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ABSTRACT 

Robotic roller hemming is currently one of the most used 
solution for joining metal sheets in automotive industry, 
especially for those production lines which need to favor 
flexibility with respect to raw productivity and is mostly 
employed to assemble car doors. Hemming is a fairly 
delicate process since it does not only suffice a technical 
requirement – to join two panels together – but also an 
aesthetical one, since the joint panels are an integral part of 
the vehicle design and as such an important selling point. 
An unpredicted rupture or an advanced degradation 
condition of the system would lead to a significant loss in 
the quality of the final product or to a sudden stoppage of 
the production line. The development of a PHM system for 
hemming devices would hence provide  a significant 
advantage, especially if designed to work for both new and 
legacy equipment. In this paper, we provide the results of a 
preliminary analysis of a new PHM framework for robotic 
roller hemming studied to work without having access to 
PLC data; the employed data-driven methodology is 
detailed and applied to the case of increasing wear in the 
head finger roll. Results from different prognostics routines 
are hence presented and compared. 
1. INTRODUCTION 
Maintenance of production systems has a critical impact on 
the operations and on the performance of manufacturing 
lines, since its scheduling and effectiveness affect the plants 
productivity (Gopalakrishnan, Skoohj, and Laroque, 2013), 
product quality/quality costs (De Ruyter, Cardwell-Hall, and 
Hodgson, 2010) and the overall production costs 

(Bevilacqua and Braglia, 2007). To better highlight the 
importance of maintenance, a recent study by Thomas 
(2018),  estimates that maintenance costs usually represent 
between the 15% and the 70% of the final cost of goods 
sold. Traditionally, maintenance on production equipment 
follows a fixed schedule optimized to minimize the 
maintenance cost and the occurrence of unpredicted 
downtimes (Pascual, Meruane, and Rey, 2008). However, 
almost 50% of the preventive maintenance intervention are 
deemed as unnecessary (Vogl, Weiss, and Helu, 2016), and 
unpredicted downtime still represents a significant portion 
of the total cost of manufacturing and of the production time 
(estimated in 23.9 % and 13.3%  for Sweden by Tabikh, 
2014). It is hence clear the appeal that brought to a 
significant increase of manufacturers interest in developing 
effective PHM solutions for production systems (Thomas, 
2018). The same can hence be observed in literature, with 
an increased number of contribution in the last few years, 
covering several fields of applications and different 
approaches to the problem. In example, Alzahrani, Liu and 
Kolodziej (2018) recently proposed a data-driven technique 
to detect and classify tools wear in end mills through the 
analysis of acoustic emission. A model based approach was 
instead proposed by Longo, Serpi, Jacazio and Sorli (2018) 
to enhance the maintenance of automotive industry plants, 
while data-driven PHM solutions in the semiconductors and 
electronics business have been recently presented as well 
(Li and Wu, 2018), (Singh, Selvanathan, Zope, Nistala, & 
Runkana, 2018). Focusing on the automotive industry, one 
of the most critical operations performed during cars 
assembly is the hemming, that is the technology used to join 
inner and outer closure panels together by bending or 
folding the flange of the outer panel over the inner one. (Le 
Maoût, Thuiller and Manach, 2010). Among the available 
solutions, roller hemming has become one of the most 
frequently adopted (Esquivel, Carbone, Ceccarelli, Jáuregui, 
2016); this process makes use of a rolling element to bend 
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the metal sheets, providing a less traumatic deformation to 
the panels and hence resulting more suitable for low weight 
designs and materials (Montalbo, Roth and Kirchain, 2008). 
To allow for maximum flexibility of the manufacturing 
lines, roller hemming is nowadays mostly performed by 
means of a robotic arm (Saboori, Saboori, Carlson and 
Söderberg, 2009). Such solution is however extremely 
sensitive to change in the robot performances (Drossel, 
Pfeifer, Findeisen, Rössinger, Eckert and Barth, 2014) 
making it a case of great interest for both the PHM 
community and the manufacturers. This article explores a 
possible PHM solution for the problem, detailing the 
followed approach and the first results.    
2. MOTIVATION 
The World Class Manufacturing Association is a not-for-
profit organization of manufacturing companies in May 
2006, which objective is to foster development and 
application of the best production practices, contributing to 
a more competitive system of production to the benefit of 
member companies, their plants and, of course, end 
customers. The WCM Association promotes knowledge 
sharing among member companies. In addition, it appoints 
an official Auditor to support the program and assign WCM 
Awards to the leading plants. FCA plants worldwide 
adopted the World Class Manufacturing as production 
methodology, which involves the entire organization, from 
safety to environment, maintenance, logistics and quality. 
The primary objective of WCM is continuous improvement 
in all areas of production in order to guarantee the quality of 
the final product and meet customer expectations. Projects 
developed under the WCM, which rely on a high level of 
employee involvement, target the elimination of all forms of 
waste and loss with the ultimate objective of achieving zero 
accidents, zero waste, zero breakdowns and zero inventory. 
World Class Manufacturing has defined seven steps for 
improving maintenance, described in figure 1 (FCA, 2016). 
 STEP 1 - Preventive elimination of forced deterioration 
 STEP 2 - Preventive breakdown analysis 
 STEP 3 - Preventive definition of maintenance standard 
 STEP 4 - Countermeasures against weak points of the 

machine and lengthened equipment life 
 STEP 5 - Build a periodic maintenance system 
 STEP 6 - Build a CBM system 
 STEP 7 - Maintenance cost management 
The first three steps are usually reached after the ramp-up 
phase in new plants, while older ones starts from the first. 
Prognostics (as CBM); seats at the sixth step in the chain, 
and its development is admitted during production. This 
means that prognostics solutions might be developed for in-
service or legacy equipment, hence posing additional 
challenges in terms of signals availability or access to the 
machine.  

