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ABSTRACT

Predictive maintenance aims to predict failures in compo-
nents of a system, a heavy-duty vehicle in this work, and do
maintenance before any actual fault occurs. Predictive main-
tenance is increasingly important in the automotive industry
due to the development of new services and autonomous ve-
hicles with no driver who can notice first signs of a compo-
nent problem. The lead-acid battery in a heavy vehicle is
mostly used during engine starts, but also for heating and
cooling the cockpit, and is an important part of the electri-
cal system that is essential for reliable operation. This paper
develops and evaluates two machine-learning based methods
for battery prognostics, one based on Long Short-Term Mem-
ory (LSTM) neural networks and one on Random Survival
Forest (RSF). The objective is to estimate time of battery fail-
ure based on sparse and non-equidistant vehicle operational
data, obtained from workshop visits or over-the-air readouts.
The dataset has three characteristics: 1) no sensor measure-
ments are directly related to battery health, 2) the number of
data readouts vary from one vehicle to another, and 3) read-
outs are collected at different time periods. Missing data is
common and is addressed by comparing different imputation
techniques. RSF- and LSTM-based models are proposed and
evaluated for the case of sparse multiple-readouts. How to
measure model performance is discussed and how the amount
of vehicle information influences performance.

1. INTRODUCTION

Nowadays, many automotive companies not only sell vehi-
cles with guarantee periods for its components, but offer
condition-based maintenance as a service to customers as well.
It is possible to avoid the unexpected failures of the com-
ponents by estimating failure date based on vehicle opera-
tion data and scheduling maintenance before the problem be-
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comes critical. Lead-acid batteries are part of the electrical
system in any vehicle and in particular in heavy-duty vehi-
cles. Unexpected failures in a component may lead to vehicle
unavailability that are costly. Developing predictive models
for flexible maintenance of lead-acid batteries in the presence
of irregular and quantitatively varying heavy-duty vehicle op-
erational data is the topic of this study.

Heavy-duty vehicles are being operated in diverse conditions
that include different climate, quality of roads, different num-
ber starts and stops, etc. Moreover, there are many lead-acid
battery manufacturers on the market, therefore it is possible
that a predictive model has to deal with different degradation
profiles that are inherited from a particular battery brand. De-
tailed physical models of battery degradation are inherently
difficult and require sensing battery operational characteris-
tics such as voltage and current which is not always available.
An alternative is to use data that describe how a vehicle is op-
erated to build a predictive model. This approach is adopted
here which relies on operational data readouts from a vehi-
cle’s visits to a workshop, data that is here provided by our
industrial partner Scania CV.

In prognostics, a common approach is to estimate the remain-
ing useful life (RUL), which is the remaining time until com-
ponent failure. In general, RUL estimates rely on informa-
tion from sensors that can be used to create a health indica-
tor and track its state during the component’s lifetime, see,
e.g., (Saha et al., 2009; Alghassi et al., 2015). Physics, or
model-based, methods for RUL estimation rely on models
for component degradation and if the models are accurate,
physics-based methods have the potential to provide accu-
rate estimates of RUL. Authors in (Daigle & Goebel, 2011;
Hanachi et al., 2015) elaborate how model-based methods
can be created for predicting failures in pneumatic valves and
gas turbine engines. However, obtaining accurate degradation
models is often hard and costly due to lack of sensor infor-
mation or complex degradation processes. Data-driven meth-
ods use machine learning algorithms and statistical methods
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to estimate RUL. Here, methods with underlying assump-
tions on the failure time distributions, e.g., (D. Cox, 1972),
and techniques with no assumptions (Ishwaran et al., 2008;
Elsheikh et al., 2019; Zhang et al., 2018) are investigated.
In hybrid methods predictions from the models, model-based
and data-driven, are combined to receive an estimate of fail-
ure time. These approaches has the potential to overcome sin-
gle method weaknesses and make a predictive model stronger
(Ahmad et al., 2017).

The paper has the following contributions: 1) prognostic mod-
els are developed to estimate reliability and lifetime functions
in the presence of sparse vehicle operational data, 2) per-
formance comparison between LSTM network, feed forward
neural networks, and RSF models is presented, 3) different
imputation strategies for missing data are evaluated with an
extension to the case of multiple data readouts per vehicle
and 4) an analysis of a connection between performance and
the amount of data per vehicle is conducted.

The paper has the following structure. Motivation of the given
work together with a statement of the considered problem is
given in Section 2. Section 3 gives an overview of the the-
oretical concepts that are used for the development of the
predictive models. The structure of the data has a signifi-
cant impact on the design of the predictive models, therefore
there is a separate Section 4 that describes main characteris-
tic of the data. A problem of model validation together with
a suggested strategy is introduced in Section 5. Main con-
tributions of the paper are found in the following three sec-
tions. Comparison of different imputation strategies is pre-
sented in Section 6 with an approach for performing impu-
tation for the sparse and non-equidistant data. Section 7 and
Section 8 present method development for RSF- and LSTM-
based predictive models for sparse and non-equidistant data
respectively. Comparison of the methods from Section 7 and
Section 8 are provided in Section 9 followed by the conclu-
sions in Section 10. It is recommended to read the paper from
the beginning to the end, however it is possible to read Sec-
tion 6, Section 7 and Section 8 independently after reading
Section 2 and Section 4.

2. MOTIVATION AND PROBLEM FORMULATION

Components of a truck do not break often as they are designed
to be operational for significant amount of time. This means it
is expected that a main part of the vehicles do not experience
battery failures during the study period. In our case, vehicle
operational data is sparse and non-equidistant with different
amount of data readouts per vehicle. A vehicle that has not
experienced battery failure is called censored since the true
failure time is not known. The definition of censoring used
here is equivalent to right censored in (D. R. Cox & Oakes,
1984). A failed battery here means that a workshop engineer
has replaced it. This is considered to be a good indicator of a

battery failure. Therefore, there are two groups of vehicles in
our study, namely, the ones with failed and censored batteries.

A basic battery maintenance policy is to use time or mileage,
meaning if the vehicle is operated more than a particular time
or mileage, the battery is replaced with a new one. This strat-
egy is simple and easy to explain to a customer, unfortunately,
time- or mileage-based maintenance do not give good perfor-
mance.

Consider two types of records: time and mileage which are
recorded when a vehicle either had problems with batteries
or leaves the study without any problem. Estimation of the
probability density functions (PDF:s) for time and mileage of
failed and censored vehicles are shown in Figure 1 for the in-
dustrial dataset. Red and dashed red curves are PDF estimates
of time and mileage records of vehicles with failed batteries
and correspondingly, blue and dashed blue curves are PDF es-
timates of time and mileage records of vehicles with censored
batteries. Notice that bottom and left axes correspond to time
related information whereas upper and right axes to mileage
related information. It is evident from Figure 1 that there is
a significant overlap between densities of failed and censored
vehicles for both type of records. This indicates that a time or
mileage based maintenance policy will either replace batter-
ies too often or too late.
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Figure 1. Kernel density estimations of distributions of vehi-
cles with failed and censored batteries. Red and dashed red
curves denote probability density function estimations of fail-
ure time and covered distance respectively for vehicles with
battery problems. Blue and dashed blue curves show proba-
bility density function estimations of censoring time and cov-
ered distance respectively for vehicles without battery prob-
lems.

For every possible maintenance time/mileage, record what
fraction of failed batteries are detected correctly and what
the false alarm rate is. A Receiver Operating Characteris-
tic (ROC) curve in Figure 2 illustrates the performance for
different maintenance thresholds. A black curve represents
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the results for mileage-based and a red curve for time-based
maintenance and it is clear that using time- or mileage-based
maintenance leads to a random guess performance. The anal-
ysis above motivates the development of more detailed mod-
els using vehicle operational data to predict battery failure
times.

