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ABSTRACT

We propose a novel Recurrent Neural Network (RNN) based
autoencoder for embedding the run-to-failure time series sen-
sor data in a 2D feature space. The embedding, extracted
from the network, is in the form of a smooth trajectory, which
represents the temporal evolution of data from healthy to fail-
ure states, hence the name TrajecNets. The visualizable 2D
trajectory can be used directly for highly intuitive and inter-
pretable health monitoring, which can in turn be used for Re-
maining Useful Life (RUL) estimation task, without compro-
mising the performance. We also propose a novel unsuper-
vised failure prediction methodology which uses the 2D tra-
jectories and health curve of the time series to compute evolv-
ing failure mode probabilities. Together, the visualizable 2D
trajectories and the interpretable failure mode probabilities,
health curve and RUL are envisaged to provide system and
maintenance engineers, insight into failure dynamics. Experi-
ments on NASA CMAPSS Turbofan benchmark dataset show
promising results on degradation tracking, health monitoring,
failure prediction and RUL estimation tasks.

1. INTRODUCTION

Prognostics for complex systems and components, such as
those in an aircraft, has attracted significant interest of indus-
trial and academic research community in the last few years.
In the industrial field, a widely accepted definition of ‘prog-
nostics’ is the ability to predict the Remaining Useful Life
(RUL) of a component after a fault has occurred (Aizpurua
& Catterson, 2015). While significant importance has been
given in the academic research to improve the RUL estimates
with complex algorithms, little effort is being done to ex-
plain these algorithms in terms of how or why they achieve
a certain level of performance. This is in contrast to the
future industrial requirement of interpretable safety critical
PHM system (Elattar, Elminir, & Riad, 2016). Satisfying the
aforementioned definition of prognostics, most PHM litera-
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ture focuses on estimating RUL via physics-based or data-
driven approaches. Our focus in this work is on data-driven
approaches.

Data-driven approaches perform RUL prediction from the
operational run-to-failure raw time series data, collected from
the sensors mounted on the component or system under con-
sideration. There are two types of data-driven approaches in
the literature; direct and indirect.

The direct approach relies on training a neural network to
learn the RUL directly from the run-to-failure time series data.
Many methods which use Bidirectional Long-Short Term Mem-
ory Networks (Bi-LSTM) (A. Zhang et al., 2018), (J. Wang,
Wen, Yang, & Liu, 2018), a combination of Convolutional
Neural Network (CNN) and LSTM (Li, Li, & He, 2019) or
a Deep Belief Network (DBN) (C. Zhang, Pin, K. Qin, &
Chen Tan, 2016) have been proposed in this context. These
methods have superior performance but are uninterpretable
due to the direct mapping of the time series to a life estimate.
Furthermore, many of the aforementioned approaches use a
piecewise linear function of RUL for each time series to train
the deep network. It is not possible to define this function for
a broad range of systems and application scenarios.

The indirect approach first maps the time series data into a
one-dimensional health index HI or health curve (ranging
from 1 to 0), which decreases monotonically and proportion-
ally to the time series degradation (Mosallam, Medjaher, &
Zerhouni, 2016), (Ramasso, 2014), (Mosallam, Medjaher, &
Zerhouni, 2015). This task is also known as health monitor-
ing. Similar to the direct approaches, deep learning methods
such as Restricted Boltzmann Machines, DBNs and CNNs
have been used very frequently (Zhao et al., 2019), (Akintayo,
Lore, Sarkar, & Sarkar, 2016), (Reddy, Venugopalan, & Gier-
ing, 2016) for health monitoring purpose. More recently RNN
based approaches have become even more popular (Zhao,
Wang, Yan, & Mao, 2016), (Zhao, Yan, Wang, & Mao, 2017),
(Wu, Yuan, Dong, Lin, & Liu, 2018), (Ellefsen, Bjørlykhaug,
Æsøy, Ushakov, & Zhang, 2019) for monitoring health degra-
dation. In particular, (Malhotra et al., 2016) and (Gugulothu
et al., 2017) propose to learn health index from the time se-
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Figure 1. The proposed TrajecNets based PHM pipeline

ries reconstruction error computed with an autoencoder or
distance from healthy embedding in low dimensional space.
Once the health index is computed, RUL is estimated as a
weighted average of RULs of matching HI curves (T. Wang,
2010) of all the time series in the training dataset.

In this paper, we are interested in the indirect approaches,
which estimate RUL via health monitoring. Such approaches
are easy to interpret and do not require the specification of
piecewise linear function of RUL or other thresholds which
cannot be estimated without apriori knowledge on the data
domain.

Gaps in the state of the art health monitoring approaches:
Although the one-dimensional health curve is very commonly
used for health degradation monitoring and RUL estimation,
it provides very limited information about the complex dy-
namics of the degradation, such as the connection between
different failure modes. Therefore, the health curve can only
be used to quantify the component degradation without pro-
viding any further insight into the complex failure dynamics.

Our proposal: Due to the mere quantitative nature of the
health curve and as that deep neural networks are capable of
extracting information richer than just one dimensional health
curve, we believe that there is a need for an intermediate
block in the health analysis and RUL computation pipeline.
This block should be capable of summarizing the neural net-
work model information in a low-dimensional space, which
can be leveraged for maintenance decision making. Moti-
vated by the fact that the notion of interpretability in prog-
nostics is strongly connected to visualization (Phillips, 2012),
we propose this intermediate block to be a visualization of
degradation of raw time series from healthy to failure classes,
in the form of a smooth trajectory in a 2D space. We propose
to extract this trajectory from the time series data via a set of
novel RNN autoencoder architectures, viz., TrajecNets.

1.1. Contributions

Following are the main technical contributions of our work,
which is summarized in Figure 1.

1. A novel RNN autoencoder architecture, TrajecNets, which
embeds the operational run-to-failure time series data in
a 2D metric space in the form of a smooth trajectory,
capturing the evolution of system from healthy to failure
state.

2. A novel and interpretable health index computation method
from 2D trajectories, which is a fusion of “local-health”,
i.e., the health of the system (e.g., engines) with respect
to its nascence and “global-health” - health with respect
to other similar systems.

3. An unsupervised methodology to compute failure proba-
bility using the aforementioned health index.

4. A fusion of local and global health curve matching strate-
gies for RUL estimation by using a more informative dis-
tance metric.

1.2. Overview of TrajecNets

The basic unit of TrajecNets is a stacked RNN (Figure 2),
which gradually reduces the dimension to 2D (last layer) and
ensures temporal smoothness of 2D time series trajectory (for
details c.f., Section 3). The default architecture of TrajecNets
is that of an AutoEncoder (TrajecNets-AE), where both en-
coder and decoder are stacked RNNs. The autoencoder can
be configured to a Supervised setting (TrajecNets-Super) -
when the failure labels are available, or a Siamese Network
(TrajecNets-Siamese) when the number of samples per fail-
ure class is small. Irrespective of the network configuration,
the health index computation and RUL estimation methods
remain same.
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Figure 2. The base unit of TrajecNets is a stacked RNN of d
layers with gradually reducing number of hidden units in each
subsequent layer. We avoid skip and inter-layer connections.