 
Figure 1. Steps for maintenance improvement according to 

WCM 
The application that will be presented in Section 4 is indeed 
part of this class of machinery, being already in service in 
several production lines. Given the issues in having access 
to the PLC data, the proposed PHM system is based on the 
use only a handful of sensors (which might be additional or 
pre-existent depending on the application), placed in easily 
accessible sections of the machine.  
3. METHODOLOGY 
Developing a PHM system for in-service machinery 
presents the advantage of having easy-access to data from 
the field, hence providing consolidated input to FMECA 
analysis and a nice assets of information to assess the 
nominal behavior of the hemming system. Almost more 
importantly, the availability of these data allows to highlight 
the occurrence of practical issues connected to the use of 
these devices which are not usually considered in 
simulation-only environments, hence boosting considerably 
the confidence in the developed feature extraction method. 
At first, a FMECA analysis is used to study the known 
issues that may occur in the hemming machine and hence to 
rank them based on severity, frequency and observability 
criteria (Vachtsevanos, Lewis, Roemer, Hess, and Wu,  
2006).  

 
Figure 2. Methodology 
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A physical model of the system is then built and validated 
on top of those data, and used to generate increasingly 
degraded conditions for a few notable failure modes 
describing the fault evolution according to well-known, 
robust physical representation available in literature. This 
approach was deemed necessary due to the lack of 
meaningful historical data and follows a similar 
methodology applied with success in the aeronautic field 
(Autin, Sochelau, Dellacasa, De Martin, Jacazio, and 
Vachtsevanos , 2018). Since the application will not involve 
exchange of information with the PLC controlling and 
monitoring the behavior of the machine, significant effort 
has been reserved to the study of the feature extraction 
process, to ensure the capability to correctly recognize 
beginning and end of each working cycle and to manage 
data obtained during eventual interruptions of the hemming 
process. Feature selection has then been performed, paying 
attention to the behavior of the feature candidates with 
respect to the occurrence of possible degradations in the 
considered sensor(s). Hence, fault detection routines have 
been prepared and tested on simulated data. Finally, 
prognosis has been achieved by means of two different 
methods, which merits and issues are presented and 
compared. A brief overview of the employed approach is 
depicted in figure 2. 
4. COMAU RHEVO APPLICATION 
The object of this research is a COMAU RHEvo Roller 
Hemming head depicted in figure 3.  The hemming head is 
the COMAU product for robotic roller hemming; attached 
to the last link of a 5 degrees of freedom articulated arm, it 
allows for a flexible and easily deployable solution. The 
device can be functionally described as a double spring 
mechanical structure that permits to use a single tool for 
Push and Pull applications. A rotating element is attached to 
this assembly and brought to contact with the metal sheets 
or panels to be jointed.  

 
Figure 3. The RHEvo 

Combined with the position controlled robotic arm, the 
internal springs allows a full force control over the tool path 
with a total force range of ± 2200 [N]. The RHEvo is 
equipped with two load cells used to monitor the exerted 
force, which is needed to control the system behavior during 
in-line service and to aid the robot calibration during the 
installation phase.  
4.1. FMECA analysis 
FMECA analysis are a necessary first step in the 
development of a novel PHM application. Vachtsevanos et 
al. (2006), suggest to study and rank the possible 
degradations according to four criteria: severity (S), 
frequency of occurrence (F), detectability (D) and 
Replaceability of the faulty component (R). For this 
application, we assigned to each factor a value ranging from 
1 (less critical) to 5 (most critical). The results are hence 
computed as the product of each component and reported in 
Table 1.  It emerges that RHEvo fault modes can be grossly 
divided into three major categories. Faults causing 
variations in the system stiffness, faults causing offsets in 
the exerted force and faults affecting the process quality but 
not the RHEvo performances. The first category 
comprehends the spring yielding and the wear of internal 
components, in the second we can find the wear of the roller 
while the remaining fault modes fall in the last class. The 
effects of most of the presented faults on the system 
performances are not expected to be significantly different 
from each other, since they mostly revolve around variations 
in the overall dynamic stiffness. At the same time, 
replacement of most of the eventually faulty RHEvo 
components demands the disassembling of the whole 
hemming head, with the sole exception of the faults 
affecting only the roller. As such, the interest in exactly 
classifying the issues possibly affecting the internal parts of 
the device is low. Priority is hence given to monitoring the 
overall health status of each sub-system, eventually studying 
dedicated prognostics routines. 