2.1. Problem formulation

A common way to perform prognostics is to estimate RUL
by tracking and extrapolating a health indicator. In our case,
this is not possible since there is no available measurements
directly related to battery health, see further description of
the data in Section 4. Furthermore, a data readout is retrieved
at either failure or censoring time, which makes the problem
different from a classical classification problem, because in
this case it will be impossible to predict a failure in advance.

The lack of health indicator together with sparse and non-
equidistant data leads to a high degree of uncertainty which
makes a probabilistic framework suitable. Therefore, let the
random variable T be the failure time, t0 the current time,
e.g., at a workshop visit, and the sequence of data readouts
available at time t0 be denoted by V . Then, the probability
that the component survives more than t+t0 time units, given
that it is working at age t0 time units with data V is

BV(t; t0) = P (T > t+ t0 | T ≥ t0, V). (1)

The reliability function D. R. Cox & Oakes (1984), i.e., the
probability that a component survives more than t time-units
RV(t) = P (T ≥ t|V), can be used to reformulate (1) as

BV(t; t0) =
RV(t+ t0)

RV(t0)
. (2)
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Figure 2. Demonstration of maintenance strategies perfor-
mance which are based on time and covered distance. Black
curve is a ROC curve for mileage-based maintenance and
red curve represents ROC curve of time-based maintenance.
Dashed blue line corresponds to the random guess strategy.

The function in (1) is here called lifetime function and time t0
is the time when the prediction is made. The main objective
is then to estimate, based on data readout history V , either the
reliability function or the lifetime function, both of which can
be used in prognostics.

Figure 3 shows an illustration of a pipeline that can be im-
plemented on company infrastructure to predict the lifetime
function BV(t; t0) of a vehicle battery that comes for a work-
shop visit. As shown in the figure, raw sensor measurements
from the vehicles are collected in a data lake, then some com-
putational tools are used to extract, transform and load (ETL)
data to a predictive model that gives an estimate of the life-
time function BV(t; t0). There is an exchange of informa-
tion between ETL and model developing and training blocks.
ETL block transforms the information that is used to train the
model to the form the current architecture of the predictive
model requires. At the same time, if the change to the ar-
chitecture of the predictive model is introduced, this triggers
the change in ETL block. In the given paper, the part of ETL
stage, i.e., data imputation for the sparse vehicle operational
data, is addressed in Section 6, and model development con-
siderations are presented in Section 7 and Section 8.
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Figure 3. Machine learning pipeline that can be used to pre-
dict the lifetime function BV(t; t0) of a battery.

3. THEORETICAL BASIS

The paper uses models based on RSF and LSTM neural net-
works. Both approaches are machine learning techniques and
the basics are briefly summarized in this section. In addition,
the section contains an introduction to missing data imputa-
tion that is used in the paper by means of an RSF model to
tackle missing data problem present in the data under study.
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3.1. Random survival forest

Classification and regression trees (Breiman et al., 1984) are
binary trees that map a feature or variable space X into a
space of outcomes Y . Samples of the feature vector and out-
come variable is represented as a pair (xi, yi). In a classi-
fication problem, the target values yi are discrete, and in a
regression problem the target is continuous valued. Classi-
fication and regression trees can be regarded as a non-linear
estimator

θ̂(xi) = ŷi (3)

where θ̂(x) is built by partitioning the feature space X into
disjoint regions X = ∪mRm with some estimating model
for each region. For a regression problem, an estimate is a
real value that fits data in a region Rm best, often the mean.
In case of a classification problem, the estimate is often the
majority class among all samples in Rm. Classification and
regression trees are easy to interpret but, unfortunately trees
are weak classifiers with large variance, meaning they do not
generalize to unseen data well.

To address this issue a Random Forest (RF) model, an ensem-
ble of trees, was proposed by Breiman (2001). There are two
steps in RF that make it perform better than ordinary classi-
fication and regression trees, namely, bootstrap aggregation,
also known as bagging, and a random variable selection at
the split steps. Bootstrap aggregation creates a set of new
datasets by sampling uniformly with replacement from the
original one, then machine learning models are fitted to every
newly created dataset. In the case of regression trees, the out-
put from a bootstrap aggregation model is the mean of outputs
of all trees

θ̂BAGG(x) =
1

B

B∑
i=1

θ̂i(x) (4)

where θ̂i(x) is a tree model fitted to the ith bootstrap sample,
and B is the number of trees/bootstrap samples. Averaging
over all models creates a predictor with a reduced variance
compared to the regular classification and regression tree.

An RSF model is a variation of an RF model that is modified
for the purpose of right-censored data and survival analysis
(Ishwaran et al., 2008). One of the main differences in an
RSF model compared to RF is that the cost function used for
splitting is typically the log-rank test (Ciampi et al., 1986).
At each terminal node in a tree, a node at which splitting no
longer is performed, the Nelson-Aalen estimate of the cumu-
lative hazard rate H(t) is computed (D. R. Cox & Oakes,
1984) based on the samples in the node. The estimated cu-
mulative hazard rate Ĥ(t) of the whole forest is computed by
averaging over tree hazard rates. The RSF estimate R̂(t) of
the reliability function is then obtained as D. R. Cox & Oakes
(1984)

R̂(t) = e−Ĥ(t). (5)

3.2. Long Short-Term Memory networks

Neural networks, similarly to Random Forests, are non-linear
models that estimate relationships between input and target
variables. Neural network models are interesting since they
have proven effective in many different areas, especially when
the supporting dataset is large. In a feedforward neural net-
work, the input layer is connected with hidden layers and an
output layer by the means of weights. Information is then
flowing only in the forward direction. This means that there
are no connections between nodes from the current layer with
themselves or to previous layers. Since data readouts from a
single vehicle forms a sequence, recurrent models are of inter-
est. LSTM networks (Hochreiter & Schmidhuber, 1997) is a
class of recurrent neural networks (RNN) (Goodfellow et al.,
2016) that allow feedback connections. In recurrent neural
networks the output from a layer is fed back through a delay
unit as shown in Figure 4. RNNs are designed to work with
sequential data such as translating text from one language to
another, speech recognition, or analyzing frames in a video
stream. The connection to the battery prognostics problem
stated here makes RNN networks an attractive model struc-
ture to explore.

Training RNNs is in general difficult, in particular due to
the problems of vanishing or exploding gradients when se-
quences of data are long or networks have many layers. LSTM
networks mitigate these problems and the core building block
is an LSTM cell with a schematic illustration shown in Fig-
ure 5. As can be seen, the data from the previous layer xt
and the previous time step ht−1 are inputs to the LSTM cell.
Flow of information is controlled by three gates, input, forget,
and output. Each of the gates has a sigmoid activation func-
tion layer, a regular layer as in feedforward networks, which
take values in the interval between 0 and 1, and multiplied el-
ementwise with the input data vector. Values that are close to
zero indicate which parts of the data that is ignored during the
current time step. Conversely, values close to 1 signify active
parts of data for making prediction. The most important part
of the LSTM cell is the forget gate in combination with in-
ternal state st. The current internal state is memorized and is
multiplied with the forget gate at the next time step. The in-
teresting step happens when the result of filtering an internal
state through the forget gate is combined with the result of
filtering input data through the input gate. It can be seen that
the results are combined by summation which is an important
part in tackling vanishing gradients problem. The formula

ft = σ (Wfxt + Ufht−1 + bf )

it = σ (Wixt + Uiht−1 + bi)

ot = σ (Woxt + Uoht−1 + bo)

st = ft ⊗ st−1 + it ⊗ tanh (Wvxt + Uvht−1 + bv)

ht = ot ⊗ tanh (st)

(6)

represents the LSTM-cell. Here, ⊗ denotes element wise
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Figure 4. Illustration of an RNN network where x is a se-
quence of input data and h is a sequence of output from an
RNN layer.