1.3. Advantages of the Proposed Approach

Previous efforts to incorporate visualization into prognostics
(Zhao et al., 2017), have been mostly limited to the use of
2D t-SNE (Maaten & Hinton, 2008). However, a 2D t-SNE
does not define a metric space as it is trained separately on the
output of a neural network (NN). For this reason it can only
be used as a visualization tool. In our case, the 2D trajectory
is learned in an end-to-end network from the raw time series.
Hence, there is a one-to-one mapping between time series and
the learned visualization. Thus, unlike other state-of-the-art
models, our visualization space is also the inference space.
This results in a major advantage of the proposed framework,
i.e., the failure prediction, health curve computation and as
well as RUL estimation can be done directly from the 2D
visualizable trajectory. Hence, these computations become
much more simpler and interpretable than the ones done on a
high dimensional time series.

Interestingly, we show in Section 8.4 that even with the sim-
plification of the health computation process, our method per-
forms comparable to the state-of-the-art methods which use
health curves for RUL estimation. This implies that the health
curve computed using our method is as informative as the one
computed directly from the high dimensional time series. The
emphasis, therefore, is not only on the visualization, but also
on a plethora of intuitive inference algorithms that become
realizable due to the 2D mapping, without compromising the
RUL estimation performance.

2. PROBLEM STATEMENT

Consider a set of multivariate time series samples Xi ∈ <Ti×k,
∀i ∈ {0, · · · , N −1}, where N is the total number of aircraft
systems (e.g., engines) belonging to a fleet of aircrafts, thus
the total number of samples available for training the model.

Each Xi is a matrix that represents the sensor data collected
from k sensors of the ith aircraft system at multiple time in-
stants {t0, t1, · · · , tTi

} , such that:

Xi =


xi0t0 xi0t1 · · · xi0tTi

xi1t0 xi1t1 · · · xi1tTi

...
. . .

...
xikt0 xikt1 · · · xiktTi


>

∈ <Ti×k,

where ximtj is the scalar corresponding to the mth sensor
reading at the time stamp or cycle number tj of the ith system
and Ti is the length of each Xi. Note that Ti can vary signifi-
cantly across the samples Xi. Different aircraft systems may
operate under different schedules, therefore, the timelines of
a pair of aircraft systems (i, î) may be completely disjoint.
For this reason tj does not refer to an actual timestamp, but
to a cycle number. To simplify the notation we use tj = t,
where t is an integer representing the cycle number and Ti is
the last cycle number of the system. Thus, t ∈ {0, · · · , Ti}
. Each row xit in Xi corresponds to a snapshot of k sensors
at the tth flight of the ith aircraft. All the important notations
and acronyms used in this work are defined in Table 1 and
Table 2.

To this end, we assume, without a loss of generality (Saxena,
Goebel, Simon, & Eklund, 2008) that each time series Xi

starts healthy, develops a fault at some unknown cycle t and
then degrades to one of the F failures types represented by
the F -dimensional categorical variable yi ∈ {0, 1}F . The
failure class yi is assumed to be unknown for each of the
training time series Xi.

Our goal in this paper is to address the following: a) Failure
evolution analysis in 2D space in Section 3, b) Health index
computation in Section 4, c) Failure prediction in Section 5
and d) RUL estimation in Section 6. In the following sec-
tions, we study each of these and propose the corresponding
methodologies.

3. TRAJECNETS: FAILURE EVOLUTION ANALYSIS IN
2D SPACE

Our goal is to transform each Xi ∈ <Ti×k into a 2D trajec-
tory Zi ∈ <Ti×2, such that Zi represents a smooth evolution
of the time series from healthy to failure class in a 2D fea-
ture space. More formally, we want to learn a transformation
Zi = F̄ (Xi). We choose to learn F̄ via stacked-RNNs (Fig-
ure 2), i.e., a sequence of d RNNs, stacked on the top of each
other. We use l to index the lth RNN layer and ql

t to represent
the lth layer hidden unit at time t.

3.1. Key characteristics of TrajecNets

There are three key characteristics of the proposed TrajecNets
architecture:
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Figure 3. TrajecNets-AE: The default autoencoder architecture of TrajecNets.

notation description
Ti number of cycles of ith system
k number of sensors under monitoring
N total number of systems / samples for training

Xi ∈ <Ti×k run-to-failure time series matrix of ith system
t ∈ {0, · · · , Ti} integer representing the cycle number

xit ∈ <k tth temporal sample / row of Xi

F total number of failure modes
yi ∈ {0, 1}F categorical failure label vector for ith system
Zi ∈ <Ti×2 2D trajectory matrix for the time series Xi

zit ∈ <2 2D embedding of xit ∈ <k

zi(t−w) 2D embedding at the t− w time instant
Zi(t−w:t) 2D embedding matrix of t− w time instants

F̄ function representation for stacked RNN
d number of layers in stacked RNN
ql
it tth hidden unit at the lth layer of stacked RNN
|ql

it| size of ql
it

Ql
i matrix of all temporal hidden units at lth layer

Wl,Ul,bl weights of the lth RNN layer in encoder
V weight matrix of 2D time distributed dense layer

Ŵl, Ûl, b̂l weights of the lth RNN layer in decoder
hi ∈ [0, 1]Ti health curve for Xi

hit the scalar health at the tth temporal sample xit

hLi ∈ [0, 1]Ti local health curve of Xi

hGi ∈ [0, 1]Ti global health curve of Xi

dLi ∈ <Ti distances of zit from zi0
Zhealthy set of the first points zi0 of all trajectories
KNN(., .) function to select knn nearest neighbors

from Zhealthy

dGi ∈ <Ti mean distances of zit from KNN(Zhealthy, zit)
dLmini, σLi local normalization constants for health hLi

dGmini, σGi global normalization constants for health hGi

ŷi failure labels estimated by Kmeans
Pi ∈ [0, 1]Ti×(F+1) failure probability matrix of Xi

pit ∈ [0, 1]F+1 failure probability vector of xit

pit[j] jth element / failure probability of pit

M number of cycles prior to failure
r̄i RUL of system i, via global health curve

matching approach
r̂i RUL of system i, via local health curve

matching approach
ri fused RUL of the ith system

Table 1. Table of notations. We refer to the ith aircraft system
or engine as ith system.

Acronym Full name
PHM Prognostics and Health Management
2D 2 dimensional

RUL Remaining Useful Life
CNN Convolutional Neural Network

LSTM Long Short Term Memory Network
Bi-LSTM Bidirectional Long Short Term Memory Network

DBN Deep Belief Network
RNN Recurrent neural Network
MLP Multilayer Perceptron

HI Health Index
KNN K-nearest neighbors
AE Auto-Encoder

RBF Radial Basis Function
DTW Dynamic Time Warping
MSE Mean Squared Error
MAE Mean Average Error
FPR False Positive Rate
FNR False Negative Rate

Table 2. Table of Acronyms.

1. Autoencoder structure: The default configuration of
TrajectNets is that of an autoencoder where both the en-
coder and decoder are stacked-RNNs. This is essential as
the trajectories are extracted by reducing the dimension-
ality of the time series gradually along the subsequent
encoder layers until the bottleneck layer, hence the name
TrajecNets.