Table 1. FMECA results 
Failure mode Effect F S D R OVR 
Spring yielding Alteration of the 

exerted force 4 4 2 4 128 
Internal 

components wear 
(bushes/pad/ 
finger roll) 

Alteration of the 
exerted force 3 4 2 5 120 

Bearings wear 
Vibrations increase, 

worsening of 
hemming results 

2 3 1 4 24 

Roller wear Variation of the 
exerted force 2 4 2 2 32 

Roller surface 
degradation (dirt) 

Loss of process 
quality 4 2 5 1 40 
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5. PHYSICAL MODEL 
The roller hemming head is a mechanically complex device 
which can be in first approximation modelled as the simple 
two-springs, two-dampers, one mass system reported in 
Figure 4; ݔ଴ represents the position of the robot attachment, ݔ the position of the internal mechanical link and ݕ the 
position of the roller. Bending effects due to the positioning 
of the roller are in first approximation neglected. As such, 
the mechanical equilibrium of the system can be simply 
described as a system of two equations, 
൜ ܨ = ଴௫ܨ + ݇଴(ݔ − (଴ݔ + ܿ଴(ݔሶ − (ሶ଴ݔ
ሷݔ݉ + ܨ + ݔ)଴௫௬݇ܨ − (ݕ + ሶݔ)ܿ − (ሶݕ + ௙௥ܨ = 0 (1) 

Where F is the measured force and Ffr the friction due to 
direct contact between mechanical components in relative 
motion, while F0x and F0xy are the values of preload for the 
two springs. Springs stiffness and damping coefficients are 
respectively k0, k and c0, c, while m is the translating mass 
of the system. The model parameters have then been tuned 
according to a large experimental data set. A small example 
is reported in figure 5, where the comparison between the 
simulated and the experimental values for the exerted force 
have been compared over a portion of a real working cycle. 
Please notice that the force values have been normalized 
with respect to a constant which will not be disclosed in this 
paper and that the time scale has been altered. The force 
sensor is modelled as a second order transfer function, with 
an over-imposed Gaussian noise. Although simple, this 
model allows to easily implement the most significant fault 
modes described in Section 4, which are hereby recalled and 
mathematically described. 
5.1. Spring yielding/cracking 
Yielding and eventually the inception and growth of a crack 
causes a loss of the spring stiffness directly proportional to 
the extent of the damage. 

 
Figure 4. Dynamic model 

 
Figure 5. Model validation 

Cracks originates due to fatigue associated with the repeated 
cycles of exerted force. The presence of a crack affects the 
spring stiffness by reducing the size and changing the shape 
of the spring section up until the final static rupture. Given 
the results of the model, crack growth can be estimated by 
incorporating the Paris’ Law inside the model as done in 
(Autin, Sochelau, Dellacasa, De Martin, Jacazio, and 
Vachtsevanos , 2018). 
5.2. Wear in several components 
Wear of the internal components is due to the contact 
between parts in relative motion and can be modelled as an 
increasing backlash at the attachments of the two springs, 
which growth depends on Archard’s law. Wear of the roller, 
on the other hand, is modelled by translating the value of y 
by an increasing displacement y, function of the growth 
coefficient Kw as, 
ݕߜ = ௪ܭ න ݐ݀ ௖ܨݒ

௧
 (1 + ߙ sin(߱ݐ)) (2) 

Where v is the linear speed of the roller, Fc the contact 
force,  the roller angular speed and  a parameter to 
simulate a non-uniform distribution of wear along the roller 
surface. This finds justification when considering that the 
material of the roller is extremely hard and chosen to 
survive through prolonged usage without suffering from 
significant damage for abrasive wear processes. However, 
localized abrasive or adhesive phenomenon could still 
occur, leading to small non-uniform deformations. 
6.  EXPERIMENTAL DATASET 
The experimental data set is made of a large number of 
acquisitions of the exerted force signal captured on healthy, 
in-service roller-hemming machines. Signals are sampled at 
25 Hz for force monitoring, hence filtering the high-
frequency components. Although available inside the robot 
PLC, we don’t have a direct access to data such as joint 
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position, motor currents, flags for start and end of each 
cycle etc. An example of the force signal for one working 
cycle is reported in figure 6. 

 
Figure 6. Data set for one working cycle 

7. OPERATIONAL SCENARIO 
The chosen operational scenario is that of a robotic roller-
hemming machine working in an automotive assembly line. 
In this application, the hemming head is used to perform 
joints on the car doors. Operations are not completely 
automatized, and the robot can only work under human 
supervision. As such, the order through which the doors are 
worked is unknown a-priori and is subject to possible 
changes during production, while the number of operations 
for each car can be assumed constant. In the same way, the 
duration of each working cycle is not fixed and can 
significantly vary. One of the most common occurrences is 
that a working cycle might get paused due to maintenance to 
the robot or other parts of the assembly line or due to the 
mandatory breaks that the human supervisor must take 
during his or her shift; when this happens, the robot is 

