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ABSTRACT

Prognostic models are built to predict the future evolution of
the state or health of a system. Typical applications of these
models include predictions of damage (like crack, wear) and
estimation of remaining useful life of a component. Prog-
nostic models may be data based, based on known physics
of the system or can be hybrid, i.e., built through a combi-
nation of data and physics. To build such models, one needs
either data from the field (i.e., real-world operations) or sim-
ulations/tests that qualitatively represent field observations.
Often, field data is not easy to obtain and is limited in its
availability. Thus, models are built with simulation or test
data and then validated with field observations when they be-
come available. This necessitates a procedure that allows for
refinement of models to better represent real-world behavior
without having to run expensive simulations or tests repeat-
edly. Further, a single prognostic model developed for an
entire fleet may need to be updated with measurements ob-
tained from individual units. In this paper, we describe a
novel methodology, based on the Unscented Kalman Filter,
that not only allows for updating such “fleet” models, but also
guarantees improvement over the existing model.

1. INTRODUCTION

Prognostic models are built to make predictions on the future
evolution of a system. Applications of these models include
prediction of cracks, wear, scrap rate and estimation of re-
maining useful life in industrial components. These prognos-
tic models can be completely data-driven, based on known
physics of the system or can be hybrid, i.e., a combination of
both data and physics.

Prognostic models can be built using field (real-world) data, if
available, or with simulation/test data. Often, field data is not
available or may be inadequate (i.e., not enough data points)
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for model building. In such scenarios, prognostic models are
built with simulation data, like Design of Experiments (DOE)
data, or test data. These models are then validated and refined
with field data when it becomes available. Thus, there exists
a requirement for a methodology that allows for model up-
dating even with limited field data1. One of the techniques
that can be used for model or transfer function updating is the
Kalman Filter (Kalman, 1960) and its variants, namely the
Extended Kalman Filter (EKF) (Swerling, 1959) and the Un-
scented Kalman Filter (UKF) (Julier, Uhlmann, & Durrant-
Whyte, 1995).

The Extended, Unscented and Ensemble Kalman Filters have
been used for history matching and continuous model updat-
ing in diverse fields such as Petroleum Engineering (Ning &
Oliver, 2005), Meteorology (Houtekamer & Mitchell, 2001)
as well as for gas turbine performance diagnostics (Volponi,
Ganguli, & Daguang, 2003). In all these examples, the model
being updated represented a specific reservoir or an aircraft
engine. The data for updating the model was obtained from
a single source (either the reservoir or the engine) and it was
ordered in time, i.e., a time series. Thus, the standard Kalman
Filter framework is applicable as-is to these problems.

In this paper, we consider the problem of updating a model
that represents, not a single entity, but all entities of a class.
An example is a model built to predict cracks or scrap per-
centage in a fleet of gas turbines or aircraft engines. The
model parameters are the same for all units of the fleet with
the operational history of the units being the inputs of the
model. The predictions of these models are usually verified
through inspections during outages or shop visits. The chal-
lenge is to update the parameters of such “fleet” models based
on field inspection measurements obtained from various units
of the fleet. Given that there is no notion of (time) sequence
in the measurements, i.e., there’s no ordering of data from
different units of the fleet, and the fact that these measure-
1Re-building models with field data alone, when it becomes available, is
generally not feasible since field data is usually very limited in quantity at a
given time. Also, it is often desired to retain the model “kernel”, but modify
the coefficients using field data.
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ments become available in a batch, the conventional Kalman
Filter framework does not apply. We present a methodol-
ogy that modifies the Kalman Filter based model updating
framework to allow for updating “fleet” models by utilizing
measurements from different entities of the fleet. Further, the
methodology is designed to ensure improvement in model ac-
curacy after the update.

The rest of the paper is organized as follows: Section 2 pro-
vides a brief review of the Unscented Kalman Filter. Section
3 discusses the problem of updating “fleet” models and de-
scribes a novel methodology based on Kalman Filtering. In
Section 4, the efficacy of the proposed methodology is illus-
trated with a simulated and a real-world example. Section 5
provides a summary of the paper.

Throughout the paper, scalars and vectors are respectively
represented as small letters and small, bold letters. Further-
more, In denotes an n × n identity matrix. Additionally, the
symbolR refers to the 1−dimensional space over the field of
real numbers,Rn refers to the n−dimensional space over the
field of real numbers and Rn×m refers to the n ×m dimen-
sional rectangular matrix real space (square if n = m). The
notation N (µ, σ) represents a normal/Gaussian distribution
of mean µ and standard deviation σ. The symbol D refers to
a compact region of the space of appropriate dimension. Thus
Dx ∈ R represents a compact region of the variable x which
is a subset of the state space of appropriate dimension. The
operator E [x] denotes the expectation of the random variable
x.