2. Inter-layer ladder structure: The number of hidden
units decrease gradually in the subsequent recurrent lay-
ers, i.e., |ql−1

t | > |ql
t|, ∀l ∈ {0, · · · , d− 1}.

3. Projection in 2D space: The final RNN layer is fol-
lowed by a time distributed dense layer which projects
the output of last RNN to 2D space. The 2D degradation
trajectory Zi is obtained from this layer. A keen reader
might argue that projecting a complex time series to a 2
dimensional space can result in the loss of information in
time series. We point out that TrajecNets embed every k-
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dimensional temporal sample xit ∈ <k of Xi ∈ <Ti×k

into 2D space rather than the whole time series. In other
words, to reconstruct a time series Xi ∈ <Ti×k, one
needs the full trajectory Zi ∈ <Ti×k, instead of the just
the last trajectory point ziTi

∈ <2.

3.1.1. Comparison with other recurrent networks

Note that the proposed stacked RNN (Figure 2) is different
from the state-of-the-art deep or stacked RNNs. As compared
to the architectures proposed in (Hermans & Schrauwen, 2013),
TrajecNets: a) gradually reduce the dimension (number of
hidden units) along the depth of stacked RNN to provide 2D
trajectories from the last layer and b) optionally avoid skip
connections. As compared to the Gated Feedback RNNs (Chung,
Gulcehre, Cho, & Bengio, 2015) and Recurrent Ladder Net-
works (Ilin et al., 2017), TrajecNets does not share connec-
tions between hidden units from different layers.

Gradual dimension reduction: A typical sequence-to- se-
quence autoencoder consists of only one RNN layer in the
encoder and decoder. Thus, it embeds a k dimensional se-
quence directly to a lower dimensional space. The embed-
ding is typically extracted from the last temporal hidden unit
of RNN. On the contrary, our network consists of multiple
stacked layers of RNN in the encoder and decoder. This par-
ticular architecture is essential for our setting because we ex-
tract the entire temporal trajectory of the time series instead
of just the final temporal embedding such that the temporal
degradation signature is dominant over high frequency noise
in the time series. In other words, our aim is to extract glob-
ally smooth features from the time series instead of the lo-
cal features (dominated by noise). State-of-the-art neural net-
works, such as CNNs (LeCun, Bengio, & Hinton, 2015), en-
sure this property with a deep network that reduces the size
of spatial features gradually along the depth. In our case the
depth corresponds to the various RNN layers stacked on the
top of each other, with reducing number of hidden units. The
smoothness in 2D space is ensured by the horizontal and ver-
tical flow of gradients during backpropagation.

Absence of skip and intra-layer connections The purpose
of skip connections in a typical deep neural network is to
(He, Zhang, Ren, & Sun, 2016) (Szegedy, Ioffe, Vanhoucke,
& Alemi, 2017) propagate information from earlier layers of
the network to the later layers to help in the convergence. In
an autoencoder, such connections between similar layers in
the encoder and decoder ensure the reconstruction property.
However, we avoid such connections because we did not en-
counter any convergence or reconstruction issues during the
training of our network. Depending on k and the depth of the
network, such connections might be needed.

3.2. TrajecNets-AE: The Autoencoder

The default configuration of TrajecNets is TrajecNets-AE (Fig-
ure 3), an autoencoder built from stacked RNN of Figure 2.
In the encoder part, the stacked-RNN has d layers, where lth

layer has a recurrent weight matrix Wl, bias bl and the inter-
layer weight matrix Ul between layers l − 1 and l. The en-
coder takes as input the time series Xi ∈ <Ti×k and trans-
forms it first into a |qd−1| dimensional embedding Qd−1

i ∈
<Ti×|qd−1| extracted from the last layer of stacked-RNN. The
output of the tth hidden unit at the lth stacked-RNN layer
ql
it ∈ Ql

i is given as:

ql
it = tanh (Wlql

it−1 + Ulql−1
it + bl),

where ql−1
it = xit for l = 0, i.e., the input layer. This embed-

ding is then transformed into a 2D trajectory Zi ∈ <Ti×k via
the 2D time distributed dense layer at the bottleneck of the
autoencoder. Each zit ∈ Zi is given as zit = Vqd−1

it , where
V is the weight matrix of the 2D time distributed dense layer.

The decoder then reconstructs the time series Xi from the
trajectories Zi by gradually increasing the dimension via d
stacked RNNs, where each layer has a recurrent weight ma-
trix Ŵl, bias b̂l and the inter-layer weight matrix Ûl. The
reconstructed time series X̂i is extracted from the time dis-
tributed dense layer of k units. The autoencoder is only trained
using mean squared error between actual time series Xi and
reconstructed time series X̂i, as the loss function, i.e.,

LAE =

N∑
i=0

Ti∑
t=0

‖xit − x̂it‖22.

For a test time series Xtesti of the ith aircraft system, one
only needs the encoder F̄ to compute the 2D trajectory, i.e.,
Ztesti = F̄ (Xtesti).

3.3. Other configurations of TrajecNets

Depending on the availability of failure class labels yi and
the total number of samples available for training each class,
we propose two other architectures: 1) TrajecNets-Siamese:
A siamese network which is built from the autoencoder for
the case of small number of samples N and 2) TrajecNets-
Super: A supervised TrajecNets-AE for the case when fail-
ure class labels yi are available for training. Nevertheless,
the most challenging case is when the failure labels yi are not
available or reliable. Therefore, we focus mainly on the unsu-
pervised setting (TrajecNets-AE) in this paper and briefly dis-
cuss the other two derived architectures for the sake of com-
pleteness. We aim to present detailed results on TrajecNets-
Siamese and TrajecNets-Super in our future work.
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Figure 4. Procedure to compute the distances for local health on the left and global health on the right plot. The local health
is computed from the streaming distances dLit of ẑit from the first trajectory point zi0. Let Zhealthy be the set of all the first
trajectory points zi0 (yellow circles with black borders). The global health is computed from the streaming distances dGit of
ẑit from the mean of knn-nearest neighbors in the Zhealthy set.

4. HEALTH COMPUTATION: TRAJECTORIES TO HEALTH

Given the trajectories Zi for time series Xi, the next goal is to
compute a health curve hi ∈ [0, 1]Ti , indicative of the degra-
dation in the time series. We propose to use a fusion of “lo-
cal health”, which is the health of the aircraft system w.r.t its
nascence and “global health” which is the health w.r.t to other
systems. The global health takes into account the initial wear
of the system w.r.t the most healthy ones. In both cases, the
health is computed from the 2D trajectories directly, instead
of the raw time series.

In an online test setting, it is important to make predictions
for evolving time series. Thus, for every new temporal sam-
ple xit ∈ <k in the time series Xi, our framework first up-
dates the trajectory zit ∈ <2 and then computes the scalar
health hit ∈ [0, 1]. Ideally, the health should drop to zero
when the system fails in future. This requires appropriate nor-
malization of health index hit, especially if a distance based
approach is adopted. Therefore, we learn the appropriate nor-
malization constants during the training stage.