paused and kept still in a neutral position, while sensors 
signals are still recorded. Data for healthy systems used in 
this paper naturally incorporates these issues, since they 
come from real in-service devices. Other possibly occurring 
disturbances, such as electrical noise, slight temperature 
variations and off-nominal working conditions are present 
as well.  As stated in Section 2, the PHM system won’t have 
access to PLC data to allow for easier implementation in 
already operating lines. As such, it will rely only on the 
signals provided by the roller-hemming head (the exerted 
force signal), while no information about the robot (motor 
currents, joints position etc.) is available. The PHM routines 
should be computationally cheap, so that they can be run 
directly on-site without resorting to external servers and 
without the need to connect the robotic hemming system 
with a central hub for data-mining. The reliance on only one 
sensor means that additional care has to be put in the 
processing of raw data and in the feature extraction, and that 
features must be influenced as little as possible by possible 
degradations of the force sensor.  Given the scenario, the 
PHM system will rely on the feature(s) extracted from a 
single force signal to detect a set number of anomalous 
behaviors. A reasoner will hence be responsible for fault 
isolation and, whenever possible, fault identification. 
Prognosis is then performed and the plant maintenance 
office/system is alerted. A representative flowchart for the 
PHM framework is reported in figure 7. 
8. DATA MINING AND FEATURE SELECTION 
Feature selection is the core process of any PHM system 
and can be divided in two consequent off-line steps. The 
study of a reliable procedure to extract the feature 
candidates and the choice of the features from the 
previously obtained pool. Relying on data coming from only 
one signal, a critical part of this research project is the study 
of proper feature extraction techniques. Due to the uncertain 

Figure 7. The PHM framework 
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and wide varying nature of the time scale of the problem, 
the number of working cycles provides a much more 
meaningful measure of the system usage than the number of 
working hours. As such, it is preferable to evaluate any 
feature(s) candidate over each working cycle; at the same 
time, it makes more physical sense to correlate the fault 
growth with each completed cycle rather than with respect 
to working hours, since the considered mechanical 
degradations are governed by stress cycles and are not 
affected by idle time. Working cycles are easily identified 
by flags in the PLC controlling the robot. However, lacking 
the access to PLC data, the PHM system must be able to 
autonomously identify the start and the end of each cycle. 
Hence,  feature selection process according to state-of-the 
art criteria can be performed (Vachtsevanos et al, 2006). 
Both experimental data coming from in-service equipment 
and synthetic data provided by the validated simulation 
model have been used for these tasks. In this section we 
look at these problems and describe the adopted approach, 
detailing the peculiarities of each step and discussing their 
results. 
8.1. Recognition of working cycles 
We define as working cycle for this application the whole 
set of operations that the robotic roller-hemming device 
must perform to complete the assembly tasks for one car 
door. From common practice experience we can observe 
that 
 The number of operations performed for each car 

remains the same (same car type) 
 The order of the operations performed may change 

from one car to the following 
 Cycles can be interrupted and reprised following 

specific occurrences, as shown in figure 8 (maintenance 
on the production line, operators breaks etc.) 

 Time duration can be variable 
To recognize and isolate a single working cycle, the 
algorithm works following an iterative procedure while, 
 Searching for the cycle start 
 Searching and eliminating pauses in the operations 
 Searching for the end point of the cycle 
 Eventually adjusting the end point position 
The algorithm works having data from at least two 
consecutive cycles and data from at least one reference 
cycle. Through the use of rolling variance we can easily 
identify time spans in which data are characterized by low 
variance, such as the cycle start, the cycle end and possible 
breaks in between. In particular, cycle starts are identified as 
the first data point for which the rolling variance overcomes 
a fixed threshold, comparable with the measuring noise. In 
this way, the system searches for the first data point for 
which the variation of the signal behavior cannot be  

 
Figure 8. Example of working cycle with short pause 

explained as a product of the noise affecting the 
measurement, hence representing a change in the machine 
operations. Breaks are detected whenever we have more 
than a fixed number of consecutive data points with low 
rolling variance, and those points are hence eliminated from 
the analysis. As shown in Fig. 8, the presence of several 
consecutive points with low variance is a good indication of 
the lack of movements of the hemming head. To detect the 
periodicity of the signal and hence find the point 
correspondent to the end of the working cycle we employed 
a two-steps routine. In the first step we make use of the 
autocorrelation function, defined as follows, 
,ݐ)ܴ ݐ + Δݐ) = ሾ(ܺ௧ܧ − ௧)(ܺ௧ା୼௧ߤ −  ௧ା୼௧)ሿߤ

௧ା୼௧ߪ௧ߪ
 (2) 

Where ܺ ߤ ,  and ߪ  are respectively the realization of the 
process, its mean value and its standard deviation at times t 
and t+t. Through autocorrelation we can automatically 
isolate a certain number of candidates Δݐ corresponding to a 
potential periodicity by searching for peaks as shown in 
figure 9.  