Figure 5. Illustration of an LSTM cell. The sign ⊗ stands for
element wise multiplication, σ is a sigmoid activation func-
tion, tanh is a tangent hyperbolic activation function.

multiplication of two vectors. Every input to the activation
function layer has its own set of weight matrices. Dimen-
sionality of the vectors after passing through the activation
function layer is usually different from the dimensions of the
vector which combines xt and ht−1 and it is controlled by a
network designer.

3.3. Imputing missing data

Many approaches for data imputation have been developed.
A thorough overview of the random forest imputation meth-
ods can be found in (Tang & Ishwaran, 2017). Even if the
paper is focused primarily on random forest-based imputa-
tion techniques it gives a good motivation why these method
are attractive. Advantages of using the random forest frame-
work for imputation are: 1) it handles heterogeneous miss-
ing data, i.e., both numerical and categorical variables, 2)
it performs well in the case of a multidimensional feature
space with complex interactions between variables, and 3) it
scales to big data problems. It is also reported that a Miss-
Forest which is a random forest-based technique outperforms
in several cases methods such as k-nearest neighbors (Alt-
man, 1992) and multivariate imputation using chained equa-
tion (Van Buuren, 2007).

Three imputation techniques are compared in this paper: mean
imputation, unsupervised on-the-fly-imputation (OTFI), and
a modification of the missforest imputation approach. The
two last techniques are described in (Tang & Ishwaran, 2017)

and can be found in the RSF package (Ishwaran & Kogalur,
2007) which is also used to implement the RSF models. Mean
imputation is based on average values among non-missing
records for a particular variable. Unsupervised OTFI is an
iterative procedure that treats data imputation as a multivari-
ate regression problem. Data is imputed simultaneously while
growing the forest, which is done using a multivariate unsu-
pervised splitting rule. This means that the outcome variables
for each split are randomly sampled for that node. The Miss-
Forest technique, and its modifications, considers the missing
data problem as a prediction problem. Here, random for-
est models are grown by regressing every variable against
all other variables successively and predicting missing data
for the current target variable using a random forest model.
When comparing, the number of iterations for missForest and
OTFI are set to 5 and the value of the parameter α, which
defines dimensionality of multivariate regression during one
step in missForest algorithm, is set to α = 0.05.

4. DATA DESCRIPTION

The industrial vehicle fleet data was not primarily designed
for battery prognostic purposes, at first it was used for diag-
nostics and performance monitoring of the fleet. Further, the
data distribution is not constant over time and, for example,
sensor installations vary between new and old models lead-
ing to non-random missing data in the dataset. The missing
data rate is about 40%. The missing values are not uniformly
distributed among variables, some variables can have signif-
icantly higher missing rate than others. Section 6 discusses
several imputation strategies and what is the best way to deal
with missing data here.

Available vehicle operational data greatly influences the choice
and method development. The data source is provided by
Scania CV, a heavy-duty truck manufacturer in Sweden, and
represents how a vehicle is operated during the lifetime of
the battery. Every vehicle can have different number of data
readouts with varying time difference between each readout
which makes data sparse and non-equidistant. Readouts are
recorded into a database when a vehicle comes to a workshop
and workshop visits are determined by vehicle owners which
makes data readouts irregular.

A data readout consists of two types of variables: variables
with fixed and varying values during vehicle lifetime. Con-
stant value variables typically describe configuration of the
vehicle, e.g., what type of cabin is used, where the battery is
mounted, if a bed is installed in the cabin, etc. These vari-
ables are categorical, i.e., only a finite set of values are possi-
ble. Variables with varying values in time are organized into
histograms, where each of them shows how a particular part
of a vehicle has been used from the beginning of the battery
lifetime to a time of readout event. As an example, the ambi-
ent pressure is stored as a histogram with 10 bins in the data
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and each bin represents the number of times a vehicle has
been operated in an atmospheric pressure that falls into the
range of the bin. Then, the values of histogram are normal-
ized such that summation of bin values is 100. There are 22
histograms in the data set with varying number of bins. Every
bin contributes with a separate variable to the feature space.
Examples of other histograms are battery voltage, ambient
temperature, and engine load histogram. The ratio between
number of categorical and number of numerical valued vari-
ables is 1:49, i.e., a large majority are histogram bin values.
Each readout consists of 417 variables that is a mixture of the
categorical and the numerical variables.

A main characteristic of the data for this work is that there
is no health indicator present. Even if there was a health in-
dicator present, it would be difficult to track its value dur-
ing the lifetime of a battery due to the infrequent and irregu-
lar readouts. However, using information about time of fail-
ure/censoring and partitioning a set of vehicles into groups
with similar operational characteristics by the means of ma-
chine learning algorithms, it is possible to build a reliability
function for every vehicle that can be used to formulate indi-
vidual maintenance policies, or condition-based maintenance
policies.

4.1. Training, validation and test data

Some main characteristics of the database are as follow. The
training set that is used for building models consists of 46,974
trucks whereas validation/test sets contain 2,000 trucks. The
trucks in all sets originates from 5 European markets Swe-
den, Germany, Belgium, Netherlands, and France. For these
vehicles from the training set, there are 115,342 data read-
outs in the database. Three prominent groups of vehicles are
found in the database: vehicles with 1, 2, or 3 data readouts
where the number of vehicles in each group are 1) 5,192 ve-
hicles in group with 1 data readout, 2) 15,196 vehicles with
2 data readouts, and 3) 26,586 vehicles with 3 data readouts.
The censoring rate is about 80%, meaning there are 7,189
vehicles with reported failures. The validation and test sets
have 1,000 trucks each with equal split between failed and
censored vehicles. As in the training set, the vehicles from
the validation/test sets can have different amount of readouts
during the lifetime of the battery.

5. MODEL VALIDATION TECHNIQUE

In supervised learning, with labeled output data in a classifi-
cation and regression problem, it is fairly straightforward to
define performance measure and validation techniques. Here,
however, the function to estimate is a (conditional-)reliability
function, a function we do not know the true value of. There-
fore, validation of the estimated models are more involved.

5.1. Principle for validation

For this purpose, the validation and test set of vehicles con-
sists of 2,000 vehicles in total with equal proportion of failed
and censored batteries. The requirements on vehicles to be a
part of the validation or test set are: 1) the vehicle must have
at least two data readouts and 2) a time difference between
the last two readouts must be in between 0.25 and 0.5 time
units.

All data readouts except the last are fed into the model to
receive an estimate of the lifetime function BV(t; t0) where
t0 is the time of the second to last readout. Then, the value
BV(t∗; t0) is computed, where t∗ is the time difference be-
tween the last two readouts. For a model with good predictive
power, BV(t∗; t0) should on average be large for censored
batteries and small for failed batteries. This comparison is
why the requirement on the time difference between the last
two readouts is important. It guarantees that compared life-
time values are from the same time interval, otherwise the
comparison would not be fair. To illustrate, assume the life-
time function for the broken battery is computed at t∗ = 0.5
time units, difference between two last readouts, and for the
censored battery at t∗ = 3 time units. If both values are small
it is not possible to draw any conclusions on model perfor-
mance. On the one hand, it could be the case that the model
performs poorly, but on the other it could be due to the fact
that censored battery is about to fail.

