprises the health parameters.
The measurement equation depends on the states and the in-
put signals at the present time step t; which is readily avail-
able from the system model S. Hence, we apply a UKF to a
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nonlinear discrete time system of the form:

θ(t) = θ(t−1) + ξ(t) (3)

x(t)s = S(w(t), θ(t)) + ε(t) (4)

where ξ ∼ N(0, Q) is a Gaussian noise with covariance Q
and ε ∼ N(0, R) is a Gaussian noise with covariance R.
A more detailed explanation of this problem formulation ap-
plied to the monitoring of gas turbine engines can be found in
Borguet (Borguet, 2012).

The Kalman Filter provides estimates of θ̂(t) and therefore
a fault detection and isolation (FDI) logic is also required.
The standard approach for the FDI logic is to define thresh-
olds for all θ̂(t) and rise an alarm if the inferred unobserved
model parameter surpasses the defined threshold. However,
such a approach has some limitations since a fault signature
can be manifested only as a subtle change of the degradation
rate. Accordingly, a threshold based approach will not be able
to detect the presence of the fault signature until the fault is
clearly manifested which will result in a detection delay. Sim-
ilarly, a fault mode can result in different degradation rates in
several of the monitored internal model parameters. As a re-
sult, fault signatures that are ambiguous when considered in
each of the individual dimension of θ can be more clearly
detected when considered combined. Therefore, we propose
an alternative fault detection and isolation logic that is able to
overcome some of the limitations of the threshold model-base
approaches or a pure data-driven diagnostics models.

It should be noted that the proposed formulation of the cal-
ibration problem assumes that the system model has a good
representation of the real physical process. This is a common
situation when evaluating the health state of mature products
where the system model has been developed and validated
based on multiple field units or test beds units. In contrast,
this is not the case of new developments. In the general, no
model is perfect and a certain level of missing physical rep-
resentation on the system model will imply in a lower cali-
bration quality. In case of significant missing physics within
the system model representation, the impact of model degra-
dation gets entangled with the model correction rooted in
the lack of physics. To mitigate this situation the calibra-
tion problem needs to be reformulated to account for a model
discrepancy term δ(w) as follows:

Xs = S(w, θ(w)) + δ(w) + ε (5)
θ(w) = f(w) + ξ (6)

Hence, the solution of this reformulated calibration problem
involves finding the functions δ(w) and θ(w). The current
state of the art solution is a sequential process. The equation
is first solved for θ(w) and subsequently for δ(w). However,

this approach is not optimal since smearing between the cor-
rection in θ and δ(w) is typically present in the solution. On
the other hand, the simultaneous solution of θ(w) and δ(w)
is an open research question that we do not address in this
paper.

4.3. Fault Detection

Several approaches for fault detection problems have been
proposed in the literature. One of the main distinction crite-
ria between them is the availability of labeled data. If labeled
data from faulty and healthy operation are available, the prob-
lem is typically defined as a binary classification. However,
faulty system conditions in critical systems are rare resulting
in relatively few or even no faulty condition monitoring data.
The focus of this paper is on the latter scenario, for which
we define the problem as a one-class classification (Moya &
Hush, 1996).

One-Class Classification. The fault detection problem has
been successfully addressed as a one-class classification prob-
lem in (Michau, Hu, Palmé, & Fink, 2017). In this case the
task turns to a regression problem that aims to discover a
functional map G from the healthy operation conditions to
a target label T = {h(i) | x(i) ∈ ST } where ST ( DL is a
training subset of DL. We consider a neural network model
to discover the functional map G and hence we refer to such a
network as the one-class network. The output of the one-class
network will deviate from the target value T when the inner
relationship of a new data point x(j) ∈ DT+ does not corre-
spond to the one observed in ST . Therefore, we consider an
unbounded similarity score sI(x(j);β) of x(j) with respect
to our healthy labeled data based on the absolute error of the
prediction G(x(j)) that we define as follows:

sI(x
(j);β) =

| T− G(x(j)) |
β

(7)

β = P99.9(| (T− G(SV ) |)γ (8)

where β corresponds to a normalizing threshold given by the
99.9% percentile of the absolute error of the prediction of G
in a validation set (i.e SV ) extracted from DL multiplied by
a safety margin γ = 1.5. Please note, that the percentile and
γ are hyper-parameters and can be adjusted to the specific
problem.

Hence, our fault detection algorithm is simply given by:

ĥs(x
(j)) =

{
1 sI(x

(j);β) < 1

0 otherwise
(9)

To obtain the mapping function G we resort to a partially su-
pervised learning strategy with embedding given only one tar-
get label h(i)s = 1 at training.

7
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Partially Supervised One-Class Learning with Embedding.
The goal of a supervised learning strategy to discover a direct
mapping from input X to a target label T given a training set
ST . An alternative strategy to this direct mapping is to ob-
tain a representation of the raw input data (a.k.a. non-linear
embedding) from which a reliable optimal mapping G can
be learned. Hence, the task has two parts. Firstly, we find a
transformationE : XL 7 −→ zL of the input signals to a latent
space zL ∈ R u×d that encode optimal distinctive features of
XL in an unsupervised way (i.e. without having information
on the labels). In a second step, we find a functional map-
ping Gsle : zL 7 −→ T from the latent representation of input
signals zL = {E(x(i)) | x(i) ∈ ST } to the label class T.
Since in our one-class problem formulation the training tar-
get contains only one class and since the number and nature
of the fault classes in DT+ are not known in advance, we
denote the corresponding supervised problem as partially su-
pervised learning. This is a key difference to conventional
supervised learning diagnostics where the available labeled
(training) data samples already cover the essential informa-
tion on the number and type of classes and the new observa-
tion only fall in the category of already known classes.