 
Figure 9. Autocorrelation over a 300 s signal 
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Figure 10. Cycle recognition - results 

Hence the search for the right value can be further refined 
by looking in this pool of time instants for the one 
associated with the moving average value of the force signal 
closer to that of the start. It is in fact expected that the force 
measured in correspondence of the end cycle should be 
extremely close, if not equal to, the value measured at the 
start of each cycle; in those conditions the hemming head is 
not pressed against the metal sheets, and the value of the 
measured force is theoretically equal to the preload of the 
springs, minus the effect of friction components. The 
algorithm has been tested on both healthy experimental data 
and faulty conditions simulations, providing reliable results 
in both cases. In some heavily disturbed instances, the 
algorithm can make mistakes by overestimating the time 
instant of the cycle end. To avoid this occurrence, a 
subroutine is called that perform a similarity check with a 
pool of reference signals. If the similarity is not sufficient, 
the time instant associated with the end of the cycle is rolled 
back until the similarity does not increase any more in a 
significant way. A way to fasten this process is to search for 
time instant associated with low values of the rolling 
variance, since the signal at the end of the working cycle 
should feature low variations. An example of the results of 
the cycle recognition process is reported in figure 10. 
8.2. Feature selection 
The feature selection process is probably the most critical 
step in the definition of a PHM system. During this stage of 
the development, we search for indexes which must be 
representative of the health status of the system; aiming at 
prognosis means that these indexes must present a high 
correlation with the growth of the faults associated with 
each of them and possibly a low correlation with every other 
faults. The first step in the feature selection process is to 
obtain data in degraded conditions and compare these data 
with those sampled for healthy (also called baseline) 
conditions. Healthy conditions data have been obtained 
directly from the field, while degraded conditions have been 
simulated by means of the validated model described in 
Section 4. Relying on only one sensor, we have to take into 

account the possibility of a degradation of its characteristics 
in time and eventually its failure; as such, the feature(s) that 
we might employ in the PHM system should be ideally 
unaffected by the most common types of faults affecting the 
sensor and its signal, such as zero-errors, increased 
noisiness of the output, variations from the sensor’s nominal 
measuring characteristics. The effects of these fault types 
have been introduced by corrupting both the healthy and the 
degraded data sets by over imposing a growing noise and a 
growing negative off-set  on the force signal. Example of 
the considered conditions of the force signal (healthy, 
faulty, noise increase and off-set presence) are reported in 
figure 11. The faulty signal is related to wear in one of the 
RHEvo components. However, the effects of the considered 
degradations of the RHEvo on the physics of the system are 
unfortunately quite similar, since they all revolve around a 
loss of the rolling head stiffness. Given the reliance on only 
one sensor, difficulties are expected in obtaining a complete 
disambiguation of the possible faults. Several candidates, 
such as the mean value of the force signal over each cycle, 
the variance, peaks amplitudes, have been at first analyzed 
without success. Hence we adopted a different approach 
based on the use of a reference signal for healthy condition 
and the Kullback-Leibler divergence. The Kullback-Leibler 
divergence is a distribution-wise asymmetric measure of 
divergence between two probability distributions ܲ  and ܳ 
(Kullback, & Leibler, 1951); its value can range from 0 
(similar behavior of the distributions) to 1 (expectations 
given distribution approach zero). For discrete probability 
distribution, it can be expressed as, 
(ܳ||ܲ)௄௅ܦ = ෍ ܲ(݅) logଶ

ܲ(݅)
ܳ(݅)௜

 (3) 
In our study, data distributions correspondent to each 
working cycle are compared with that of a reference signal 
for healthy conditions. We evaluated the behavior of this 
feature with respect to the previously introduced four 
conditions (healthy, failed, noisy sensor, offset in the 
sensor), and reported an example of the results in figure 12. 

 
Figure 11. Analyzed signals types 
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Figure 12. Feature behavior in different conditions 

We can observe a good separation for the failed conditions, 
associated with advanced wear conditions able to severely 
deteriorate the hemming operations. We can similarly 
observe that the eventual occurrence of issues in the force 
sensor is not able to trigger false alarms on the feature, since 
its values remains inside the healthy baseline. The chosen 
feature is moreover strongly correlated with the fault growth 
process, presenting a correlation factor equal to 0.899 and 
can be as such considered suitable for prognosis.  
Interestingly, some of the feature candidates discarded for 
the fault detection of the selected RHEvo degradations can 
be used to track the evolution in time of possible issues in 
the force sensor; the average value of the signal over a cycle 
can be used to detect the occurrence of off-set errors, while 
rolling variance can observe the increase of the signal noise. 
9. FAULT DETECTION 
Fault detection is the set of operations performed by the 
PHM algorithm to detect the anomalous behavior of the 
selected features. In this case, fault detection is performed 
by means of a purely data driven approach, where current 
data distribution obtained over moving windows are 
compared with a baseline representative of the healthy 
conditions. In this case, a fault is declared when the 80% of 
the moving distribution overcomes the 80th percentile of the 
baseline for healthy conditions, hence accepting 20% 
probability of false positive and 20% probability of false 
negative. These percentages are considered acceptable since 
the selected fault modes (wear and spring yielding) are 
expected to develop slowly according to extensive industrial 
experience. We run tests on a few degradation patterns, 
focusing on wear processes, obtaining an average fault size 
at detection of 42% of the critical size. Although high, this 
value does not represent an issue of the system 
performances, since the fault evolves slowly during 
operations. An example of fault detection performed over 
synthetic data obtained by enabling wear growth during 
simulations is reported in figure 13. The two most 
significant distributions (baseline and at detection) are 

highlighted along the behavior of the confidence associated 
with the fault declaration and the fault detection flag. The 
fault ratio is thought as the ratio between the wear extension 
and its critical value, associated with significant 
performance degradation of the hemming procedure. 
We hence performed a few tests running the fault detection 
algorithm over data suddenly affected by an increased 
variance in their distribution due to a sudden loss of 
accuracy of the sensor output. We considered an increase of 
the signal variance up to five times its nominal value, 
possibly caused by issues in the signal conditioning module.  