5.2. Validation metric

The validation metric used are ROC curves, introduced in
Section 2, and the associated Area under the curve values
(AUC) (Friedman et al., 2001). These metrics are computed
based on histograms of lifetime functions. Given a model,
BV(t∗; t0) is computed for all vehicles in the validation/test
set forming two histograms - failed and censored batteries,
see Figure 6. Then, an ROC curve is parameterized by all
possible values of the maintenance threshold θ. For a given
θ, vehicles for which the lifetime function values BV(t∗; t0)
are smaller than the threshold are regarded as failed and cen-
sored otherwise. The area under the curve is then computed
by integration of the ROC curve.

An advantage of using ROC curves are that they are invari-
ant to cost functions and changing class distributions, i.e.,
changes in imbalance ratio with time. Authors in (Webb &
Ting, 2005) criticize usage of ROC curves for the case of
changing distributions. However, as mentioned in (Fawcett
& Flach, 2005) this can happen only in some particular cases.
In this paper, a comparative study of different models with a
fixed imbalance ratio is performed, therefore problems men-
tioned in (Webb & Ting, 2005) are not applicable. ROC
curves access separate metrics for both classes of batteries,
i.e., failed and censored, which is important in our case as it
is of interest not only eliminate battery failures, but also to
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minimize the number of unnecessary repairs when a battery
is in fact functional.

6. IMPUTATION OF MISSING DATA

Missing data is a common problem in prognostics, machine
learning, or data science. In our problem, data is mostly miss-
ing due to different sensor installations on vehicles of differ-
ent model and age. Figure 7 illustrates missing data proper-
ties of the data set. With vehicles on the x-axis and variables
on the y-axis, every pixel shows the fraction of missing data
among available readouts. With the data, there are four possi-
ble cases depending on the number of readouts for a vehicle.
A missing rate of 1 is represented by the color white, a miss-
ing rate of 0 with the color green, a missing rate 0.33 with
the color yellow, and missing rates of 0.5 and 0.66 are repre-
sented by two shades of orange.

In general, the values of the variables are either missing or
present in all readouts. However, some vehicles have inter-
mittent missing values, as shown with the magnifying glass
in Figure 7. A key observation is that the majority of missing
data does not have a random pattern. One way to deal with the
missing data would be to discard vehicles with missing infor-
mation, which would be appropriate if the number of samples
in the whole population with missing data is low. However,
here vehicles with missing values constitute the majority of
the population. Therefore, instead imputation of missing data
is explored.

6.1. Imputation performance for RSF and MLP models

First, the three imputation strategies are evaluated on two
models, the RSF and Multilayer perceptron (MLP) single data
readout described in (Voronov et al., 2018a) and (Voronov et
al., 2018b) respectively. Here, the MLP model is an ensem-
ble multilayer perceptron network with a linear degradation
assumption for a reliability function of failed batteries, one of
the best performing models from (Voronov et al., 2018b).

The imputation evaluation is performed by training models
with different imputation strategies, and then computing ROC
curves, shown in and Figure 8, and the corresponding AUC
values in Table 1. First, notice that the MLP model outper-
forms the RSF model for all imputation strategies. Further,
the mean imputation strategy gives the best performance for
the MLP model and unsupervised on the fly imputation is
the best for the RSF model. A conclusion from the results
is that there is no big difference in using mean imputation or
more advanced strategies for the MLP and RSF models. This
result is consistent with results in (Tang & Ishwaran, 2017)
where the more advanced methods only gave a small per-
formance increase for the case of non-random missing data
with medium and high correlation between features. This is
exactly the situation with the vehicle fleet data here. Also,
taking into account that the advanced methods for imputa-

tion take significant computational resources, and little per-
formance gain is expected, the simple mean imputation will
be used.

classified as failed classified as working

pr
ob

ab
ili

ty

BV(t∗; t0)

Figure 6. Illustration of two histograms of BV(t∗; t0) values
for failed batteries, pink curve, and censored batteries, blue
dashed curve. Threshold θ, red dashed line, separates work-
ing and failed batteries. Time t∗ is time of either failure or
censoring.

6.2. Imputation strategy for multiple data readouts

Thus, for the single data readout case it was concluded that
a mean imputation strategy is appropriate. Next question is
then how to extend this strategy to the multiple readout case.
A possible mean imputation extension is to use all readouts
that contain information for a particular variable. This ap-
proach is implemented for the majority of the models that
are considered in the paper. However, a drawback is that the
mean can be biased towards a particular class of vehicles with
many readouts. For example, consider again Figure 1. Many
batteries are failed or censored between 1 and 4 time units
which means there are many readouts from this period and
the mean will then be biased towards this set of vehicles. One
way to address this situation is to partition readouts based
on age and compute the mean value for imputation within its
respective partition. Thus, a mean value in this case will rep-
resent how a vehicle is used on average within a certain age
interval.

The dataset contains vehicles with survival time up to 8 time
units which, initially, are divided into 8 equidistant time inter-
vals. If a vehicle has several readouts in an interval then only
one with the latest timestamp is used in the imputation. In
Figure 9(a), the distribution of readouts among the 8 time in-
tervals is shown. It is evident that the number of readouts
in the last three intervals are much fewer than in the first
three. In addition, the missing rate for the first three intervals
is about 33%, while for the last three 67%, 74%, and 83%
respectively. If the missing rate is as high as in the last two
intervals combined with a relatively small number of read-
outs, this leads to a few vehicles with non-missing data for
some of the variables which makes the estimation of the true
mean value less reliable. Therefore, to balance the intervals,

7
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the last three intervals were merged into one interval. The re-
sulting distribution is shown in Figure 9(b) where the missing
rate for the sixth interval is 68%. Evaluation of the strategies
that impute missing values with a mean over all readouts and
a mean over readouts from a particular interval is given in
Section 9.
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vehiclesFigure 7. Illustration of missing data among multiple data
readouts. For every vehicle, x axis, there is a set of variables
that form a readout, y axis. White color shows that a value
of a variable is missing for a given vehicle in all available
readouts. If a variable is available in all readouts then color
is green. Yellow and two shades of orange show that values
of variable are present in some readouts and missing in others
which can be observed in the magnified part of the image.

7. EXTENDING RSF METHOD FOR THE CASE OF MUL-
TIPLE DATA READOUTS

This section discusses how to extend the single data readout
RSF model from (Voronov et al., 2018a) to the the situation
with multiple, sparse, and irregular data readouts. Gomes et
al. (2017) presents modifications of Random Forest models
to the case of data streams. However, these data streams dif-
fer from the fleet data case since there are many vehicles with
very few data readouts versus the long sequences as, for in-
stance, in (Rosset & Inger, 2000) for the adaptive random
forests in (Gomes et al., 2017). Another problem when ap-
plying modifications of random forest models to data streams
is that these models are designed for the classification prob-
lem and not for survival analysis as in our case.

To the best of our knowledge there is no straightforward RSF
model for multiple readout problems. A simple approach is
to reduce the problem to the one readout case by consider-
ing every readout as from an independent vehicle and, then,
apply the single readout RSF model directly. However, this
violates a basic assumption on independence of the readouts
and a bias towards the vehicles with the most readouts can
be expected. Another problem is then that the imbalance be-
tween censored and failed vehicles will increase significantly,
which is not desirable as the failed to censored vehicle is al-
ready low at 20%.
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Figure 8. ROC curves for different imputation strategies for
MLP and RSF models. Only one (last) data readouts is used
per vehicle. Black dashed line corresponds to random guess
performance. EMLP stands for an ensemble multilayer per-
ceptron model.

Table 1. AUC values for ROC curves in Figure 8.