Different unsupervised deep-learning models can be consid-
ered to discover the latent representation zL. In order to cover
the most prominent deep neural network architectures and
to show the performance independence of our proposed hy-
brid method to the network architectures we implemented two
discriminative and one generative autoencoder variants. For
the discriminative autonencodes, we considered vanilla au-
tonecoders (AE) and hierarchical extreme learning machines
(HELM) (Zhu, Miao, Qing, & Huang, 2015). For the genera-
tive methods we implemented variational autoencoders (VAE)
(Kingma & Welling, 2014). For the one-class network we use
a discriminative model based on a feed-forward network (FF).
A formal introduction to the selected neural networks model
is provided in Section 9.

It should be noted that our proposal for an embedding rep-
resentation is not related to the quality of the one-class net-
work to discriminate healthy and faulty conditions but to the
need of performing fault isolation. The detection problem can
also be formulated without an embedding (i.e. direct mapping
from input X to a target label T given a training set ST ).

4.4. Fault isolation

The autoencoder formulation of the problem allows to com-
pute the expected signal values under the training distribution
(i.e. X). The output of the autoencoder network F (x(j)) will
deviate from the input value X when the inner relationship
of a new data point x(j) ∈ {DU ,DT } does not correspond
to the one observed in the training set ST . Therefore, we
compute the absolute deviation that each component of the
reconstructed signals has (i.e. |x(j)k − F (x(j))k|) relative to

the error observed in the validation dataset SV (i.e. healthy
operation conditions).

dI(x
(j)
k ; νk) =

|x(j)k − F (x(j))k|
νk

(10)

where ν corresponds to a normalizing threshold given by the
99.9% percentile of the absolute error of the prediction of F
in the validation set SV

νk = P99.9({|x(j)k − F (x(i))k| | x(i)k ∈ SV }) (11)

dI(x
(j)
k ; ν) is an unbounded measure of similarity between

the signal value predicted by the autoencoder network and
the expected or true signal value. In our hybrid approach, the
input space to the autoencoder comprises the calibration fac-
tors θ and the observed signalsXs and therefore deviations in
the signal reconstruction can be pointed out for measurement
and model tuning factors.

5. CASE STUDY

5.1. A Single Fault Mode in a Turbofan Engine

A new dataset was designed to evaluate the proposed method-
ology. The CMAPSS dataset DS00 provides simulated con-
dition monitoring data of an advanced gas turbine during 24
flights cycles. The dataset was synthetically generated with
the Commercial Modular Aero-Propulsion System Simula-
tion (C-MAPSS) dynamical model (Frederick et al., 2007).
Real flight conditions as recorded on board of a commercial
jet were taken as input to the C-MAPSS model (DASHlink
- Flight Data For Tail 687, 2012). Figure 9 shows 14 sim-
ulated flight envelopes given by the traces of altitude (alt),
flight Mach number (XM), throttle-resolver angle (TRA) and
total temperate at the fan inlet (T2). Each flight cycle con-
tains ∼175 snapshots of recordings covering climb, cruise
and descend flight conditions (i.e. alt > 10000 ft). The la-
beled dataset DL (blue) consists of 20 flight cycles with a
healthy state of the engine (i.e hs = 1). The unlabeled and
test datasets {DU ,DT } (green and red respectively) contain
snapshots of R = 4 concatenated flight cycles with a deteri-
orating engine condition. The intensity of the degradation in-
creases at each flight (i.e step-wise increase). The fault mode
corresponds to a high pressure compressor (HPC) efficiency
degradation. Each of the fault magnitudes is denoted with
a fault id (see Table 1). The unlabeled dataset also includes
60 snapshots of initial healthy operation. The unlabeled and
test datasets {DU ,DT } contain a subset of flight conditions
experienced during training. Therefore, this set-up relates to
a real scenario where an aircraft is operating under certain
flight routes, which results in very similar flight condition. In
addition to the noisy flight conditions, all the healthy opera-
tive conditions incorporate white noise in all the engine health
model parameters (see Table 5). No additional noise or bias
is considered for sensor readings. A total of ∼ 3200 healthy
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data points are available for training. The unlabeled and test
datasets {DU ,DT } contain ∼ 740 data points.

Figure 9. Subset of 10 flight envelopes given by the traces
of altitude (top), flight Mach number (middle) and throttle-
resolver angle -TRA (bottom). Four dataset are shown: ST
(blue), SV (orange), DU (green) and DT (red).

Fault Id Fault Mode Magnitude dataset
1 HPC Efficiency -0.5 % DU
2 HPC Efficiency -1.0 % DU
3 HPC Efficiency -1.5 % DT
4 HPC Efficiency -2.0 % DT

Table 1. Overview of the generated faults

5.2. Pre-processing

The dimension of the input space X (i.e. n) varies depending
on the solution strategy considered (see Table 2). The diag-
nostic model based on condition monitoring data (CMBD)
has 17 inputs. The residual-based model considers 31 inputs
and the proposed hybrid method based on system model cal-
ibration (CBHD) uses to 45 inputs. Tables 3 to 6 provide
a detailed overview of the model variables included in the
condition monitoring signals [W,Xs], model residuals δXs ,
virtual sensors X̂v and model calibration parameters θ̂.