2. KALMAN FILTERS: A BRIEF REVIEW

The availability of all state variables for direct measurement
is a rare. In physical systems, some components of the state
are inaccessible internal variables, which either cannot be
measured or the measurements require the use of very costly
measurement devices. Hence in most practical scenarios, there
is a true need to construct estimates of the unknown state vari-
ables via known measurements, albeit noisy. In the case of
systems that are linear in the process and measurement, and
which are corrupted by white process noise and measurement
noise, the linear Kalman Filter (KF) offers a recursive solu-
tion in the sense of minimizing the trace of the error covari-
ance of the system states (Kalman, 1960), (Kalman & Bucy,
1961), (Brown & Hwang, 1992). However, in the case of
systems which are inherently nonlinear in either the process
or the measurement or both, straightforward implementation
of the KF is not guaranteed to yield optimum results in the
sense of minimizing the root mean square of the estimation
error. Thus the need to be able to effectively reconstruct the
unknown states of a nonlinear system has promoted research
in nonlinear filtering theory (Nijmeijer & Fossen, 1999).

Of the numerous attempts being made for the development of
nonlinear filters, the Extended Kalman Filter, was the earliest

and the most prevalent approach. The design of the EKF is
based on a first order local linearization of the system around
the current state estimate at each time step (Eykhoff, 1974),
(Jazwinski, 1970), (Daum, 2005). The first ever implemen-
tation of an EKF is credited to Peter Swerling (Brookner,
2001), and was called as the Swerling Filter for filtering prob-
lems (Swerling, 1959). This approach approximates the non-
linear equations by a Taylor series of up to the first order.
The well known KF (Kalman, 1960) equations can then be
applied to the linearized system to compute the Kalman gain
and the covariance matrices. To address the limitations inher-
ent in an EKF2, the Unscented Kalman Filter (UKF) (Julier et
al., 1995), (Julier & Uhlmann, 1997) was developed, which
neither relies on the linearization steps required by the EKF
nor the computation of Jacobian matrices. Instead, the UKF
uses a deterministic sampling approach to estimate the mean
and covariance with a minimal set of sample points.

2.1. Discrete Nonlinear Time Invariant System

Consider the following observable3, discrete, nonlinear dy-
namical system:

xk = f (xk−1) + wk, k ≥ 1

zk = h (xk,uk) + vk (1)

where, xk ∈ Dx ⊂ Rn denotes the n−dimensional state vec-
tor of the system, uk ∈ Du ⊂ Rm denotes them−dimensional
known input vector, f (·) : (Dx ⊂ Rn)→ Rn is a finite non-
linear mapping of the system states and system input, zk ∈
Dz ⊂ Rp denotes the p−dimensional system measurement,
h (·, ·) : (Dx ⊂ Rn) × (Du ⊂ Rm) → Rp is a nonlinear
mapping of the system states to the output, wk ∈ Dw ⊂ Rw
denotes the w−dimensional random process noise vector and
vk ∈ Dv ⊂ Rv denotes the v−dimensional random mea-
surement noise vector. The process and measurement noise
are assumed to be zero mean, band-limited, uncorrelated, ad-
ditive, white Gaussian noise processes such that:

E
[
wkw

T
j

]
= Qkδkj =

{
Qk, k = j
0, k 6= j

}

E
[
vkv

T
j

]
= Rkδkj =

{
Rk, k = j
0, k 6= j

}
E
[
wkv

T
j

]
= E [wk]E

[
vTj
]

= 0,

where,Qk is the process noise covariance,Rk is the measure-
ment noise covariance and δkj is the Kronecker delta function
(discrete equivalent of the Dirac delta function). The Gaus-
sian random variables wk and vk are commonly denoted as
wk ∼ N (0, Qk) and vk ∼ N (0, Rk) respectively, where

2A major limitation of the EKF is that it approximates the expected value
of a nonlinear function f (x) as a function of the expected value, i.e.,
E [f (x)] ≈ f (E [x]).

3For the definition on observability of nonlinear systems, refer (Isidori,
1995).
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wk and vk are 0 mean distributions and of variance Qk and
Rk respectively. The initial state of the system in Eq.(1) is
assumed to be a Gaussian random vector with mean x̄0 and
covariance P̄0 and can be denoted as x0 ∼ N (x̄0, P̄0).