4.1. Training Stage for Health Computation

4.1.1. Step 1: Local Health Computation

For a complete trajectory Zi ∈ <Ti×2 of time series Xi ∈
<Ti×k, the local health curve hLi ∈ [0, 1]Ti , where L in
subscript represents ‘local’, is computed as a distance of the
evolving trajectory zit ∈ <2 from the first trajectory point
zi0. In order to avoid the effect of noise in the trajectory, we
use

ẑit = mean([zi(t−w), zi(t−w+1), · · · , zit]),

i.e., the mean of 2D embedding in a causal window of size w.

Local distances: Let

dLi = [dLi0, dLi1, · · · , diTi
]

be a vector of Euclidean distances computed such that:

dLit = ‖ẑit − zi0‖2,

i.e., dLi is the set of distances of tth trajectory point from the
first one ∀ t ∈ {0, · · · , Ti}. Please refer to the left plot in
Figure 4 for a pictorial view of distance calculation.

Local distances to health: The distance vector dLi is con-
verted into a health vector hLi by applying a Radial Basis
Function (RBF) based normalization to each scalar distance
dLit in the vector dLi as following:

hLit = exp
(−(dLit − dLmini)

2

σLi

)
, ∀ t ∈ {0, · · · , Ti},

(1)
where dLmini = mindLi. Let dLmaxi = maxdLi, then σLi

is set as:

σLi = − (dLmaxi − dLmini)
2

2

[ 1

log10 ε
+

1

log10(ε+ δ)

]
.

Normalization with the above σLi ensures that the health at
the start, i.e., for the 0th time instant hLi0 = 1 and at time
of failure hLiTi

∈ [ε, ε + δ], irrespective of the length of the
trajectory. This is important to eliminate the effect of variable
length sequences. In our experiments we use ε = δ = 0.01.
Finally (and optionally) a moving average filter of size n is
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applied to all the curves hLi to eliminate the effect of trajec-
tory noise.

Saving the normalization parameters: It is important to
point out that the normalization parameters dLmini and σLi

are saved for each of the training time series Xi to be used
later for computing the health of a test time series.

4.1.2. Step 2: Global Health Computation

Initial wear and tear in the aircraft system is inherent in na-
ture (Saxena, Goebel, et al., 2008), which cannot be justified
by “local health” only, as all health curves start from 1. In
order to adjust the local health curve hLi for this purpose, we
propose a global health curve hGi computation for each Xi,
whereG represents global. In contrast to local health hLi, the
global health hGi is computed as a function of the distance of
evolving trajectory points zit from the mean of knn-nearest
neighbor healthy trajectory windows.

Nearest neighbor indexing: More formally, let zi0 ∈ <2 be
the first healthy trajectory point for each Xi and let Zhealthy

be the set of all the zi0. First a knn-nearest neighbor indexing
of the set of healthy trajectories points Zhealthy is performed.

Global distances: Then, the global distance dGi is computed
as:

dGit = ‖ẑit −mean(KNN(Zhealthy, ẑit))‖2, (2)

where KNN(., .) is a function that returns the indices of the
knn-nearest neighbors of ẑit from the set of healthy trajectory
points Zhealthy. Please refer to the right plot in Figure 4 for
a pictorial view of distance calculation.

Global distances to health: Global health hGi is then com-
puted by following the same normalization steps as in local
health (see eq. 1). Similarly to the local health, the normal-
ization parameters dGmini and σGi are saved for later use in
the testing stage.

4.1.3. Step 3: Fusion of Local and Global Healths

Finally, the local health hLi and global health hGi are fused
according to one of the following two strategies: hi = hGi ◦
hLi, where ◦ denotes the element wise (Hadamard) product
or hi = hGi0.hLi, where hGi0 is the first point in the health
curve hGi. The first scheme applies an adaptive wear factor
computed in the form of global health hGi to each point in
the local health curve. The second scheme assumes a fixed
initial wear factor hGi0, that is the first point of global health
curve and multiplies it to the entire local health curve.

4.2. Testing Stage for Health Computation

For a new partial test time series Xtesti, first the partial tra-
jectory Ztesti is computed and then local and global healths

are computed by following these steps:

1. Compute the local distances dtestLi using the same pro-
cedure as defined for dLi in step 1 in Section 4.1.

2. For each of the ẑtestit =

mean([ztesti(t−w), ztesti(t−w+1), · · · , ztestit])

retrieve the knn nearest neighbors using the nearest neigh-
bor indexing function KNN(Zhealthy, ẑtestit) and then
retrieve the saved normalization parameters σLj , dLminj

for these nearest neighbors, where j ∈ {0, · · · , knn}.
3. Apply the RBF based normalization for each of the scalar

distances in dtestLi by using

σtestLi = mean(σLj ,∀j ∈ {0, · · · , knn})

dtestLmini = mean(dminj ,∀j ∈ {0, · · · , knn}).
Thus, the test normalization parameters are the mean of
the normalization parameters of knn-nearest neighbors
determined via the pre-computed KNN indexing.

4. Repeat the steps 1 to 3, this time for computing the global
distances dtestGi and global health htestGi.

5. Fuse the local and global healths: htesti = htestGi ◦
htestLi or htesti = htestG0i.htestLi, where htestG0i is
the first point of global health htestGi.

5. UNSUPERVISED FAILURE PREDICTION

Irrespective of the network configuration of TrajecNets, we
propose a generic and unsupervised method to compute evolv-
ing failure probabilities for the trajectories Zi. One can pos-
tulate that this step is redundant for Supervised TrajecNets,
since the supervised networks already provide failure class
probabilities as the classification output. We argue that fail-
ure class probabilities obtained from the supervised networks
correspond to the whole trajectory. Our concern here is not
only to extract one probability for the full trajectory, but to
compute evolving probabilities for every temporal point zit ∈
Zi. Furthermore, the probabilities obtained as an output of
the supervised model correspond to the model trained on hard
labels (binary or categorical). During the test time, using
this probability will result in a sudden evolution of trajectory
probability from healthy to failure. Thus, it cannot be used in
the field for continuous monitoring purpose. Since, the health
hi quantifies the evolution of the trajectory Zi, which in turn
represents the time series degradation at every temporal point,
we propose to use it to compute a failure probability.

5.1. Training Stage for Failure Prediction

Given the health curves hi ∈ [0, 1]Ti , number of failure classes
F and the trajectories Zi ∈ <Ti×2, we propose to train a Mul-
tilayer Perceptron (MLP) that can predict failure probabilities
pit ∈ [0, 1]F+1 for each temporal embedding zit ∈ Zi. The
probability vector is size F + 1, where F is the number of

7
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Figure 5. Training procedure of regression MLP which predicts failure class probabilities from input windowed trajectories.

failure classes and an extra class is assigned for healthy state.
We formulate this problem as a regression, where the input is
a partial trajectory Zi(t−w:t) ∈ <w×2 comprising of the latest
w time instants and the output is pit ∈ [0, 1]F+1. Unfortu-
nately, the failure probabilities pit are not known in advance
for training. Therefore, we propose to extract them for each
Zi from the health curve hi.