Model Input n
CMBD - No Hybrid [W,Xs] 17
Residual [W, δXs ] 31
CBHD - Hybrid [W, X̂s, X̂v, θ̂] 45

Table 2. Dimension of the input space for the autoencoder
network - n

Id Symbol Description Units
1 alt Altitude ft
2 XM Flight Mach number -
3 TRA Throttle-resolver angle %
4 Wf Fuel flow pps
5 Nf Physical fan speed rpm
6 Nc Physical core speed rpm
7 T2 Total temperature at fan inlet ◦R
8 T24 Total temperature at LPC outlet ◦R
9 T30 Total temperature at HPC outlet ◦R
10 T48 Total temperature at HPT outlet ◦R
11 T50 Total temperature at LPT outlet ◦R
12 P15 Total pressure in bypass-duct psia
13 P21 Total pressure at fan outlet psia
14 P24 Total pressure at LPC outlet psia
15 Ps30 Static pressure at HPC outlet psia
16 P40 Total pressure at burner outlet psia
17 P50 Total pressure at LPT outlet psia

Table 3. Condition monitoring signals - [W,Xs]. The Id is
used in this document as shorthand of the variable descrip-
tion. The variable symbol corresponds to the internal variable
name in CMAPSS. The descriptions and units are reported as
in the model documentation (Frederick et al., 2007).

The input space X to the models is normalized to a range
[−1, 1] by a min/max-normalization. A validation set ST (
DL comprising 6 % of the labelled healthy data for all the
models was chosen.

5.3. Network architectures

The partially supervised with embedding learning strategies
require an autoencoder network in addition to the one-class
network. As shown in Figure 10, the input signals X are re-
constructed by the encoder-decoder networks. The encoder
provides a new representation z of the input signals. The
mapping to the target label T is carried out by the one-class
network taking as input the latent (i.e. unobserved) represen-
tation of the input data z.

To evaluate the different methods in a fair way, we separate
the effect of regularization in the form of model and learn-
ing strategies choice from other inductive bias in the form of
choice of neural network architecture. Therefore, we define
a common architecture of the one-class network and autoen-
coder network for all our deep autoencoders.

One-Class Network. The proposed network topology uses
three fully connected layers (L = 3). The first hidden layer
has 20 neurons (i.e. m1 = 20), the last hidden layer has 100
neurons (mL−1 = 100). The network ends with a linear out-
put neuron (mL = 1). Therefore, in compact notation, we re-
fer to the one-class network architecture as [20, 100, 1]. tanh
activation function is used throughout the network. It should
be noted that the one-class classification problem formula-
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Id Symbol Description Units
18 T40 Total temp. at burner outlet ◦R
19 P30 Total pressure at HPC outlet psia
20 P45 Total pressure at HPT outlet psia
21 W21 Fan flow pps
22 W22 Flow out of LPC lbm/s
23 W25 Flow into HPC lbm/s
24 W31 HPT coolant bleed lbm/s
25 W32 HPT coolant bleed lbm/s
26 W48 Flow out of HPT lbm/s
27 W50 Flow out of LPT lbm/s
28 epr Engine pressure ratio (P50/P2) –
29 SmFan Fan stall margin –
30 SmLPC LPC stall margin –
31 SmHPC HPC stall margin –
32 NRf Corrected fan speed rpm
33 NRc Corrected core speed rpm
34 PCNfR Percent corrected fan speed pct
35 phi Ratio of fuel flow to Ps30 pps/psi

Table 4. Virtual sensors - [Xv]. The Id is used in this doc-
ument as shorthand of the variable description. The vari-
able symbol corresponds to the internal variable name in
CMAPSS. The descriptions and units are reported as in the
model documentation (Frederick et al., 2007).

Id Symbol Description Units
36 fan eff mod Fan efficiency modifier -
37 fan flow mod Fan flow modifier -
38 LPC eff mod LPC efficiency modifier -
39 LPC flow mod LPC flow modifier -
40 HPC eff mod HPC efficiency modifier -
41 HPC flow mod HPC flow modifier -
42 HPT eff mod HPT efficiency modifier -
43 HPT flow mod HPT flow modifier -
44 LPT eff mod LPT efficiency modifier -
45 LPT flow mod HPT flow modifier -

Table 5. Model correcting parameters - [θ]. The Id is used in
this document as shorthand of the variable description. The
variable symbol corresponds to the internal variable name in
CMAPSS. The descriptions and units are reported as in the
model documentation (Frederick et al., 2007).

tion is a regression problem and therefore the last activation
σL = I is the identity.

Autoencoder Networks. Based on the same argument as
mentioned above, the autoencoder models (i.e. AE and VAE)
use the same encoder architecture with two hidden layers (lz =
2) with m1 = 20 and latent space of 8 neurons (d = 8). In
compact notation, we refer to the autoencoder network archi-
tecture as [n, 20, 8, 20, n]. Where n denotes the size if the
input space X; which varies depending on the solution strat-
egy considered. The VAE model uses the mean of the ap-
proximate posterior (i.e. µ) as the model latent space to avoid
using approximate samples from posterior distribution (i.e.
z(i)). The HELM model reproduces the encoder and the one-
class networks in one single hierarchical network. Hence, the
resulting network architecture is [n, 20, 8, 20, 100, 1].