2.1.1. The Unscented Kalman Filter

The Unscented Transform (UT) is a mathematical function
used to estimate the result of applying a given nonlinear trans-
formation to a probability distribution that is characterized
only in terms of a finite set of statistics. In other words, the
UT approximates a Gaussian distribution with a set of deter-
ministically chosen sample points. These points completely
capture the mean and covariance of the Gaussian distribution
such that when propagated through a nonlinear transforma-
tion map, the transformed points accurately capture the mean
and covariance of the new density (due to the transforma-
tion) up to the third order. The Unscented Kalman Filter
(UKF), which is based on propagating the mean and covari-
ance through the UT (Julier et al., 1995), is a method for cal-
culating the statistics of a random variable that undergoes a
nonlinear transformation.

Consider the observable, discrete, nonlinear dynamical sys-
tem in Eq.(1). Initialize the state and state error covariance
estimates to x̂0 and P0, respectively. Let n denote the state
dimension. For each time index k ≥ 1, the typical UKF
predict-update steps are:

1. Generate sigma points ξk−1, based on x̂k−1 and Pk−1,
as:

ξ
(0)
k−1 = x̂k−1

ξ
(i)
k−1 = x̂k−1 + γ

(√
Pk−1

)
i

ξ
(i+n)
k−1 = x̂k−1 − γ

(√
Pk−1

)
i

where, i = 1, . . . , n, γ =
√
n+ λ and λ = α2 (n+ κ)−

n such that 10−4 ≤ α ≤ 1, where α determines the
spread of the sigma points around the mean, κ is a sec-
ondary scaling parameter and

(√
Pk−1

)
i

denotes the ith

column (or ith row transpose) of the matrix
√
Pk−1. If

Pk−1 is positive definite, the Cholesky decomposition
can be used to obtain the square root. If Pk−1 is pos-
itive semi-definite, perform an eigen decomposition to
identify the eigen values that are 0, reset those eigen val-
ues alone to a very small positive number (E.g. 10−8),
regroup the eigen value and eigen vector matrices to ob-
tain Pk−1 and then use Cholesky decomposition.

2. At time index k, PREDICT:
Sigma points as:

ξ−
(j)

k = f
(
ξ
(j)
k−1

)
, j = 0, . . . , 2n (2)

State estimate x̂−
k as:

x̂−
k =

2n∑
j=0

W
(m)
j ξ−

(j)

k , (3)

with W(m)
0 = λ

n+λ , W
(m)
j = 1

2(n+λ)

State error covariance matrix as:

P−
k =

2n∑
j=0

W
(c)
i

(
ξ−

(j)

k − x̂−
k

)(
ξ−

(j)

k − x̂−
k

)T
+Qk (4)

where, W (c)
0 = λ

n+λ +
(
1− α2 + β

)
and W (c)

j =
1

2(n+λ) and β is used to incorporate prior knowledge of the
distribution of x (β = 2 for Gaussian is optimal).

Recalculate the sigma points based on x̂−
k and P−

k to
incorporate the effect of process noise as:

χ−(0)

k = x̂−
k

χ−(i)

k = x̂−
k + γ

(√
P−
k

)
i

χ−(i+n)

k = x̂−
k − γ

(√
P−
k

)
i

Measurement as:

ẑ−k =

2n∑
j=0

W
(m)
j Z−(j)

k , (5)

with, Z−(j)

k = h
(
χ−(j)

k ,uk

)
, j = 0, . . . , 2n

3. At time index k, UPDATE: Innovation covariance as:

Pẑkẑk
=

2n∑
j=0

W
(c)
j

(
Z−(j)

k − ẑ−k

)(
Z−(j)

k − ẑ−k

)T
+Rk (6)

Cross covariance between x̂−
k and ẑ−k as:

Px̂−
k ẑk

=

2n∑
j=0

W
(c)
j

(
χ−(j)

k − x̂−
k

)(
Z−(j)

k − ẑ−k

)T
(7)

State estimate as:

x̂k = x̂−
k +Kk

(
zk − ẑ−k

)
(8)

with, Kk = Px̂−
k ẑk

P−1
ẑkẑk

State error covariance matrix as:

Pk = P−
k −KkPẑkẑk

KT
k (9)

Remark 2.1 Although, theoretically, the matrix Pk is sym-
metric, for real data this condition might be violated. There-
fore, after every update step it is necessary to force a symmet-
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ric constraint as Pk =
Pk+P

T
k

2 .