 
Figure 13. Fault detection 

 
Figure 14. Fault detection with noisy sensor data 

Result of one of the trials is reported in figure 14, where we 
can observe that the sudden occurrence of the increased 
variance issue is not able to trigger a false alarms, even if it 
raises the probability associated with the fault declaration, 
which is hence provided correctly once that the wear begins 
to develop. The presence of zero-errors of the sensor, 
covered by the increased off-set case, does not provide 
instead a significant contribution to the variation of the 
stochastic behavior of the selected feature; as such, no 
further tests on this particular issues have been performed. 
10. FAILURE PROGNOSIS 
Two different techniques have been considered to perform 
the failure prognosis; an advanced declination of particle 
filtering and a Long-Short Term Memory (LSTM) artificial 
neural network. While particle filters are the current state-
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of-the-art for long term prediction within the PHM 
community, LSTM tend to exhibit better performances for 
failure modes affected by abrupt ends, which can be the case 
for several mechanical degradations, such as crack 
progression (Huang, Khorasgani, Gupta, Faraht, & Zheng, 
2018), hence resulting of particular interest in the context of 
a purely mechanical device. The theoretical aspects of these 
methods are hereby briefly recalled and their results 
compared. 
10.1. LSTM for failure prognosis 
Long Short Term Memory networks, usually just called 
LSTMs, are a special kind of Recursive Neural Networks 
(RNNs), capable of learning long-term dependencies. Firstly 
introduced by Hochreiter and Schmidhuber (1997), and 
were further refined and popularized in several research 
fields (Gers, Schmidhuber, & Cummings, 2000), (Courville, 
Goodfellow, & Bengio, 2016). LSTMs are explicitly 
designed to avoid the long-term dependency problem by 
means of a specific four layer structure.  

 
Figure 15. Repeating modules in LSTMs 

All RNNs type have the form of a chain of repeating 
modules of neural network, where each module feeds off the 
results of the previous one and provides input to the 
following. In standard RNNs, this repeating module usually 
have a very simple structure, i.e. a single hyperbolic tangent 
layer. The four layers of the LSTMs are instead more 
complex, as shown in figure 15, each of them performing a 
different function. Each module communicates with the 
surrounding ones through two ports: a “cell state” port, 
providing the state of the system as computed in the 
previous module, and a “previous output” port, providing 
the output of the previous module. We can observe a 
“forget” layer, defining which information coming from the 
previous modules are to be used, an “input” layer defining 
which states will be updated,  a “candidate” layer, which 
creates a vector of new state candidates and an “output” 
layer which provides the output of the single module. 
LSTMs have found applications within the PHM 
community since they are relatively easy to implement and  
are able to provide better results than other traditional 
techniques in system possibly subjected to abrupt failures.  
In this case we trained the network to output, given the 
feature value, the distance between the moving distribution 
of the selected feature and the baseline, normalized with 

respect to the failure conditions, with the aim of predicting 
the RUL with respect to a threshold equal to 0.9. The 
training phase is critical for the long-term prediction 
performance of the LSTMs, since the network capability to 
accurately forecast the future behavior of the degradation 
pattern is heavily influenced by the employed batch size and 
the used number of epochs. A comparative study of the 
LSTM behavior for different combinations of epochs 
(between 50 and 150) and batch size (between 20% and 
85% of the training set) was performed over a few 
degradation patterns. Results shows that the LSTMs need to 
work with a batch size covering a significant portion of the 
training set (above 75%) to provide acceptable results, while 
in the case under analysis performance increases were not 
appreciable increasing the epochs number above 150.  
10.2. Particle filtering for failure prognosis 
Particle filters are a class of Bayesian estimators for non-
linear, non-Gaussian stochastic problems which can be used 
to approximate the hidden state(s) of the system 
(Arumpalam, Maskell, Gordon, & Klapp, 2017) and predict 
their evolution in time (Orchard, 2007). The filter estimates 
the current state(s) of the system by performing two 
sequential steps, prediction and filtering, combining real-
time observations of the selected feature ݕ௧ with a state 
model and a process model, 
ቊ(ݐ)ݔ = ௧݂൫ݐ)ݔ − 1), ൯(ݐ)߱