5.1.1. Step 1: Probability Generation for Training

As in (Saxena, Goebel, et al., 2008) we assume that all time
series Xi start from a healthy state and degrade to one of the
F failure types. For every Zi ∈ <Ti×2 in the training set, we
first extract the last window of size w, i.e., Zi(t−w:t) ∈ <w×2

and compute the temporal mean ẑit ∈ <2 as a representative
feature of this window. Then, we perform Kmeans cluster-
ing (F clusters) on the features ẑit ∀i ∈ {0, · · · , N − 1}
in the training set. Let ŷi ∈ {0, 1}F be the Kmeans com-
puted label for ẑit. We compute the probability matrix Pi ∈
[0, 1]Ti×(F+1) for the complete timeline {0, · · · , Ti} of the
ith system from the health curve hi as following:

Pi[0 : Ti, 0] = hi,

Pi[0 : Ti, j + 1] = 1− hi if ŷi[j] = 1,

Pi[0 : Ti,m+ 1] = 0 ∀ m 6= j. (3)

The above equation states that we assign hi as a probabil-
ity for healthy class (0th class), i.e., hi is placed in the 0th

column of Pi. Since the categorical labels ŷi represent the
Kmeans result, ŷi[j] = 1 when the Kmeans algorithm as-
signs the jth label (jth failure) to ẑit. Therefore, we assign
1 − hi as the probability of the jth failure class. This corre-
sponds to the (j+1)st column of Pi. All other failure classes
(columns of Pi) are assigned a 0 probability. Note that eq. (3)
defines a valid probability measure for each of the rows pit

of Pi .

5.1.2. Step 2: Training the Regression MLP

Finally we train a regression Multi Layer Perceptron (MLP)
with 2 hidden layers which takes as input the windowed tra-
jectories Zi(t−w:t) ∈ <w×2, flattened to a vector of length
2w and outputs a probability vector pit ∈ [0, 1](F+1). For

training purpose, we use windowed trajectories, which are
generated from the complete life-time of all training trajec-
tories Zi, with a step size of 1. Thus, a sample at a given
time instant is a part of many training windows Zi(t−w:t).
The total number of (Zi(t−w:t),pit) pairs used for training is∑

i(Ti−w). We use relu activation in the hidden layers and a
softmax activation in the output layer. The network is trained
with ’mean-squared-error’ loss function. A summary of this
approach is shown in Figure 5.

5.2. Testing Stage for Failure Prediction

During the test stage, for a partial test sequence Xtesti, the
most recent partial trajectory of size w, i.e., Ztesti(t−w:t) ∈
<w×2 is input into the network and the failure probabilities
pit are obtained.

When is a failure declared? A failure of jth type is declared
at the tth time instance when max(pit[1 : F+1]) > pit[0]. In
simpler words, we declare the failure of type j to be predicted
M cycles before it occurs, whereM = Ti−t and t is the time
cycle number at which the jth class failure probability is the
highest among all failure probabilities and it also exceeds the
healthy class probability pit[0].

5.2.1. Special case: one failure class

In the case, where there is only one failure class, i.e., all
the time series start from healthy and gradually degrade to
only one failure type, the failure probability is univariate and
should evolve from 0 to 1, which essentially reduces the fail-
ure class prediction problem into a failure prediction only. In
this case the regression MLP need not be used. In fact, train-
ing the regression MLP and then using it for failure probabil-
ity prediction is equivalent to setting the failure probability as
pi = 1 − hi. A failure will be predicted in this case when
pit > 0.5 or hit < 0.5. We will cover this case in detail in
the experimental section of this work.

6. RUL ESTIMATION

The training health curves hi computed in Section 4.1 are
used for the estimation of RUL ri for test time series Xtesti.
More formally, the RUL ri for a partial test time series Xtesti
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Figure 6. A summary of the training and testing stages of our proposed framework. The upper part of the figure shows the
training phase and the lower part shows the testing phase.

is defined as the number of cycles ri the system will run be-
fore it reaches the end of its life. Our approach to computing
RUL is a fusion of:

1. State-of-the-art health curve matching approach proposed
in (T. Wang, 2010), where we replace the Euclidean dis-
tance metric with Dynamic Time Warping (DTW) dis-
tance.

2. Our proposed local health curve matching approach based
on DTW distance.

Step 1: Global health curve matching approach: The health
curve matching approach proposed in (T. Wang, 2010) is used
very commonly for RUL estimation, for example in (Malhotra
et al., 2016) and (Gugulothu et al., 2017). For a new test
health curve htesti, this approach computes RUL as a weighted
average of the RULs for all the training time series whose
health curves match the test health curve under different time
lags. Due to space constraints, we do not describe the de-
tails of this approach. Euclidean distance is used to com-
pare different health curves under time lags in this approach.
However, Euclidean distance is not well known to compare
curves, therefore, we propose to replace this with DTW dis-
tance. Let r̂i be the RUL computed using this method. We
call this method as the ‘global matching approach’ because it
takes into account the entire test health curve observed until
the most recent time instant.

Step 2: Local health curve matching approach: Next, we
propose to compute another RUL r̄i by comparing the most
recent windoww of the test health curve htesti(t−w:t) with all
the possible windows of training health curves. We call this as
the ‘local health curve’ matching approach. For this purpose,
first we divide each of the health curves hi in the training set
into smaller curves of length w each using a sliding window
method with a delay of 1 sample. For a given training health
curve hi of length Ti, this results in the generation of Ti − w

smaller health curves hj
i of length w each.

Next, we use DTW distance to compare htesti(t−w:t) with
all the training windows hj

i ,∀j ∈
∑

i(Ti−w). All the RULs
are sorted in the ascending order of their corresponding DTW
distances and then the four step RUL fusion approach pro-
posed in Section III.B of (T. Wang, Yu, Siegel, & Lee, 2008)
is applied for r̄i computation.

Step 3: Fusion of RULs: Finally the RULs r̂i and r̄i com-
puted from the above two steps are fused as ri = min(r̂i, r̄i).

An overall summary of Section 3, in terms of various training
and testing stages of our proposed framework is presented in
Figure 6.

7. EXPERIMENTAL DETAILS

We evaluate our proposed framework on the publicly avail-
able C-MAPSS Turbofan Engine dataset (Saxena, Goebel, et
al., 2008) for the following tasks:

1. failure prediction

(a) correct failure class prediction.
(b) early prediction in terms of the number of cycles

before the end-of-life if the algorithm predicts it.

2. RUL estimation

Since a major emphasis in our proposed framework is on the
visualization of 2D trajectories, we present detailed results on
the visualization of trajectories, health and evolving failure
probabilities. We use Keras library (Chollet et al., 2015) with
Tensorflow backend for implementing TrajecNets.

7.1. Datasets

We use simulated turbofan engine datasets FD001 and FD003
from the NASA repository (Saxena, Goebel, et al., 2008).
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Each dataset comprises of separate train and test sets, where
each sample has time series readings for 26 sensors. Each
engine starts normally, develops a fault at some point and
then degrades to exactly one failure. The location of the fault
is unknown. The samples in FD001 degrade to one failure
only. The samples in FD003 dataset, degrade to one of the
two types of failures. All the temporal samples in each time
series of both datasets belong to only one operating condition.
The train samples are complete in their lifetime, i.e., from the
start of the usage to the end of life, whereas the test samples
are pruned some time prior to the failure. Furthermore, each
engine has a different initial degree of wear which results in
the initial health of each engine to be different from 1. We use
MinMax normalization on each of the sensors in the datasets
FD001 and FD003. We use FD00X-train, where X is the
dataset number to refer to the train set of each dataset and
FD00X-test to represent the test part.