Imputation approach RSF MLP
Mean imputation 0.681 0.772
OTFI imputation 0.715 0.764
MissForest imputation 0.700 0.761

0

5000

10000

15000

20000

2 4 6 8

#
re

ad
ou

ts

intervals

(a) Split in 8 intervals.

0

5000

10000

15000

20000

2 4 6

#
re

ad
ou

ts

intervals

(b) Split in 6 intervals.

Figure 9. The figure illustrates the distribution of vehicle data
readouts based on time interval splitting. Figure (a) shows
the distribution when splitting into 8 intervals and Figure (b)
when splitting into 6 intervals.

7.1. Feature augmentation vs whole population of read-
outs

It is suggested in the paper to deal with the short sequences
of multiple readouts by augmenting a feature space with data
from multiple readouts. Figure 10 illustrates this procedure
where there are three types of vehicles with 3, 2 and 1 data
readouts. For example, consider vehicle1 where the augmented

8
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features corresponds to concatenating the readouts, starting
with the last, and shown to the right in Figure 10. The pro-
cedure for vehicle2 and vehicle1 is similar, except they have
less data readouts and corresponding features are denoted as
missing. The static categorical data that do not change with
time should not be repeated in the augmented readout. De-
note the static variables for vehicle j with sj and all remain-
ing variables as hji where i stands for i:th data readout. The
augmented readout as arj is then

arj = (sj , hj3, hj2 or missing, hj1 or missing). (7)

7.2. Time related information and missing readouts

In (7) it is clear that the augmented readout arj does not con-
tain any time information such as time and mileage. Voronov
et al. (2018a) showed that time and mileage is best not used
as features directly as we are interested in estimating degra-
dation based on vehicle operation and not on age or mileage.
However, time related information on readout separation should
be introduced in the augmented readout to let the RSF model
adapt to the difference in time and mileage between initial
readouts. Let the timestamp and mileage of the i:th readout
of the j:th vehicle be denoted by tji and mji respectively,
then two new variables for the difference in time and mileage
between k:th and l:th readouts are defined as

∆tjk,l = tjk − tjl and ∆mj
k,l = mjk −mjl. (8)

Two cases are now: 1) use the differences in time and mileage
between two neighboring readouts, ∆tji+1,i and ∆mj

i+1,i, 2)
use the differences in time an mileage between the last read-
out and the current one, ∆tjlast,i and ∆mj

last,i. Here, the last
readout corresponds to the third readout for vehicle1, the sec-
ond readout for vehicle2, and the first readout for vehicle3.
Notice that ∆tjk,l and ∆mj

k,l are not defined if one of the
readouts in the definition (8) is missing.
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Figure 10. Demonstration of feature space augmentation for
the case of multiple readouts. Left part of the figure shows
how many readouts are initially available for three vehicles.
Right part of the figure shows how the given readouts are
transformed to form a new feature space.

How to treat variables in missing readouts depends on the

way ∆tjk,l and ∆mj
k,l are computed. For the approach with

neighboring readouts, ∆tji+1,i and ∆mj
i+1,i, the neighbor read-

out is copied into the missing one and values of differences
between time and mileage are set to zero. For the second
approach when the differences in time and mileage are com-
puted with respect to the last readout, ∆tjlast,i and ∆mj

last,i, the
last readout is copied into the missing one and both time and
mileage differences are set to zero. Based on the discussion
above two models for the the augmented readout are listed
below. For the model which uses ∆tji+1,i and ∆mj

i+1,i the
augmented readout is defined

arj = (sj , hj3, hj2,∆t
j
3,2,∆m

j
3,2, hj1,∆t

j
2,1,∆m

j
2,1). (9)

For the model that uses ∆tjlast,i and ∆mj
last,i, the augmented

readout is

arj = (sj , hj3, hj2,∆t
j
3,2,∆m

j
3,2, hj1,∆t

j
3,1,∆m

j
3,1).

(10)
Another approach to define the augmented readout for a ve-
hicle is to consider the rate of change, i.e., the derivative, be-
tween two readouts instead of using the second hj2 and first
hj1 readouts as they are. Analogously to (8), the difference
between k:th and l:th readouts for the j:th vehicle is defined
as

∆hjk,l = hjk − hjl (11)

The derivative is a ratio
∆hj

k,l

∆tjk,l

that is obtained by diving the

difference of values between two readouts ∆hjk,l by the time
difference ∆tjk,l. The values for derivatives that involve a
missing readout are set to zero. The augmented readout for a
vehicle j for a model that uses ∆tji+1,i and ∆mj

i+1,i is

arj =

(
sj , hj3,

∆hj3,2

∆tj3,2
,∆mj

3,2,
∆hj2,1

∆tj2,1
,∆mj

2,1

)
. (12)

The augmented readout for a vehicle j for a model which uses
∆tjlast,i and ∆mj

last,i is

arj =

(
sj , hj3,

∆hj3,2

∆tj3,2
,∆mj

3,2,
∆hj3,1

∆tj3,1
,∆mj

3,1

)
. (13)

Here, several approaches to augment the feature space for
multiple readouts have been summarized as

1. RSF model with an augmented readout as in (9)

2. RSF model with an augmented readout as in (10)

3. RSF model with an augmented readout as in (12)

4. RSF model with an augmented readout as in (13)

Performance of the models will be analyzed in Section 9.
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8. LSTM MODELS FOR MULTIPLE DATA READOUTS

LSTM networks, a specific kind of RNNs, have been suc-
cessfully applied to different machine learning problems with
varying length sequential data in the fields such as natural lan-
guage processing, image captioning, and voice recognition.
The success is mainly due to the ability of the network to
capture long term dependencies between features. A problem
with general recurrent neural networks is that with deep ar-
chitectures and long data sequences there is a risk of encoun-
tering vanishing gradients leading to convergence problems,
which is one of the reasons recurrent neural networks are less
common in practice. LSTM networks in turn addresses the
problem of vanishing gradients with the help of gates and in-
ternal or hidden states.

The authors in (Elsheikh et al., 2019; Zhang et al., 2018) use
models that are based on LSTM networks to predict the RUL
of turbofan engine and lithium-ion batteries. However, the
type of data in the aforementioned works is different from the
one considered in the paper. Articles (Elsheikh et al., 2019;
Zhang et al., 2018) work with run-to-failure data, and the type
of data in this paper is sparse survival data. Therefore, there
is a need for the new methods that take into account charac-
teristics of the survival data. Recently, LSTM networks have
been applied to medical data for the purpose of giving a diag-
nosis, see for example (Lipton et al., 2015) where the dataset
has similar characteristics as the dataset here, e.g., containing
a varying number of samples from each patient. This section
will extend the results from (Voronov et al., 2018b), where
a fully connected neural network model is applied to vehicle
data with only one readout per vehicle, to an LSTM network
for sequential data.

8.1. LSTM network models for battery prognostics

As stated in the problem formulation, the output of the pre-
dictive models can either be the lifetime function BV(t; t0) or
the reliability function RV(t). Therefore, there are two main
LSTM network architectures, as illustrated in Figure 11. The
target, or output data, is represented by a fully connected neu-
ral network layer with sigmoid activation function with pos-
sible values in the range [0, 1] that corresponds to survival
probabilities. Each output node βi or R with a time span of
8 time units and a step of 0.25 time units gives 32 time point
estimates of either the lifetime or the reliability functions re-
sulting in dimensionality of node βi or R to be 32.

The blocks that are denoted by LSTM are LSTM cells with
64 internal/hidden states. The size of the layer is chosen as
a balance between computational time and performance and,
as will be shown in Section 9, the selected number of hidden
states is sufficient for our use-case.