Id Symbol Description Units
δ4 δWf Delta fuel flow pps
δ5 δNf Delta physical fan speed rpm
δ6 δNc Delta physical core speed rpm
δ7 δT2 Delta total temp. at fan inlet ◦R
δ8 δT24 Delta total temp. at LPC outlet ◦R
δ9 δT30 Delta total temp. at HPC outlet ◦R
δ10 δT48 Delta total temp. at HPT outlet ◦R
δ11 δT50 Delta total temp. at LPT outlet ◦R
δ12 δP15 Delta total press. in bypass-duct psia
δ13 δP20 Delta total press. at fan inlet psia
δ14 δP24 Delta total press. at LPC outlet psia
δ15 δPs30 Delta static press. at HPC outlet psia
δ16 δP40 Delta total press. at burner outlet psia
δ17 δP50 Delta total press. at LPT outlet psia

Table 6. Delta to healthy state - [δXs ]. The Id is used in
this document as shorthand of the variable description. The
variable symbol corresponds to the internal variable name in
CMAPSS. The descriptions and units are reported as in the
model documentation (Frederick et al., 2007).

OC-SVM model.To evaluate if a deep learning architecture
is required for the fault detection task, we compare the re-
sults to the standard one-class support vector machines (One-
Class SVM) (Schölkopf et al., 2000) for novelty detection.
This enables us to evaluate the benefits and the potential need
for complex neural network architectures for the defined fault
detection task. We use the standard scikit-learn (Pedregosa
et al., 2011) implementation of the one class SVM with an
radial basis function kernel, nu=0.001 and gamma=0.1. The
model performance is sensitive to the choice of these hyper-
parameters. Therefore, optimal parameters for the validation
set SV may not guarantee a good performance in DT . We se-
lected the hyperparameters that maximize the F1 score on the
test set to ensure the best possible performance of the base-
line on the test dataset. For other algorithms, the parameters
were selected based on the validation dataset. This makes the
comparison of the deep learning algorithms to the baseline
even more challenging.

5.4. Training Set-up

The optimization of the networks’ weights of all the mod-
els was carried out with mini-batch stochastic gradient de-
scent (SGD) and with the Adam algorithm (Kingma & Ba,
2015). Xavier initializer (Glorot & Bengio, 2010) was used
for the weight initializations. The learning rate (LR), epoch
and batch size were set according to Table 7. The batch size
for the autonecoder network was set to 512 and to 16 for one-
class network. Similarly, the number of epochs for autoen-
coder training was set to 2000 and for the supervised models
to 500. Therefore, all these methods use the same network
architecture and hyper-parameters for the optimisation.
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Figure 10. Network architecture for the defined learning
problem with an autoencoder (encoder-decoder) and the one-
class detection network.

Model LR Batch Size Epochs
One-class 0.001 16 500
Autoencoder 0.001 512 2000

Table 7. Training parameters

5.5. Evaluation Metrics

In order to compare and analyse the performance of our mod-
els on the intended diagnostics task we defined two evaluation
aspects: detection of unknown faults (i.e. estimation of hs)
and fault isolation. For each of the two aspects, we consider
targeted evaluation metrics that are defined in the following.

Fault Detection. Given the combined test dataset DT+ with
true health state h(j)s and the corresponding estimated health
state ĥ(j)s , we evaluate the performance of the fault detection
algorithm as the accuracy of a binary classification problem

Acc =
1

M +m

M+m∑
i=1

1(h(j)s = ĥ(j)s ) (12)

whereM+m number of data points inDT+
and 1{.} denotes

the indicator function.

Fault Isolation. The error in the reconstruction signal will
be more notorious for those signals in close relation to the
fault root cause. Therefore, we report the index of the sig-
nals of those components of the data point x(j) that satisfy
dI(x

(j)
k ; νk) > 1. The mapping between variable description

of the variables and the corresponding index is provided in
Tables 3 to 6.

6. EXPERIMENTAL RESULTS

6.1. Fault Detection

Table 8 shows the performance of our twelve models on fault
detection. The residual-based and the calibration-based ap-
proaches achieve nearly 100% detection accuracy indepen-
dently of the neural network model considered. Both ap-
proaches provide an improvement of nearly 80% with respect
to the best diagnostic model based purely on condition mon-
itoring data (i.e. AE with [W,Xs]). The OC-SVM model
results in a lower detection accuracy than the deep learn-
ing models with independence on the input space considered.
Concretely, the best performing autoencoder model (i.e. AE)
provides c.a. 4% accuracy improvement with respect to the
standard OC-SVM when a calibration-based approaches is
considered.

Input AE VAE HELM OC-SVM
[W,Xs] 24.5 12.9 8.0 10.0
[W, δXs ] 98.7 99.3 8.5 79.5
[W, X̂s, X̂v, θ̂] 100.0 99.1 97.5 96.2

Table 8. Overview of detection results - Accuracy in [%].
Mean values of 10 runs

Diagnostics models based on condition monitoring data show
poor performance independently on the autoencoder network
considered. A possible explanation for this may be that this
is due to the high complexity of the dataset in the form of
a large variability in the input space due to varying operat-
ing conditions. To verify this idea we trained the AE model
with CM inputs on a subset of the training data with opera-
tive points closer to cruise conditions. Hence, we restricted
the fight altitude to above 25000 ft. Figure 11 shows the accu-
racy of the diagnostics model based on condition monitoring
data trained in this simpler dataset. We can observe that the
detection performance drastically increases; which supports
our hypothesis.

The detection performance of the one-class solutions reported
in Table 8 is determined by the capability of the similarity
score sI(x(i);β) to represent a valid and consistent distance
to healthy operation learnt in the training phase (i.e. DL).
To demonstrate and verify this behaviour we plot in Figure
12 the similarity score obtained with AE model with CM in-
puts in the four HPC efficiency faults of increasing intensities
(-0.5% to -2%). The onset of each fault is indicated by the
dashed vertical lines. We observe that the more severe the
fault is, the higher the detection index. Therefore, s(x(i);β)
shows the expected consistency. However, we also observe
that only for HPC faults with intensities below -1.0% the sim-
ilarity score is above the decision threshold s(x(i);β) > 1
(black horizontal line). Hence, the one-class network fails to
discriminate between healthy and faulty conditions for HPC
efficiency deterioration below 1.0%.
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Figure 11. Evolution of the accuracy with dataset complexity
for AE model based on [W,Xs] inputs in faults 1, 2 and 4.
Fault 3 is not considered since alt < 25000 ft.