7.2. Train-Test Split

For some of our experiments, as explained in Section 8.3,
we will divide the training sets FD00X-train further into train
and test sets. We refer to these two subsets of FD00X-train as
FD00X-train-train and FD00X-train-test. More specifically,
we split the 100 samples in FD00X-train datasets to 64 train-
ing FD00X-train-train and 36 test samples FD00X-train-test.
It is worth mentioning here that all the proposed models for
all the tasks are trained only on FD00X-train-train. A sum-
mary of all the datasets is given in Table. 3.

7.3. Architectures and Algorithm Parameters

TrajecNets-AE: We train one TrajecNets-AE on each of the
FD00X-train-train datasets using a 2-layer stacked-RNN con-
figuration with 100 and 20 hidden units, tanh activations, a
recurrent dropout of 0.1 with a batch size of 16, for 50 epochs.
We use Adadelta with a gradient clipping norm of 5.0 as an
optimizer with a learning rate of 0.01 and ‘mean squared er-
ror’ as a loss function. The 20 dimensional embedding is then
mapped to 2D trajectory using the bottleneck time distributed
dense layer of size 2 with a linear activation. The embed-
ded trajectory is then decoded to recover the time series. As
mentioned earlier, TrajecNets-AE is trained only via recon-
struction loss on the time series.

Health estimation: For the health estimation method, we use
a window size w = 30, ε = δ = 0.1 and knn = 20 for all the
experiments in this work. The choice of knn was made on
a hit and trial basis. However, any value between 10 and 20
was found equally suitable for health curve computation, as
no significant changes were reflected in the RUL estimation
performance. For the fusion of local and global health, we
use the following scheme hi = hG0i.hLi, which offsets the
entire local health curve with an initial wear factor hG0i.

Unsupervised failure prediction: Our unsupervised failure

prediction relies on training a regression MLP (Section 5)
with two hidden layers. We use the first dense layer of size
50 and the second dense layer of size 20, both with a ‘relu’
activation and a final dense layer to predict probabilities with
a ‘softmax’ activation. We use Adadelta with a gradient clip-
ping norm of 5.0 as an optimizer with a learning rate of 0.01.
The input to this network is flattened windowed trajectories
of size 2w, where w = 30. The network is trained using
‘mean squared error’ as a loss function.

8. RESULTS

In this section we study in detail the different types of exper-
iments for various datasets, the ground truth generation for
the tasks, the evaluation metrics, experimental settings and
detailed results. Throughout this section, we will follow the
flow of our proposed framework in Figure 6 and present the
results in the same order. A summary of experimental eval-
uation on the various datasets is presented in Table 4. Aster-
isk(*) indicates that the results are reported only for the subset
of the data for which the algorithm predicts a failure. We will
explain this in more detail in Section 8.3.2.

8.1. Visualization of Failure Classes & Trajectories

2D failure evolution trajectories for training time series:
Our first goal is to visualize the 2D trajectories Zi learned by
TrajecNets-AE on FD001-train-train and FD003-train-train
datasets. Figure 7 shows the 2D trajectories for all the sam-
ples in these datasets. For each of the two datasets, the 2D
trajectories start from healthy state which is represented by
yellow color and then transition to a failure state gradually,
which is represented by red color. The color transition from
yellow to red also represents the health of the time series from
1 to 0. Note that FD001 has only one failure class and FD003
has two failure classes. The distinction between healthy and
various failure classes is quite clear. It is worth mentioning
here that the TrajecNets-AE has no prior information on the
number of failure classes, nevertheless, it successfully reveals
the class structure in the datasets, due to the autoencoder ar-
chitecture.

2D failure evolution trajectories for test time series: Dur-
ing the testing stage, we extract the 2D trajectories Zi for each
of the test time series in FD00X-train-test and FD00X-test.
As FD00X-train-test is a subset of FD00X-train, the time se-
ries run from the beginning to the end of the life cycle. How-
ever, the ones in FD00X-test are only partial. We visualize a
sample trajectory from FD001-train-test in the top-most plot
of Figure 9 and another one from FD001-test in the second
plot. Each of the two plots consists of 3 subplots, of which
the first one shows the raw time series and the second one
shows the trajectory evolving from healthy (yellow) to failure
state (red), along with the failure probabilities. The yellow
circles with black border represent the healthy points for each
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Dataset default train-test split our train-test split number of samples number of failures operating modes
FD001-train FD001-train-train 64 1 1

FD001 FD001-train-test 36 1 1
FD001-test - 100 1 1
FD003-train FD003-train-train 64 2 1

FD003 FD003-train-test 36 2 1
FD003-test - 100 2 1

Table 3. Details of the turbofan engine dataset used for experiments in this work.

Dataset trajectory failure class failure class failure prediction failure prediction RUL
visualization prediction (training) prediction (testing) (cycles) (training) (cycles) (testing)
(Section 3) (Section 5.1) (Section 5.2) (Section 5.1) (Section 5.2) (Section 6)

FD001-train-train X X - X - -
FD003-train-train X X - X - -
FD001-train-test X - X - X -
FD003-train-test X - X - X -

FD001-test X - - - *X X
FD003-test X - *X - *X X

Table 4. A summary of experimental evaluation on the various datasets. Asterisk(*) indicates that the results are reported only
for the subset of the data for which the algorithm predicts a failure (Section 5.2).

Figure 7. Training trajectories from FD001-train-train dataset on the left and FD003-train-train dataet on the right. The 2D
trajectories start from healthy state which is represented by yellow color (health approximately 1) and then transition to a failure
state gradually, which is represented by red color (health approximately 0). Note that FD001 has only one failure class and
FD003 has two failure classes.
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of the time series in the training dataset and the red points
with black border show the failure state of the training time
series. These points are merely the first and the last tempo-
ral embeddings extracted from the 2D trajectories of training
time series. The third subplot shows the health curve. We will
discuss the extraction of the health curve and the failure prob-
abilities later in this section. Note that the time series in the
second plot belongs to FD001-test, therefore its trajectory is
only partial. Similar visualizations for FD003-train-test and
FD003-test are shown in the bottom two plots in Figure 9.
Here, in the middle subplot, instead of one failure class, it is
possible to see the possible evolution of time series to two
different failure classes.

8.2. Health Curve Estimation

Figure 8. Health curves obtained during the training stage of
health estimation for all the time series in FD001-train-train
and FD003-train-train datasets.

Training health curves: The 2D failure evolution trajecto-
ries learned during the training phase are then fed into the
health estimation framework (Section 4.1). Figure 8 shows
the health curves obtained during the training stage of health
estimation for all the time series in FD001-train-train and
FD003-train-train datasets. All the health curves for FD001-
train-train start from a higher value, very close to 1, and de-
grade gradually to a value close to 0. In contrast to that, the
health curves for a few time series in FD003-train-train start
from a value slightly less than 1. This is primarily due to the
presence of two failure classes and variation in the degrada-
tion behavior of the time series in these two failure classes in
this dataset. Due to this variation, the offset hG0i computed
by the global health estimation method is slightly more than
that for FD001-train-train dataset. Apart from the offset, the
shapes of the health curves reveal absolutely no information
about the two failure classes.