Further, it was decided to use two layers of LSTM cells in the
networks. An architecture with three LSTM layers was inves-

tigated but did not lead to any performance improvement. In
addition, to counteract overfitting a dropout technique (Sri-
vastava et al., 2014) is used when training the LSTM net-
works. Dropout is introduced for the linear transformation of
the inputs and for the linear transformation of internal states
with the values of 0.5 and 0.4 respectively. The blocks TimeDis-
tributed emphasizes that weights for the fully connected out-
put layer share the same values when applied independently
for every time step in the LSTM network. The notion is bor-
rowed from the deep learning library Keras (Chollet, 2015)
that is used to implement the models. Question marks in
shape triples (batch size, number of readouts, size of readout)
in Figure 11 indicate the varying batch size and varying num-
ber of readouts between vehicles.

Figure 11. Basic architectures of LSTM networks. The left
network uses lifetime functions β1, β2 and β3 as outputs, and
the right network uses reliability function R as an output.

8.2. Inputs and target values for the LSTM networks

The input data is denoted by a vector containing all data from
one data readout x1, x2, and x3. Each xi is a data read-
out augmented with two variables ∆tjlast,i and ∆mj

last,i, i.e.,
the time and mileage difference between the readouts as de-
scribed in Section 7. The representation of input xi for jth
vehicle is

xi =
(
sj , hji,∆t

j
last,i,∆m

j
last,i

)
(14)

where sj is a collection of all categorical variables and hji is
a collection of all histogram variables, as introduced in Sec-
tion 7. The dimensionality of the input vector xi is 487. The
values of variables ∆tjlast,last and ∆mj

last,last are always zero,
therefore a small random value from a uniform distribution
is added to avoid introducing constant features which might
cause problems in the learning phase.

The procedure for data preprocessing for a neural network is
described in detail in (Voronov et al., 2018b) and is applied
to every time step in the network. Categorical variables are
transformed to vector representation using 1-of-(C-1) encod-
ing where C is number of possible values. Numerical valued
variables are standardized, i.e., normalized to zero mean and
unit standard deviation. Effects of using raw data input, with-
out any preprocessing, are also considered in the comparison
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in Section 9.

The procedure for creating target values for networks with the
reliability function as output is presented in detail in (Voronov
et al., 2018b). Briefly, the reliability function R for a cen-
sored vehicle is 1 in all nodes prior to the censoring time and
the remaining part of the reliability function is estimated with
a Kaplan-Meier estimator (D. R. Cox & Oakes, 1984) where
vehicles with failed and censored batteries after tcensoring are
used in the estimate. See the green dashed curve in Figure 12
for an example. For a vehicle with a failed battery, the relia-
bility function R decays monotonically from 1 to the time of
failure tfailure as shown by the red curve in Figure 12.

Target values for networks with the lifetime function as an
output, the node targets βi, are computed by taking the mod-
eled reliability function R described above and applying for-
mula (2).

8.3. Loss function

When choosing loss function for the training of the network,
it is important to notice that the output, for both reliability
and lifetime output functions, has the general property that
it is monotonically decreasing. First, the loss function used
for single readout MLP models in (Voronov et al., 2018b)
is described and then an extension to the LSTM models is
proposed.
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Rcensored

tfailuretcensoring

Figure 12. Models of reliability function R for a failed, red
curve, and a censored, green dashed curve, vehicle.

Let qi be the modeled reliability function in node i. Then
qi represents a probability to survive at least ti time units
where ti is the corresponding time for node i and let Q =
{qi, 1− qi} define a discrete probability distribution with two
outcomes. Similarly, let the discrete probability distribution
P = {pi, 1 − pi} be defined based on the probability of sur-
vival pi that is estimated by a multilayer perceptron network.
The Kullback-Leiber divergence ei is used to quantify differ-
ence between Q and P as

ei = KL(Q||P) = qi ln
qi
pi

+ (1− qi) ln
(1− qi)
(1− pi)

. (15)

The relative entropy loss function for the MLP models is then

defined as

Egl
KL =

32∑
i=1

egli + λ

31∑
i=1

max(0, pgli − p
gl
i−1) (16)

where the term after λ parameter penalizes non-monotonicity
in the solution.

The extension of the relative entropy loss in (16) to an LSTM
network with target outputs for every time step/data readout
is then

ELSTM =
1

K ·M ·N

K∑
g=1

M∑
l=1

Egl
KL (17)

where N denotes number of nodes in reliability function,
namely 32, M is number of readouts per vehicle, and K is
a size of a sample which is propagated through the network
before the weight update.

8.4. Batch formation for sparse vehicle operational data

In training, all examples in a mini-batch, which are selected
randomly before feeding them into the network, must have
the same dimensionality, i.e., number of readouts. This im-
plies for our problem that if a batch of size, for example, 128
is selected, then all vehicles in the batch must have equal
amount of readouts and since vehicles have a varying num-
ber of readouts this need to be addressed.

Three approaches to deal with varying number of readouts is
analyzed in this work. The first approach is to use a batch of
size 1, and then by construction all vehicles in the mini-batch
have the same number of readouts and no additional data ma-
nipulation is needed. A drawback with such an approach is
that the estimate of the gradients in the loss function will be
noisy and may lead to reduced performance of the model.
Here, batch size 1 is used as a baseline for other strategies.

A second approach for batch formation of size n is to sample
randomly a class of vehicles with 1, 2, or 3 readouts pro-
portionally to their frequency in the data and, then, randomly
sample n vehicles from the chosen class. Finally, the third ap-
proach for batch formation is to zero-pad missing readouts.
This means that all 487 input and 32 output nodes for the
given readout are set to zero for missing readouts.

8.5. Data balancing by ensembles of LSTM and weighted
loss

Learning from imbalanced data can create a bias towards the
majority class depending on severity of the imbalance. Some
machine learning methods, for example tree-based methods
including RSF, handle imbalances better than some other meth-
ods, for example neural networks.

In (Voronov et al., 2018b) an ensemble of MLP models is
used to address the data imbalance problem. The method
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showed promising results and a similar strategy is used here
for LSTM networks. The ratio between failed and censored
batteries is about 1 to 5 in the dataset. Therefore, vehicles
with censored batteries are randomly partitioned into 5 groups.
Then, for each group, the data is merged with the group of
failed vehicles to form a training dataset for one LSTM net-
work. The procedure is repeated for every network in the en-
semble. When the networks are trained, the prediction from
the last time step is taken from all networks and averaged
to receive a final estimate of the lifetime function BV(t; t0)
or the reliability function RV(t) as shown in Figure 13. A
main advantage of using ensemble models for data balancing
is that it can be directly applied to the heterogeneous dataset
and variance of the predictive model is reduced. Note that
the applicability of the method depends on the severity of im-
balance. It is useful with the ratio 1:5 as in our problem, but
would be less applicable if the ratio is, for example 1:100.

An alternative way to handle imbalance is to consider one
LSTM network, and weight censored samples in the loss func-
tion according to the imbalance. This directly influences the
computation of the gradients and leads to less biased model
towards a majority class. The imbalance weighted loss func-
tion is

ELSTM =
1

K ·M ·N

K∑
i=1

µi

 M∑
j=1

Eij
KL

 (18)

Figure 13. Demonstration of the approach to balance failed
and censored batteries with a help of an ensemble of LSTM
networks. The ensemble consists of 5 LSTM networks with
the architectures described in Figure 11. Every network has
its own training dataset. Predictions from LSTM networks are
averaged to receive the estimation of the lifetime function.

where the weight µi has a value of 1
6 for the censored batter-

ies or 5
6 for failed batteries. The values of µi are defined by

the ratio between the number of censored and failed batteries.
Both approaches to handle imbalanced data are evaluated in
Section 9.