The quality of the calibration process has an impact on the
fault detection performance. In order to quantify this impact,
the calibration factors are contaminated with noise of differ-
ent signal-to-noise ratios. We impose the noise perturbation
to all the calibration factors (i.e θ ∈ R10), however the im-
pact is more pronounced for HPC Eff mod since it defines
the fault mode. Figure 14 shows two components of the re-
sulting noisy calibration process. Figure 13 shows the impact
in fault detection accuracy of the different noise levels for
two best performing models. We can observe a decrease in
the accuracy as the noise increases for all the tested models.
OC-SVM model shows the most robust performance for noise
levels SNRdb < 30. Most of the models are able to achieve
an accuracy that is above the pure data-driven models if all
the SNR are evaluated. Therefore, these results demonstrate
the robustness of the proposed fault detection approach. It
should be noted that the SNRdb scale is logarithmic.

6.2. Fault Isolation

Table 9 shows the input signals detected as anomalous with
the AE and VAE models. For simplicity, we report the index
of the signals according to Tables 3 to 6. The affected sig-
nals are presented in a decreasing order according the value
of the similarity indicator dI(x

(j)
k ; νk). Hence, the most af-

fected signals are presented first. Only variables that satisfy
dI(x

(j)
k ; νk) > 1 are reported.

The four faults present in the combined test sets DT+ are
rooted in a HPC efficiency deficit. However, not all the mod-
els have an input space where the compressor efficiency is
represented. Concretely, only the calibration-based hybrid
model with inputs [W, X̂s, X̂v, θ̂] has a representation of the
HPC efficiency through the estimated model correcting pa-
rameters θ̂. Therefore, in the best case, the remaining mod-
els can only aim to place the root cause of a HPC degra-

Figure 12. Similarity index for four HPC efficiency faults of
different intensities with AE model based on [W,Xs] signals.
All the faults occur at different flight conditions. The decision
threshold is plotted as horizontal black line (s = 1). The
onset times of each fault are indicated by the vertical dashed
lines. Four dataset are shown: ST (blue), SV (orange), DU
(green) and DT (red).

dation on variables physically related to the HPC. For in-
stance, models that consider only condition monitoring sig-
nals [W,Xs] detect a large reconstruction error in variable
6 (i.e. the rotational core speed of the shaft where the high
pressure compressor is placed). The hybrid model based on
residual [W, δXs ] encodes the fault signature in five residu-
als: δ11, δ10, δ9, δ6 and δ8. Therefore, the residual of core
speed δ6 is also detected as an affected signal in addition to
the HPC outlet temperature (δ9) and temperatures at the out-
lets of the High and Low Pressure Turbines (i.e. δ10 and δ11).
The isolation of these last two process variables as the fault
root cause is a clear smearing of the effect of an HPC degra-
dation to other unrelated subsystems. Neural networks based
on VAE show a similar isolation performance.

Finally, hybrid models based on calibrated models with in-
put signals [W, X̂s, X̂v, θ̂] encode the fault signature in only
variable 40; which corresponds to the component of θ repre-
senting the correction of the HPC efficiency. Any model with
[W, X̂s, X̂v, θ̂] provides perfect isolation.

6.3. Feature Representation

The results presented in the previous section have demon-
strated that the proposed hybrid approach provides a very
good performance for fault detection and isolation, particu-
larly for systems with a high variability of the operating con-
ditions. To better understand how the different (expanded)
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Figure 13. Fault detection accuracy as function of the noise
levels for AE and OC-SVM model. 95% confidence intervals
are shown as rectangular bars.

AE
Input -0.5% -1.0% -1.0% -2.0%
[W,Xs] - 6 6, 15
[W, δXs ] δ11, δ10, δ9, δ6, δ8
[W, X̂s, X̂v, θ̂] 40

VAE
Input -0.5% -1.0% -1.0% -2.0%
[W,Xs] -
[W, δXs ] δ10, δ11, δ6, δ9, δ8
[W, X̂s, X̂v, θ̂] 40

Table 9. Overview of isolation results on four HPC efficiency
faults with impact from -0.5% to -2.0%. The table shows the
index of the affected variables as introduced in Tables 4-6.
Variables affected by smearing are colored in red.

input spaces affect the latent representation and also the per-
formance of the models on the diagnostics tasks, the latent
space of the different models is analyzed. Please note that
the analysis of the latent space is mainly performed for un-
derstanding and demonstration purposes. Therefore, only the
first two dimensions of the latent space are visualized. While
this does not provide a full evaluation of the latent space, a
separability of the healthy and faulty conditions in the first
two dimensions of the latent space would support the assump-
tion that such a representation would also be favorable for the
diagnostics tasks based on this latent representation.

Figure 15 shows a pairwise scatter plot of the first two di-
mensions of the latent space z of the hybrid AE model X =
[W, X̂s, X̂v, θ̂], while Figure 16 represents the first two di-
mensions of the latent space of the data-driven model X =

Figure 14. Noisy calibration factors for a noise level of
SNRdb = 10 imposed on the high pressure compressor (HPC)
efficiency. The added noise to the high pressure compres-
sor (HPC) flow (which is not affected by the fault mode) is
shown as reference. Three datasets are shown: ST (blue),
DU (green) and DT (red).