Test health curves: During the testing stage, the test trajec-
tory Ztesti is fed into the testing algorithm of the health curve
estimation (Section 4.2). The health curves for two test time
series from the datasets FD00X-train-test and FD00X-test are
shown in the third subplot of Figure 9. The health curves for
FD00X-train-test, shown in the top plots of each figure, rep-

resent the complete life cycle, whereas, those for FD00X-test,
shown in the bottom plots of the two figures represent incom-
plete life cycles.

8.3. Failure Prediction

After the computation of health curves, the next goal is to
train the regression MLP of Section 5.1 by using the health
curves hi and trajectories Zi of the datasets FD00X-train-
train as input. Then, for a test time series from the datasets
FD00X-train-test or FD00X-test, we predict the failure prob-
abilities and also extract the number of cycles M prior to the
end-of-life when the failure is predicted by the algorithm, us-
ing the procedure specified in Section 5.2.

8.3.1. Experimental Setting for Training Stage

First, note that the dataset FD001-train-train has only one
type of failure. This is the special case discussed in Section
5.2.1. One does not need to follow the training procedure
in Section 5 for this dataset, as the univariate probability can
simply be obtained from the health curve at every time instant
as pit = 1 − hit. For the dataset FD003-train-train, the task
is a multiclass prediction, therefore, we follow the procedure
in Section 5 to train a network for failure class prediction.

8.3.2. Experimental Setting and Challenges of Testing Stage

For the time series in FD001-train-test dataset, which has
only failure class, the probability of failure is set as pit =
1−hit for every time instant t. For the time series in FD003-
train-test dataset, the multivariate failure probability vector
pit ∈ [0, 1]F+1 is obtained from the trained regression MLP
of Section 5.1, where F = 2 is the number of failure classes.

There are several challenges in the evaluation of test results
on failure class prediction:

1. Absence of ground truth failure class labels for FD003-
train-test and FD003-test datasets.

2. Absence of the total number of cycles until the end-of-
life of FD00X-test datasets.

3. During the test phase, the regression MLP will not pre-
dict a failure if sufficient degradation has not occurred in
FD00X-test datasets.

4. The evaluation metrics for failure prediction task need to
be defined.

In the following discussions, we will present our solutions for
each of the above problems in detail.

Ground truth failure class label generation: In order to
generate failure labels for FD003-train-test dataset, we as-
sume that the end-of-life behavior for a type of failure is simi-
lar across the engines and differs from the signatures of other
failure types. Thus, we extract a window of size w = 30
from the raw time series before the end of life of each engine
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and then compute a pairwise Dynamic Time Warping (DTW)
distance matrix of size N × N , where N is the total num-
ber of time series in a dataset. Then, we perform a 2D t-SNE
(Maaten & Hinton, 2008) and assign failure class labels based
on the Kmeans clustering on the t-SNE embedding.

The same approach cannot be used for generating labels from
the actual test set (FD003-test) because of the presence of
only partial time series. Hence, we do not report failure pre-
diction accuracy on the FD003-test dataset.

Ground truth for total life time: For determining the num-
ber of cycles until the end-of-life for the datasets FD00X-test,
we simply add the total length of the partial test time series to
the ground truth RUL available with the data. The total life
time for FD00X-train-test datasets is equal to the length Ti of
the time series Xi.

Evaluation metrics: For FD00X-train-test, the failure class
labels are available, therefore, we use classification accuracy
of the failure type as evaluation metric. In addition to that we
also report the mean and standard deviation of the number of
cycles (the metricM from Section 5.2) prior to the end-of-life
at which the correct failure is predicted.

The datasets FD00X-test contain partial time series and no
failure class labels. The failure prediction algorithm in Sec-
tion 5.2 will only predict a failure for FD001-test if pit > 0.5
or hit < 0.5 for some t ∈ {0, · · · , Ti}. For the FD003-test
a failure will be predicted only if for some t ∈ {0, · · · , Ti},
max(pit[1 : F +1]) > pit[0], i.e., when the maximum of the
failure probabilities exceeds the probability of healthy state.
Therefore, we report the mean and standard deviation of M
for only those time series for which the failure is predicted by
the algorithm.

Dataset total failure accuracy cycles (M )
samples predicted (%)

FD001-train-test 36 36 100% 44 ± 14.2
FD003-train-test 36 36 100% 69 ± 9.1

FD001-test 100 31 - 49.8 ± 17.1
FD003-test 100 24 - 71± 9.4

Table 5. Results for failure prediction in terms of the accuracy
and number of cycles M for different datasets. Both FD001-
train-test and FD003-train-test achieve 100% accuracy in fail-
ure prediction. All the time series in FD001 and FD003 are
correctly identified as progressing towards a failure (correct
class) on average 44 and 69 cycles before the end-of-life. For
the FD001-test and FD003-test datasets, failures were pre-
dicted in 24 and 31 out of 100 time series, on average 49.8
and 71 cycles before the end-of-life.

Quantitative results: Table 5 shows the results for failure
prediction in terms of the accuracy and number of cycles
M for different datasets. Both FD001-train-test and FD003-
train-test achieve 100% accuracy in failure prediction. In the
context of FD001, this means that all the time series were
correctly identified as progressing towards a failure on aver-

age 44 cycles before the end-of-life. In the context of FD003
this implies that all the time series were also identified as pro-
gressing towards the correct failure class on average 69 cycles
before the end-of-life.

As explained earlier, our failure prediction algorithm predicts
a failure when for some t ∈ {0, · · · , Ti}, max(pit[1 : F +
1]) > pit[0], where pit[0] is the probability of the system
being healthy. For many of the time series in FD00X-test
datasets, this condition is not met since these time series do
not show any degradation. Therefore, for the FD001-test and
FD003-test datasets, failures were predicted in 24 and 31 out
of 100 time series, on average 49.8 and 71 cycles before the
end-of-life. Our experiments show that the test time series
for which the failure prediction could not be performed have
a terminal health of atleast greater than 0.75. Moreover, all
these time series have large RUL values. For FD001 dataset,
all such time series have an RUL of atleast 52, whereas for
FD003, the RUL is atleast 75. Overall, these results show
that out method is capable of predicting failures accurately
and sufficiently before the end-of-life of the engines.

Failure evolution probabilities: The middle subplots in Fig-
ure 9 show the evolution of failure probabilities from healthy
to failure state for representative time series from FD001-
train-test (top), FD001-test datasets (second row), FD003-
train-test (third row) and FD003-test (bottom) datasets. Al-
though we show failure probabilities for only three trajectory
points for the clarity of the figure, computation was done for
each trajectory point. From our experiments, we can easily
draw the conclusion that the probabilities evolve smoothly
from healthy to failure state, thus enabling continuous moni-
toring and decision making in the field. Moreover, in the case
of FD003 datasets, one can get more elaborate information
on the evolution from healthy to correct failure classes.

8.4. Remaining Useful Life Estimation

We compute the RUL for each of the test time series Xtesti in
FD00X-test datasets using the health curve matching method
of Section 6. RULs for FD001-test are estimated by matching
with the health curves from FD001-train-train and those for
FD003-test by matching with curves from FD003-train-train.