8.6. Feeding ∆tjlast,i and ∆mj
last,i at later stage in network

A main objective in this work is to find dependencies between
vehicle operation and battery degradation behavior and there-
fore time and mileage is not fed into the feature vector, only
time differences ∆tjlast,i and mileage ∆mj

last,i are provided to
the LSTM models as part of the augmented input vector xi.
It is possible to detach vehicle operation characteristics from
time and mileage even more by considering the network ar-
chitecture shown in Figure 14. Here, the input vector yi for
j:th vehicle is

yi = (sj , hji) (19)

and a vector ti =
(

∆tjlast,i,∆m
j
last,i

)
contains time and mileage

difference. First, vehicle operational data is processed by
LSTM layers to find dependencies between variables and then
the representation of the dependencies hi is concatenated with
the vector ti and propagated to the last dense layer. This ap-
proach is also evaluated in Section 9.

9. PERFORMANCE ANALYSIS OF MODELS

In the previous sections, a number of different model archi-
tectures has been introduced and this section evaluates perfor-
mance for both RSF- and LSTM-based models. In addition,
baseline performance is determined using models for one data
readout based on standard Cox regression and an ensemble
multilayer perceptron model with 5 networks from (Voronov
et al., 2018b). Performance will be quantified as outlined in

Figure 14. Architecture of a network where ∆tjlast,i and
∆mj

last,i are considered as one vector (denoted as t1, t2, and
t3) and fed into the network after the recurrent layers.
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Section 5 based on ROC curves and AUC scores. The ROC
curve and AUC score are estimated using validation dataset,
i.e. 1,000 trucks with equal split between failed and censored
batteries.

9.1. Performance of RSF-based models

Table 2 summarizes AUC scores for the standard Cox re-
gression, the RSF model with only one data readout, and
four RSF models with augmented feature space introduced
in Section 7. The Cox regression model is estimated using
the Python package for survival analysis lifelines (Davidson-
Pilon & et al., 2019). All RSF models are estimated using
the R package (Ishwaran & Kogalur, 2007) and trained with
number of trees ntree = 2000, average number of unique sam-
ples in the terminal node nodesize = 200, candidates variables
selected for split mtry =

√
p, and logrank as the splitting rule.

Here and throughout the paper, the difference in the perfor-
mance is measured in terms of relative change. It can be seen
in Table 2 that all RSF models are doing significantly better
than the Cox regression model, in particular the RSF model
with only one data readout is about 14% better than a Cox re-
gression model. Note that the performance of Cox regression
is close to random guess. This is consistent with the observa-
tion in Voronov et al. (2018a) that the vehicle fleet data does
not seem to fulfill the proportional hazards assumption. Com-
paring the RSF models that have an augmented feature space
with the RSF model that have only one last readout, leads us
to conclude that the feature augmentation does not improve
model performance. One possible reason for this result is the
accumulative nature of the histogram variables, i.e. informa-
tion is accumulated from the beginning of the lifetime of the
battery until the time of data retrieval.

In the case of RSF models with derivatives and differences
in time and mileage that are computed with respect to the
last readout, the performance of the models is similar to the
one with only one data readout with AUC values of 0.69
and 0.675 respectively. The performance of the models is
lower in the case of derivatives and differences in time and
mileage, which are computed between neighboring readouts,
with AUC values of 0.663 and 0.63 respectively. At this
point one can think that having extra readouts does not lead
to improved prediction performance of the models. How-
ever, as will be shown below, a reason can be irregular, non-
equidistant vehicle operational data.

9.2. Performance of LSTM-based models

Several kinds of LSTM models were introduced in Section 8
by choice of preprocessing, mini-batch formation during train-
ing, choice of target function, and approach to balancing data.
Table 3 summarizes performance for several different archi-
tectures and options. The models are grouped by type of input
data, i.e., raw or preprocessed, and by type of target functions,

Table 2. AUC scores for RSF models with multiple data read-
outs.

Model AUC
Cox regression 0.596
RSF only last readout 0.681
RSF with an augmented readout as in (9) 0.63
RSF with an augmented readout as in (12) 0.663
RSF with an augmented readout as in (13) 0.69
RSF with an augmented readout as in (10) 0.675

i.e., lifetime or reliability function. Every model in the table
represent one of the possible approaches mentioned in Sec-
tion 8 and can address, for example, an approach to form a
batch, an approach for data balancing, etc. All models were
implemented in python using the libraries Keras and Tensor-
flow.

Table 3. Area under the ROC curve values for different
LSTM networks. Possible values for the model character-
istics: type : {S - single LSTM model, E - ensemble LSTM
model, L - LSTM model with input of ∆tjlast,i and ∆mj

last,i
after recurrent layers, O - LSTM model with target function
only at the last time step, M - multilayer perceptron model};
batch size : numerical value; forming batch : {RB - standard
batch sampling, CS - sampling class according to frequency
of data, ZP - zero padding}; epochs : numerical value; data
balancing : {EN - ensemble, WL - weighted loss, NB - no
balancing}; imputation : {M - mean imputation, MOTI - im-
putation with mean computed within groups, i.e., time inter-
vals}
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Lifetime functions as targets
1 S 1 RB 1000 NB M 0.570 0.70
2 S 128 ZP 1000 WL M 0.777
3 S 128 ZP 1000 NB M 0.718 0.793
4 S 128 CS 1000 NB M 0.738 0.794
5 E 128 ZP 1000 EN M 0.730 0.806
6 S 128 ZP 1000 NB MOTI 0.816
7 E 128 ZP 1000 EN MOTI 0.829

Reliability functions as targets
8 S 128 ZP 1000 NB M 0.670 0.693
9 M 128 RB 300 EN M 0.769
10 O 128 ZP 1000 EN M 0.713 0.775
11 E 128 ZP 1000 EN M 0.717 0.777
12 L 128 ZP 1000 EN M 0.720 0.779

One conclusion that can be made so far is that preprocessing
data, in our case standardizing histogram variables, leads to
significantly improved performance. For example, consider
model 5 in the table, which is an ensemble of LSTM net-
works with batch size 128 where readouts for vehicles that

13
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have less than 3 readouts are zero-padded and the model is
trained for 1,000 epochs. Both AUC values for raw and stan-
dardized inputs are larger than corresponding values of RSF
models. It is evident, not surprising, that the preprocessing
step is important for the model performance.

Now, consider how different approaches to form a mini-batch
in training influence the performance. For this purpose con-
sider models 1, 3 and 4. The architecture of the LSTM net-
work is the same for all those models, the only difference is
batch size and the approach used to form mini-batches. It
is clear that batch size 1 gives the worst performing model.
The two other approaches give comparable results in terms of
AUC values. There is a small difference when one consid-
ers the models with raw inputs, on the other hand the results
are similar when inputs are standardized. Therefore, all re-
maining models in the table use zero padding to form mini-
batches, except model 9 which is baseline ensemble multi-
layer perceptron model with 5 networks from (Voronov et al.,
2018b).