[W,Xs]. The latent space of the residual-based approach
([W, δXs ]) is represented in Figure 17. The scatter plots are
colored according to the dataset of the origin. The healthy
class (i.e ST ) is shown in blue, healthy unlabelled data from
DU (hs = 1) are shown in orange and the faulty operative
conditions from the test set DT are represented in green.

It can be clearly observed that expanding the input space with
additional model variables has a large impact in the latent
representation. Concretely, the faulty conditions are clearly
clustered together and have a high distance to the healthy op-
erating conditions (centered around zero) for the two hybrid
approaches. On the contrary, a distinction between healthy
and faulty conditions in the latent representation of the purely
data-driven approach X = [W,Xs] is not possible. The rep-
resentation of healthy and unhealthy classes shows clear over-
laps in the two represented dimensions. These exemplary
plots support the argument that the hybrid approaches pro-
vide a more favorable and more distinct representation of the
healthy respectively unhealthy conditions. This results in a
easier detection task of the one-class network leading to bet-
ter detection results.

7. DISCUSSION

The performed experiments on the C-MAPSS dataset demon-
strate that the proposed hybrid deep learning-based diagnos-
tics algorithm, combining information from a physics-based
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Figure 15. Pairwise scatter plot the first two components
of the latent space z of the hybrid AE model with X =

[W, θ̂, X̂s, X̂v]. The scatter plot is colored according to the
dataset of origin: ST (blue),DU (hs = 1) (orange),DU (hs =
0) (green) and DT (red)

model and condition monitoring data, outperforms pure data-
driven deep learning methods in fault detection and isolation,
particularly for systems with a high variability of operating
conditions.

Standard residual-based approaches (i.e. using δXs ) and hy-
brid approaches based on calibrated model variables (i.e us-
ing [X̂s, X̂v, θ̂]) led to similar fault detection performance.
The analysis of the encoded representations showed that their
excellent detection performance is rooted in the same con-
cept. Both latent spaces provide a clear discrimination be-
tween healthy and faulty operating conditions; which simpli-
fies the fault detection task. This result implies that an accu-
rate model calibration is not relevant to obtain good detection
performance as long as the system degradation or fault sig-
nature is encoded in model inferred variables (i.e. θ̂, δXs or
both).

However, accurate fault isolation (overcoming the smearing
effect) is only possible when model tuning parameters θ̂ are
considered. Hence, the proposed hybrid approach based on
calibrated inputs provides clear benefits for the fault isola-
tion task. However, it should be noted that this approach
introduces an additional pre-processing step. Also, the per-
formance of this approach depends on the calibration capa-
bilities and it is expected that if the calibrated model fails to
reproduce closely the reality, the capability to clearly isolate
failures will decrease.

Residual based and calibration based frameworks are not mu-
tually exclusive and therefore a third option is to combine
them. In this case, in addition to a pre-processing calibra-
tion step, the residuals δXs to a healthy system state are also

Figure 16. Pairwise scatter plot the first two components of
the latent space z of the data-driven AE with X = [W,Xs].
The scatter plot is colored according to the dataset of origin:
ST (blue), DU (hs = 1) (orange), DU (hs = 0) (green) and
DT (red)

computed. Hence, the input to the deep-learning diagnostics
model would comprise [w, X̂s, X̂v, θ̂, δXs ].

8. CONCLUSIONS

In this paper, we proposed a hybrid fault diagnosis framework
combing the physical performance models with deep learning
algorithms.

The performance of the proposed framework was evaluated
on a synthetic dataset generated with the Commercial Modu-
lar Aero-Propulsion System Simulation (C-MAPSS) dynam-
ical model. The C-MAPSS dataset D00 provides simulated
condition monitoring data of an advanced gas turbine during
real flight conditions under healthy and four faulty operative
condition.

The proposed framework and method was able to outperform
purely data-driven deep learning algorithms and the tradi-
tional OC-SVM model for fault detection (providing a perfect
detection accuracy) and for fault isolation (being able to pre-
cisely isolate the root cause of the originating fault). The pro-
posed methodology is able to overcome the smearing that is
commonly observed in purely data-driven approaches where
all the affected signals and not the root cause are isolated by
the algorithms.

More importantly, we showed that the advantages of hybrid
models are particularly relevant for complex datasets with
a large variability in the operating conditions. Under these
conditions, purely data-driven deep-learning approaches de-
rived from condition monitoring data fail to obtain a robust
diagnostic model. However, for systems with more homoge-
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Figure 17. Pairwise scatter plot the first two components of
the latent space z of the hybrid delta AE model with X =
[W, δXs ]. The scatter plot is colored according to the dataset
of origin: ST (blue), DU (hs = 1) (orange), DU (hs = 0)
(green) and DT (red)

neous operating conditions, we expect a similar performance
between the hybrid and the data-driven approaches for fault
detection tasks.

A feature learning analysis indicates that the excellent detec-
tion results obtained with hybrid methods are rooted in the
fact that the latent space z provides a representation of the
input signals that is clearly informative about the true label
class.