Evaluation Metrics: We use the following evaluation met-
rics: Score (S), Accuracy (A), Mean Average Error (MAE),
Mean Squared Error (MSE), MAPE1, False Positive Rate
(FP) and False Negative Rate (FN), proposed in (Saxena, Celaya,
et al., 2008) for evaluating the performance of our RUL esti-
mation method. The values of τ1 and τ2 are set to 10 and 13
as proposed in (Saxena, Goebel, et al., 2008).

Results: Table 6 compares various performance metrics on
the FD001-test dataset for the state-of-the-art indirect data-
driven methods - which use health curve for RUL estimation,
with our proposed method. The compared methods include
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Figure 9. Sample trajectories from FD001-train-test, FD001-test, FD003-train-test and FD003-test datasets. In each plot, the
first subplot shows the raw time series and the second shows the trajectory evolving from healthy (yellow) to failure state (red),
along with the failure class probabilities. The yellow circles with black border represent the healthy points for each of the time
series in the training dataset and the red points with black border show the failure state of the training time series. The third
subplot shows the health curve.
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Metric Recon-RUL Embed-RUL Recon-LR1 Embed-LR1 Recon-LR2 Embed-LR2 RNN-Reg RULCLIPPER proposed
S 1263 810 477 219 256 232 352 216 360

MSE 546 456 288 155 164 167 219 176 207
A(%) 36 48 65 59 67 62 64 67 60
MAE 18 17 12 10 10 10 11 10 11

MAPE 39 39 20 19 18 19 17 20 21
FPR (%) 34 23 19 14 13 15 22 56 29
FNR (%) 30 29 16 27 20 23 24 44 10

Table 6. RUL estimation results on FD001-test dataset. Our method is comparable to the best performing methods in terms of
MAE and better as compared to many others in terms of MSE. Our method also achieves the lowest FNR among all the other
methods and outperforms the second best method (Recon-LR1) by reducing the FNR by 60%.

Recon-RUL, Embed-RUL, Recon-LR1, Embed-LR1, Recon-
LR2, Embed-LR2, RNN-Reg (Gugulothu et al., 2017) and
RULCLIPPER (Ramasso, 2014). The comparison with the
above mentioned state-of-the-art methods is on the bench-
mark datasets, so these algorithms were not implemented from
scratch. RUL was reported directly from the representative
publication. As the test benchmark dataset is fixed, so the dif-
ference in training configurations among various algorithms,
such as the amount of data used, does not impact the fair-
ness of the experimental comparisons. Note that we do not
compare our results with the direct data-driven approaches
(A. Zhang et al., 2018), (J. Wang et al., 2018), (Li et al.,
2019), (C. Zhang et al., 2016) because these methods do not
involve the computation of health curve. Therefore the com-
parison would not be fair.

Metric RULCLIPPER (Ramasso, 2014) proposed
S 317 610

MSE 256 265
A(%) 59 55
MAE 12 14

MAPE 23 25
FPR (%) 66 29
FNR (%) 34 20

Table 7. On the FD003-test dataset, our proposed method is
comparable to the RULCLIPPER method in MSE and outper-
forms significantly in terms of FPR and FNR. More specifi-
cally it reduces the FPR by 127% and FNR by 70%.

Table 6 shows that our method is comparable to the best per-
forming methods in terms of MAE and better as compared
to Recon-RUL, Embed-RUL, Embed-LR1 and RNN-Reg in
terms of MSE. Interestingly, our method achieves the low-
est FNR among all the other methods and outperforms the
second best method (Recon-LR1) by reducing the FNR by
60%. This implies that our method is conservative in FNR,
i.e., it does not predict unusually large RUL values. This is
also evident from Figure 10, which shows the actual versus
predicted RUL, sorted in the ascending order. For very short
partial time series, or time series with large actual RUL val-
ues, our method tends to under-estimate the RUL, which re-
sults in an overall small FNR. When the test time series has
been observed for a very small set of samples, the engine is
still healthy and a reliable estimate of RUL is difficult to ob-
tain with the health curve matching approach. In such a case

an RUL prediction algorithm can easily predict unbounded
values of RUL, which is avoided by our method.

Table 7 shows similar comparison for the FD003-test dataset.
Our proposed method is comparable to the RULCLIPPER
method in MSE and outperforms significantly in terms of
FPR and FNR. More specifically it reduces the FPR by 127%
and FNR by 70%.

Figure 10. Actual versus predicted RUL for the FD001-test
dataset, sorted in the ascending order. For very short partial
time series, or time series with large actual RUL values, our
method tends to under-estimate the RUL, which results in an
overall small FNR.

9. DISCUSSION & FUTURE WORK

While the state-of-the-art PHM literature has focused mostly
on the RUL estimation method, our work highlights the sev-
eral ignored but important aspects of a PHM system, such as
failure evolution analysis and failure prediction. To the best
of our knowledge, our work is the first one to emphasize and
incorporate visualization and interpretability into the RUL
computation process, by associating a simple yet very pow-
erful visualization to it. We show that one can obtain a per-
formance, comparable to the state-of-the-art methods which
use health curves for RUL estimation, by performing all the
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computations in a much simpler and interpretable manner in
a 2D trajectory space. Our method, can therefore be used pri-
marily for failure evolution analysis and visualization while
achieving a reasonable RUL performance.

An important property of the proposed framework is anomaly
detection. In case an unknown failure develops in the sys-
tem, the trajectory in the 2D “failure space” will not move
towards any of the known failure modes, but still away from
the healthy mode. The proposed method is still be capable of
detecting health degradation and providing useful informa-
tion to maintenance personnel regarding anomalous state of
the system.

Despite all the above characteristics of our framework, an im-
portant question remains unanswered: can we use the extra
information provided by our framework, i.e., the 2D trajec-
tories and failure evolution probabilities for improving RUL
performance? Our future work will be dedicated to answer
this question as well as performing rigorous experimental eval-
uations and comparisons of our work with the state-of-the-art
in terms of RUL performance. Furthermore, we will also ex-
plore other proposed architectures, i.e., TrajecNets-super and
TrajecNets-siamese in our future work.

10. CONCLUSION

We propose TrajecNets, a set of novel RNN architectures
which are configured to study degradation trajectories in 2D
space from healthy to failure state. The degradation trajecto-
ries are computed by TrajecNets using time series data col-
lected by sensors installed in a system of interest. TrajecNets
provides a visual, interpretable and explainable addition to
the traditional PHM pipeline. It summarizes the informa-
tion learned by the complex deep learning model in a 2D
space and provides meaningful interpretation to the health
and RUL estimation tasks. Due to the unsupervised setting
the proposed methodology can automatically reveal various
failure modes (classes), without the explicit requirement of
failure labels during training phase. Furthermore, we propose
a novel health index estimation method from 2D degradation
trajectories, which consists of a global step to take into ac-
count the initial wear of the system under consideration and
local health to take into account the health of the system with
respect to its nascence. The computed health curve can be
converted into an evolving failure probability using an unsu-
pervised methodology. Experiments on trajectory visualiza-
tion, failure class prediction, health curve and RUL estima-
tion on the Turbofan dataset (Saxena, Goebel, et al., 2008)
show the potential of our proposed framework to be used in
real time critical applications.
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