(ݐ)ݕ = ℎ௧((ݐ)ݔ,  (4)         ((ݐ)ߥ
Where ݔ  is the hidden state, ߱and ߥ  are the measure and 
process noise, while ௧݂  and ℎ௧  are non-linear mappings.  
During prediction, the filter makes use of both the 
knowledge of the previous state estimate (or its initialization 
value) ݌(ݔ଴:௧ିଵ|ݕ଴:௧ିଵ)  and the process model to estimate 
the next time instant, 
(ଵ:௧ିଵݕ|଴:௧ݔ)݌ = ∫  ଴:௧ିଵ  (5)ݔ݀(ଵ:௧ିଵݕ|଴:௧ିଵݔ)݌(௧ିଵݕ|௧ݔ)݌
Since an analytical solution for this expression does not 
exist in most of the cases, sequential Monte Carlo 
techniques, or particle filters, can be used (Roemer, 
Byington, Kacprszyinski, Vachtsevanos, & Goebel, 2011). 
Particle filters approximate the state pdf using particles 
associated with discrete probability masses, also called 
weights ݓ෥ , 
(ଵ:௧ݕ|௧ݔ)݌ ≈ ଴:௧௜ݔ෥௧൫ݓ ൯ߜ൫ݔ଴:௧ − ଴:௧௜ݔ ൯݀ݔ଴:௧ିଵ (6) 
Where ݔ଴:௧௜  are the state trajectories. During the second stage 
of the particle filters, the “filtering” step, the algorithm 
updates the weights using one of several resampling 
techniques. Although not the best in performance, 
Sequential Importance Re-sampling (SIR) provides a good 
compromise between end results and required 
computational effort (Vu, Do, Jha, Theilliol, & Peysson, 
2018) and has been as such chosen inside this framework. 
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Long-term predictions are used to estimate the probability 
of failure in a system given a hazard zone that is defined via 
a probability density function with lower and upper bounds 
for the domain of the random variable, denoted as Hlb and 
Hup, respectively. Traditionally, the probability of failure at 
any future time instant is estimated by combining both the 
weights of predicted trajectories and specifications for the 
hazard zone through the application of the Law of Total 
Probabilities as, 

ோ௎௅,௧̂݌ = ෍ ܺ|ܨ൫݌ = ො௧ோ௎௅௜ݔ , ௟௕ܪ , ௨௣൯ܪ
ே

௜ୀଵ
 (7) 

Acuña and Orchard (2017, 2018) recently underlined that 
this expression is mathematically incorrect, since it has been 
misinterpreted as a Cumulative Mass Function. In (Acuña 
and Orchard, 2017) the expression to compute the 
Probability Mass Function for the occurrence of a failure ݌(ܨ௞) at time instant k with prediction started at time instant ݇௣ has been redefined as,  
(௞ܨ)࣪ = ࣪ ቀܨ௞ቚܪ௞೛:௞ିଵቁ ࣪ ቀܪ௞೛:௞ିଵቁ,    ∀݇ > ݇௣ (8) 
Where ࣪ ቀܨ௞ቚܪ௞೛:௞ିଵቁ  is the probability of the system to 
encounter a failure at time instant k under the hypothesis 
that the system remains healthy up to time instant k-1, 
equivalent to the traditionally adopted expression (7). 
࣪ ቀܪ௞೛:௞ିଵቁ is hence the probability that the system has not 
failed up to time instant k-1. The use of this expression 
allows to easily compute the Acuña’s discrete-time risk-of-
Failure (Acuña and Orchard, 2018) associated with the RUL 
estimate for time instant k given the start of the prediction at 
time instant ݇௣ as, 

ℛ(݇|ݕଵ:௞) = ෍ ࣪ ቀܨ௜|ݕଵ:௞೛ቁ
௞

௜ୀ௞೛ାଵ
 (9) 

The degradation model used inside the framework is derived 
through extensive use of symbolic regression techniques to 
search for expressions to find the model that best fits the 
available datasets paying attention to both accuracy and 
simplicity.  We exploit the tool provided by Schmidt and 
Lipson (2009) to represent the fault size as a function of the 
number of working cycles by assembling the model by 
combining basic blocks such as mathematical operators, 
analytical functions, constants and state variables. The 
particle filtering framework under analysis makes use of a 
few additional techniques; the degradation model is 
continuously and automatically tuned as data streams in, 
while an outer correction loop is used to fine tune the 
process and the measure noise by combining the result of 
short-term predictions obtained for previous time instances 
with the state estimates (De Martin, Jacazio, & Sorli, 2018). 
The particle filtering framework is hence applied to the 
simulated degradation data, making use of a moving 

window to represent the feature pdf between time instants t 
and t-M, where M is the moving window size equal to 100 
cycles. The algorithm runs in background and long-term  
prognosis is recalled periodically after the fault detection. 
Failure is declared in correspondence of a fixed threshold, 
obtained as the 50th percentile of the feature values for 
which the degradation of the simulated roller-hemming 
performance may begin to cause issues to the production 
process. Since the tuning of the cycle-dependent 
degradation model is performed automatically within the 
algorithm, no further action have been required. An example 
of the particle filter behavior and its application to failure 
prognosis is reported in Fig. 16. 