As demonstrated in the experiments, accurate isolation results
are obtained when the calibrated system model has a good
representation of the fault modes. However, the analysis of
fault modes that are not represented in the system model is of
interest for practical applications. In this situation, it could be
expected that the calibrated model fails to reproduce closely
the reality and the capability to isolate faults will decrease.
The situation can be mitigated by considering residuals be-
tween measurements and the estimated model responses or
incorporating these residuals in the calibration process. The
analysis of these possible scenarios and the verification of the
real potential of the proposed solution in a more realistic set-
ting is subject of further research.
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NOMENCLATURE

HPC high-pressure compressor
HPT high-pressure turbine
LPC Low-pressure compressor
LPT Low-pressure turbine
N1 Physical core speed
N2 Physical fan speed
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Figure 18. Simplified diagram of the turbo fan engine model
in C-MAPSS with Fan, Combustor, High-pressure compres-
sor (HPC); high-pressure turbine (HPT); Low-pressure com-
pressor (LPC); Low-pressure turbine (LPT); Physical core
speed (N1), Physical fan speed (N2) and the Nozzle

9. APPENDIX I: NEURAL NETWORK OVERVIEW

In this section, we briefly introduce the selected discrimina-
tive and generative neural networks considered in our exper-
iments. We focus first on discriminative models that try to
learn p(hs|x) directly. In other words, algorithms that try to
learn direct mappings from the space of inputs X or z to a
label class (i.e. T). In this group we introduce deep feed-
forward networks (FF), vanilla autonecoders (AE) and hier-
archical extreme learning machines (HELM). Finally, we will
focus on generative algorithms that instead try to model the
underlying distribution of the data P (X) and show how these
models can be combined with discriminative models to per-
form diagnostics tasks. In particular we introduce variational
autoencoders (VAE).

9.1. Discriminative models

Feed-forward neural network (FF). A deep feed-forward
(FF) neural network with L layers is a directed acyclic graph
that implements a map F : Rn 7 −→ Rm

L

with the following
structure:

F = FL ◦ FL−1 ◦ . . . ◦ F 1 (13)

F l = σl ◦ F l (14)

F
l
(x) = W lx+ bl ∈ Rm

l

(15)

Hence, a feed-forward neural network represents a family of
functions FH parameterized by parametersH = {W l, bl}Ll=1

(i.e. weight matrices W l and biases bl for each layer). σl
denotes non-linear activation functions (e.g. tanh, ReLu, etc)
and F

l
denotes linear pre-activations. The number of neu-

rons in each layer is given by ml. We find the most ap-
propriate function (FH) with the backpropagation algorithm
(LeCun, Bottou, Orr, & Müller, 2012) given a training set
ST = {x(i), y(i)}Ni=1 of N input-output pairs.

The empirical risk on the training set ST is generally selected
as optimisation metric for generation of discriminative mod-
els. The empirical risk minimizer is defined as:

FĤ(ST ) = arg min
H

J(FH(x);ST ) (16)

where Ĥ corresponds to the optimal weights and bias of the
neural network F and J(F ;ST ) denotes the training risk of
F on the training sample ST

J(F ;ST ) =
1

N

N∑
i=1

`(y(i), F (x(i))) (17)

`(y, F (x)) =
1

2
||y − F (x)||22 (18)

and the output target label y corresponds to: y = T for the
one-class network.

Autonencoders (AE). An autoencoder is any neural network
that aims to learn the identity map (i.e. it is trained to re-
construct its own input). Therefore, it is a special case of
the previous networks consisting of two parts with symmetric
topology: an encoder (E) and a decoder (D). The encoder
provides an alternative representation of the input (x) that we
denote as z and the decoder reconstructs back the input (i.e.
x) as closely as possible from its encoded representation z.
The resulting mapping corresponds to the following structure:

F = D ◦ E (19)

E = F lz ◦ . . . ◦ F 1 : Rn −→ Rd, x −→ z : xl (20)

D = FL ◦ . . . ◦ F lz+1 : Rd −→ Rn, z −→ x (21)

where the layer lz is generally a bottleneck (i.e. d < n)
and therefore z is a compressed representation of the input.
Autoencoders can lean powerful non-linear generalization of
principal component analysis (PCA).

The loss function of autoencoders is

`(x, x) =
1

2
||x− F (x)||22 (22)

Hierarchical Extreme Learning Machines (HELM). Hi-
erarchical Extreme Learning Machines are another popular
neural network class for diagnostics task. Several researches
have shown that it outperforms traditional machine learning
method such us PCA and SVM in diagnostics task (Michau,
Hu, et al., 2017). HELM networks share similarities to three
methods described earlier but with different topology and train-
ing method. As in deep RNN and FF networks, a HELM of L
layers has a hierarchy representations levels at each layer (i.e.
sl. This hierarchical hidden state sl that evolves as a function
of the previous state sl−1 defining a directed acyclic graph.
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However, in this case it evolves as a linear transformation.

sl = Gl(sl−1, βl) ∈ R ml (23)

Gl(sl−1, βl) = sl−1βl
T

l = 1, . . . , L− 1 (24)

with s0 := x

The output of a HELM network is connected to the state of
the last hidden layer sL−1 as follows:

F = FLβL (25)

FL = σL ◦ FL (26)

F
L

= WLsL−1 + bL (27)

sL−1 = GL−1 ◦ . . . ◦G1(x) (28)

Contrarily to previous networks the parametersH = {W l, bl}Ll=1

(i.e. weight matricesW l and biases bl for each layer) are ran-
dom and are not optimised. Therefore, they provide an al-
ternative (random) representation of the state sl−1 (i.e. F l)
given weights {W l, bl} and the non-linear transformation σl.
The weight matrix βl are optimised layer wise to reconstruct
the state sl−1 from this random projection. Therefore, the
loss function of β resembles the auto encoder loss. However,
typical regularization schemes are required correspond to the
Maximum at Posterior (MAP)

βl = arg min
βl

λ||βl||1+||F lβl − sl−1||22 (29)

F l = σl ◦ F l (30)

F
l

= W lsl−1 + bl (31)

with sL := y

HELM are typically referred as autoencoder network due to
the training process of the network, where the weight matrix
β is obtain from solving an autoencoder network for each of
the hidden layers of HElM.