Next architectural choice to explore is the choice of target
function, lifetime or reliability function, and in particular per-
formance for imbalanced data. For this, consider the pairs of
models (3, 5) and (6, 7) where model 3 and 6 use a single
LSTM network and model 5 and 7 use an ensemble of LSTM
networks. The missing data in pair (3, 5) is imputed using
a mean over all data readouts while in pair (6, 7) the mean
is computed within groups partitioned in time intervals. The
ensembles of LSTM networks perform better than a single
model by approximately 1.6%. Now, consider the difference
in performance when reliability functions are used as targets.
For this, consider the pair of models (8, 11). The difference
in performance between an ensemble and a single model is
now 12,1%, which almost 10 times the difference in the case
of lifetime function as target. A similar difference in perfor-
mance between an ensemble and a single model is detected
for multilayer perceptron model with a single readout, see
(Voronov et al., 2018b). A conclusion from this is that using
lifetime function as a target in the LSTM networks seems to
handle imbalanced data better than with the reliability target
functions since with only a single LSTM network the perfor-
mance is close to the performance of the ensemble. Overall,
the ensemble of LSTM networks with the lifetime functions
as targets, model 5, perform better than model 11 with relia-
bility functions as targets.

An observation, by comparing models 2 and 5, are that bal-
ancing the data with weights in the loss functions as in (18)
gives worse performance than balancing with an ensemble.
Further, injecting time and mileage difference after the recur-
rent layers do not change prediction performance which can
be seen by comparing models 11 and 12.

A majority of the LSTM models which are used here have
targets present for every time step/input readout in LSTM

network, see Figure 11. For the case of reliability functions
this procedure is similar to the technique called target repli-
cation which is used by authors in (Lipton et al., 2015). It is
reported that using this technique in classification problems
improves the model performance. In this paper one model
that uses an LSTM network with target reliability function
for only the last time step in the network is considered as
model 10 in Table 3. The results show, if models 10 and 11
are compared, that replicating target reliability function for
every time step/input readout in the network does not lead to
the improved performance here.

All models in Table 3 except model 9, the model from (Voronov
et al., 2018b), are trained for 1,000 epochs and maximum per-
formance on the validation set is achieved at an earlier epoch
for every model. Therefore, early stopping, as presented in
Figure 15, is employed and the suggested number of epochs
for early stopping is about 230 that is indicated by dashed
blue line. The four most promising models from Table 3 are
selected and retrained with early stopping and the results are
reported in Table 4.

9.3. Best performing model

The best performing model among all of the considered is an
ensemble of LSTM networks where missing data is imputed
with a mean of available readouts within groups which are
based on time as in Section 6. Batch size of 128 is used in
training, zero-padding of non-existing readouts, and training
for 110 epochs. The model achieves an AUC score of 0.851
on the test dataset. Below, the full set of steps for training the
model is summarized in the procedure.
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Figure 15. Demonstration of the loss and AUC curves for
model 6 in Table 3 during the process of training the model.
Blue curve is a loss curve and orange curve is AUC curve.
Blue dashed line denotes the suggested number of epochs
when to stop training the model. Green dashed line shows
the highest AUC value which is reached during the training.

Figure 16 shows histograms of the lifetime function values
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Table 4. Area under the curve values for LSTM models re-
trained with early stopping.
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Figure 16. Histograms of lifetime functions at survival time
t∗ for failed batteries, red bars, and censored batteries, blue
bars, for the best performing model.

BV(t; t0) for failed and censored batteries on the test dataset.
The lifetime function BV(t; t0) is evaluated at survival time
t∗, i.e., the time when the battery either fails or leaves the
study without any problem. The figure shows that, as ex-
pected, on average failed batteries have lower values of the
lifetime function than censored. The corresponding ROC curve,
computed based on values of the histograms, is shown in Fig-
ure 17 which corresponds to a maintenance policy based on
the value of the lifetime function. Taking into account uncer-
tainties in the data, lack of a battery health indicator, the fact
that data is not initially intended for prognostic purpose, and
the complex nature of battery degradation, the performance of
the best model is regarded as an important result with signifi-
cant improvement compared to time- or mileage-based main-
tenance as well as standard methods such as Cox regression.

10. CONCLUSIONS

This paper addresses the problem of predicting failures of
lead-acid batteries of heavy-duty vehicles based on sparse op-

Procedure: building predictive model
Data: Sparse vehicle operational data
Steps to build the best performing predictive model:
Imputation:

1 Create groups which are based on some criterion, for
example time in our case.

2 Assign every data readout of each vehicle to one of the
groups.

3 If a group contains more than one readout from a
vehicle, keep only the latest readout.

4 In every group find the mean of non-missing variables
and use it to fill the missing values.

Input variables:
5 Encode discrete variables with 1-of-(C-1) encoding.
6 Standardize histogram variables.

Targets:
7 Build the target lifetime function for every data

readout of every vehicle.
Data balancing:

8 Randomly split censored batteries into 5 equal in size
data sets.

9 Create 5 new training data sets by combining the set of
failed batteries with one of the 5 sets of censored
batteries.

Ensemble of LSTMs:
10 Build 5 LSTM networks with 2 hidden layers.
11 Use 64 hidden states in the LSTM cells.
12 Set the dropout rate for linear transformations of

inputs to 0.5 and the dropout rate for linear
transformations of internal states to 0.4

13 Train the networks for 110 epochs with batch size 128.

erational data. Sparse means that few, possibly as few as one,
data readouts from a vehicle is available to the prognostics
algorithms. The data are mainly accumulated sensor read-
ings collected during the battery lifetime. Data is typically
recorded during irregular workshop visits. The data structure
motivates the choice of the probabilistic framework to predict
battery failure. The proposed method is not tailored to batter-
ies in particular, but can be applied to other components as
well as long as the data is similar to the case studied here.

Two methods for predicting probability of component fail-
ure are proposed and compared, RSF and LSTM-based neu-
ral networks that incorporate the structure of sparse vehicle
operational data into their architectures. The available data
contains several uncertainties where one is a high rate of non-
random missing values. One result is that a mean imputa-
tion approach to impute missing data gives comparable per-
formance to more involved imputation algorithms and this
is consistent with that the non-random missing data behav-
ior. Models based on neural networks give significantly bet-
ter performance than RSF-based models, both in the case of
only one data readout and multiple data readouts per vehicle.
In turn, both models are better than a standard non-parametric
algorithm such as Cox regression used as a baseline compari-
son. The LSTM-based neural network model requires careful
handling of the imbalanced data. In the data set used in the
study, vehicles with functioning batteries are 5 times more
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common than vehicles with failed batteries and this lead to
an ensemble of balanced predictive models.

Key research questions of this work are how to handle the
sparse data and the effects of the accumulative nature of sen-
sor readings. On the one hand it is shown that having more
frequent and regular readouts will lead to improved predictive
performance of the models, which is natural since more infor-
mation is provided for the predictive model. This result helps
in decision making process regarding a new data collection
approach. At the same time, due to the accumulative nature
of sensor readings from a vehicle, there is no need to perform
data logging at a high rate, e.g., every minute or hour. Per-
forming a data readout from a vehicle once in, e.g., a couple
of months is enough for a quality predictive model. This re-
sult significantly reduces amount of transmitted information
from a vehicle to a database which in turn reduces the cost of
equipment on the vehicle.
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NOMENCLATURE

AUC area under the curve
CS class sampling according to frequency of data
EMLP ensemble multilayer perceptron
ETL extract, transfor, load
KL Kullback-Leiber divergence
LSTM long short-term memory
MissForest random forest-based imputation technique
MLP multilayer perceptron
MOTI imputation with mean computed within groups
mtry number of candidates variables selected for

split in a random survival forest model
nodesize number of unique samples in a terminal node

of a random survival forest model
NB no balancing
ntree number of trees in a random survival forest

model
OTFI on-the-fly-imputation
PDF probability density function
RB standard batch sampling
RF random forest
RNN recurrent neural networks
ROC receiver operating characteristic
RSF random survival forest
RUL remaining useful life
WL weighted loss
ZP zero padding
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Figure 17. Receiver operating characteristic curve, red curve,
for the best performing model. Blue dashed line is random
guess performance.
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