 
Figure 16. Failure prognosis through particle filtering 

10.3. Performance metrics 
Traditional performance metrics for PHM systems revolve 
around the idea of measuring the accuracy of the algorithms 
in forecasting the time of failure (or End of Life, EoL) of a 
specific case or set of cases. Most of these metrics can be 
directly inferred from the analysis proposed in (Saxena 
Celaya, Balaban, Goebel, Saha, & Scwabacher, 2008). 
Between these metrics we can find the Prognostic Horizon 
(PH), defined as the time span during which the RUL 
estimate falls within an accuracy band usually defined as ±20%  of its real value. The Relative Accuracy (RA), 
defined in equation (10) and its average value over the total 
number of predictions. 
ܣܴ = 1 − ห൫EoL − ௣൯ݐ − RULห

൫EoL − ௣൯ݐ  (10) 
The Cumulative Relative Accuracy (CRA) is instead a used 
to assess the behavior of the prognosis towards the later 
stages of the system useful life, by using a weighted average 
of RA where the weights are skewed to favor higher values 
of often being the values of themselves. 
ܣܴܥ = 1

∑ ௜௜ߣ
෍ ௜RA௜ߣ

௜
 (11) 

10.4. Results 
We compared the accuracy of the two algorithms in figure 
17, where the particle filter is described by the trajectory of 
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the 50th percentile of the particles population. The particle 
filtering algorithm makes use of 200 particles; the LSTM is 
trained over a window of 650 cycles using 150 epochs.  The 
LSTM requires a long window of training data before 
starting to provide accurate results, but provides higher 
accuracy in predicting the later stages of the fault growth. It 
is of interest to notice that the traditional advised 
maintenance indication is in truth associated with a high 
value of Acuña’s risk-of-Failure. The average RA for the 
traditionally defined advised maintenance through particle 
filter (50th percentile of the projected particles) is equal to 
81.28%, while that of the LSTM is much lower. However, if 
we restraint the RA calculation to the last 150 cycles, the 
LSTM is actually able to reach an average value of RA 
equal to 96.6%. The CRA for the particle filtering algorithm 
is equal to 85.52%, while the LSTM provides a 94.3% 
result. Particle filtering techniques benefits from a higher 
value of the Prognostic Horizon, in this case around 600 
cycles (excluding some minor over estimates in few 
instances), while the LSTM provides a 110 cycles PH. 
LSTM suffers from higher computational costs, since the 
training phase, absent from the particle filter, requires an 
average of 178 seconds to complete, while the prediction 
phase lasts an average of 1.05 seconds. A single forecast of 
the particle filter needs an average of 1.27 seconds to 
complete, while the prediction/filtering cycle used to 
estimate the system states is almost real-time, requiring less 
than 0.016 seconds in average to complete. The trial 
configuration is an Intel Core i7-4770 @ 3.40 Ghz with 8.00 
GB of RAM. Finally, an obvious benefit of the Particle 
Filtering method is the capability to provide an estimate of 
the RUL pdf and of the risk associated with taking decisions 
based on its prediction, that could be of critical importance 
for the objective of zero unexpected failures (and hence 
unexpected line downtimes) defined by the WCM. Both 
techniques seems viable for the application in “guessing” 
the failure time; the particle filter algorithm, being less 
computationally expensive appears as a preferable choice 
for a localized PHM solution, where a small computer  

 
Figure 17.  analysis  

attached to the machine or used by maintenance operator 
cha download data when needed and quickly provide an 
estimate of the RUL. On the other hand, LSTM provide 
interesting results when nearing the end-of-life conditions 
and can support the results of the Particle Filter algorithm; 
due to the increased computational load, this solution 
appears to be better-suited for a server-based solution, 
where data coming from the machine are manually or 
automatically downloaded and sent to a central hub 
dedicated to PHM data elaboration for the plant. 
11. CONCLUSIONS 
The development of PHM techniques for robotic roller 
hemming applications is an interesting challenge for the 
PHM community and potentially a significant improvement 
for production plant management for the industry of 
automotive assembly. Although the economic benefit is 
tough to gauge due to the difficulty in accessing companies 
production data, the introduction of an effective PHM 
system for roller hemming would significantly affect the 
plant productivity and the related costs by reducing the 
occurrence of unexpected downtimes and a more cost-
effective planning of the maintenance operations. We 
describe in this paper the early results of an on-going 
activity in this field. The proposed PHM framework is 
purely data driven and designed to work without accessing 
the PLC data of the robot, by correctly identifying the 
working cycles and the required features only through post-
processing of raw sensor data. The chosen feature is robust 
to sensor issues and present a good correlation with the fault 
under examination. A simple data driven technique is used 
to perform the fault detection, while two possible 
algorithms, based on the use of particle filtering and of 
LSTMs are proposed and compared for the RUL estimate; 
both algorithm are deemed as suitable for the selected case, 
while their possible implementation inside the plant 
maintenance system is discussed. Further investigations are 
of course needed before closing the first phase of the 
development cycle of the PHM system; for once, it is 
critical to assess the effects of possible faults inside the 
robotic arm attached to the roller hemming head on the 
selected features. In the same way, the experimental data on 
faulty roller hemming heads needed to validate the model in 
degraded conditions are still missing, although the relative 
simplicity of the device design provides a good confidence 
to the results of the available model. Further studies are also 
needed to better understand which implementation of the 
PHM technologies (on-board, localized, server based) is 
best for the application. 
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