9.2. Generative models

Contrarily to the discriminate models that try to learn p(hs|x)
directly, generative algorithms model the underlying distribu-
tion of the data p(x). Concretely, generative latent models
assume that an observed variable x is generated by some ran-
dom process involving an unobserved random (i.e. latent)
variable z (Sarkar, Bali, & Ghosh, 2018). Hence, latent mod-
els define a joint distribution p(x, z) = p(x|z)p(z) between
a feature space z, and the input space x (S. Zhao, Song, &
Ermon, 2019). Hence, the underling generation process re-
sort to two steps: 1) a value z(i) is generated from some prior
distribution p(z) and 2) a value x(i) is generated from some
conditional distribution p(x|z). Hence, the data generation
process is modeled with a complex conditional distribution
pθ(x|z), which is often parameterized with a neural network.

There are two big families of generative models: generative
adversarial networks (GANs) and Variational Autoencodes
(VAEs). Our proposed method is based on VAEs that we ex-
plained in the following.

Variational Autoencoder (VAE). Variational autoencoders
(Kingma & Welling, 2014) aim to sample values of z that
are likely to have produced x and compute p(x) from those
(Doersch, 2016). As in the case of the standard vanilla au-
tonecodes, VAE models comprise of an inference network (or
encoder) and a generative network (or decoder). Contrarily to
previews models, the latent representation z of the data x is
a stochastic variable. Therefore, the encoder and the decoder
networks are probabilistic. The inference network qφ(z|x),
parametrizes the intractable posterior p(z|x) and the genera-
tive network pθ(x|z) parametrizes the likelihood p(x|z) with
parameters θ and φ respectively. These parameters are the
weights and biases of the neural network. A simple prior dis-
tribution p(z) over the features is generally assumed (such us
Gaussian or uniform).

The natural training objective of a generative model is to max-
imize the marginal likelihood of the data

Ep(x)[log pθ(x)] = Ep(x)[Ep(z)[log pθ(x|z)] (32)

However, direct optimization of the likelihood is intractable
since pθ(x) =

∫
z
pθ(x|z)p(z)dz requires integration (S. Zhao

et al., 2019). Therefore, VAE consider the an approximation
to the marginal likelihood denoted Evidence Lower BOund
or ELBO; which is a lower bound to the log likelihood

LELBO = Ep(x)[Eqφ(x|z)[log pθ(x|z)]−DKL(qφ(z|x)||p(z))]
(33)

≤ Ep(x)[log pθ(x)] (34)

where DKL denotes the Kullback-Leibler. Hence, the train-
ing objective of VAE is to optimize the lower bound with re-
spect to the variational parameters φ and the generative pa-
rameters θ

max
φ,θ

Ep(x)[Eqφ(x|z)[log pθ(x|z)]−DKL(qφ(z|x)||p(z))]

(35)

The ELBO objective can be viewed as the sum of two compo-
nents. The first term is the expected negative reconstruction
error and it is similar to the training objective of a vanilla
autoencoder. The KL divergence (DKL ≥ 0) is a distance
measure of two probability distributions and acts as a regu-
larizer of φ trying to keep the approximate posterior qφ(z|x)
close to the prior p(z).

Under certain hypothesis on the distribution families the KL
divergence can be integrated analytically and therefore only
the expected reconstruction error requires estimation by sam-
pling. Therefore, direct optimization of LELBO with the back-
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propagation algorithm requires a good estimate of the gra-
dient of the expectation ∇φEqφ(x|z)[log pφ(x|z)]. However,
naive Monte Carlo estimators exhibit very large variances and
are therefore impractical. To find a low-variance gradient es-
timator a reparametrization of z with a differentiable trans-
formation z = g(ε, x) of an auxiliary noise variable ε is in-
troduced (Kingma & Welling, 2014). The function g(x, ε) is
generally chosen that maps an input datapoint x(i) and noise
vector ε to a sample from the approximate posterior. The sam-
pled z(i) is then input to the function log pθ(x|z) providing
probability mass of a data point under the generative model
pθ. Figure 19 shows the resulting network architecture. As a

Figure 19. Variational autoencoder network

be computed analytically

−DKL(qφ(z|x)||p(z)) =

d∑
j=1

(1− log(σ
(i)
j )2 − (µ

(i)
j )2 − (σ

(i)
j )2) (37)

default assumption in VAE, the variational approximate pos-
terior qφ(z|x) follows a mutivariate Gaussian with diagonal
covariance (i.e qφ(z|x) = N (z;µ, σ2I)). This assumption
arises from the hypothesis that the true but intractable poste-
rior pθ(z|x) takes also the shape of an approximate Gaussian
form with diagonal covariance. The distributions parameters
of the approximate posterior µ and log σ2 are the non-linear
embedding of the input x provided by the encoder network
with variational parameters φ. Hence, the encoder output is
a paramentrization of a approximate posterior distributions.
Under these assumptions a valid local reparametrization of
z that allows to sample from the assumed Gaussian approxi-
mate posterior (i.e. z(i) ∼ qφ(z|x(i))) is

z(i) = µ(i) + σ(i) � ε (36)

with ε ∼ N (0, I).

Since in this model we assume that both pθ(z) and qφ(z|x)
are Gaussian distribution and therefore the DKL(qφ(z|x) can
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