Remark 2.2 For details on the iterative UKF, refer (Zhan
& Wan, 2007).

3. UPDATING MODELS WITH KALMAN FILTERS

In this section, we describe the methodology for updating
models with the Unscented Kalman Filters. The model of
the measured output is given in Eq.(10)

zk = h (Θk,uk) + vk (10)

The function h could be as simple as a single equation, can
be a system of equations or may represent a series of compu-
tational steps resulting in the output z . The parameter vector
Θ, given by

Θ =
[
Θ1,Θ2, ....Θn

]
(11)

represents the coefficients associated with various terms in
the model and u represents the inputs to the model. The
inputs, for example, could be temperature, stress, pressure
or any other measured input to the system. The purpose of
the update methodology is to modify the values of the coeffi-
cients, utilizing the actual measurements of the output and the
model predictions, in a Kalman Filter framework. To achieve
this, we postulate the parameter vector Θ to represent the
“states” of the filter. The states are modeled as random walk
process and hence we obtain the process and measurement
equations as:

Θk = Θk−1 + wk, k ≥ 1

zk = h (Θk,uk) + vk (12)

While such a formulation is standard for model updating with
Kalman Filters, it should be noted that the procedure described
in literature cannot be applied as-is to updating “fleet” mod-
els. This is due to the fact that there is no ordering when
measurements are obtained from different units of the fleet.
Therefore, one can easily end up with a completely different
updated model if the order of measurements used for updat-
ing is changed.

Also, with the standard procedure, the model gets updated
to minimize the error between the model prediction and the
measurement at that point (in the “fleet” case, measurement
obtained from a particular unit). This is acceptable, as long as
the latest measurement represents the most current informa-
tion obtained about the system. Since this is not the case with
measurements used for updating “fleet” models, standard pro-
cedure may result in an updated model that is worse than
the original model in terms of overall performance against
all measurements. Therefore, there is a need for a methodol-
ogy that ensures an improvement in prediction accuracy for
the updated model when compared to the original model.

In the proposed methodology, the available data is split into

training and testing data set. Then, the training data set is per-
muted M times to create different training data sets. The M
training data sets contain the same measurement points, but
the ordering in each set is different. The original model is up-
dated with each of the permuted training data sets to generate
M updated models. To guarantee, that an updated model is
always better (or at least no worse) than the original/previous
model, the original/previous model is updated with a mea-
surement only if the updated model performance (for exam-
ple, in terms of overall average error computed across all
training data), is better than that of the previous model.

A limited comparison of this approach can be made with step-
wise regression. In stepwise regression, an existing model is
modified at each step, by adding a term in case of forward
stepwise or by removing a term with backward stepwise, only
if such an addition or deletion improves the existing model.
Similarly, in our “stepwise”’ model updating approach, an
existing model is a modified at a step (in this case, a mea-
surement in the training set) only if the modification results
in a more accurate model. Otherwise, the modification is dis-
carded and the existing model is retained.

Such a selective updating process can be effective in mitigat-
ing the effect of excessively noisy measurements and outliers
in the data. This process is depicted in Figure 1. Each of the
M updated models is validated with the test data set and the
model that provides the least test error is chosen as the up-
dated model. Figure 2 provides an illustration of the overall
procedure.

The salient aspects of the model update procedure can be
summarized as:

• Separation of data for training (updating) and testing

• Permutations of training data to generate multiple up-
dated models

• Monotonic reduction in error during the update

• Validation with test data to select the best updated model

• Guarantee that the updated model is no worse than the
original model (across all data).

4. RESULTS AND DISCUSSION

In this section, the analysis and results of applying the up-
date methodology to a simulated and a real-world example
are presented. The simulated example is a non-linear model
with two inputs and an output. The real-world example is a
prognostic model for scrap rate prediction in an industrial gas
turbine. It is noted that measurements from several individual
gas turbines are used for updating this model.
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Figure 1. Model update algorithm

 
FIELD DATA 
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Figure 2. Methodology for model update

4.1. Updating a Nonlinear Model

A model of the form given in Eq.(13) is considered for updat-
ing with the Unscented Kalman Filter.

z = Θ1 + Θ2x1 + Θ3x2 + Θ4x1x2 + Θ2Θ4x1
2 (13)

where x1 and x2 are the inputs and z is the output.

The model coefficients
{

Θi} , i = {1, 2, 3, 4} are given by

Θ =
[
Θ1,Θ2,Θ3,Θ4

]
(14)

It is noted that the model is non-linear both in the coefficients
as well as the inputs. The initial model is thus represented as
Θ0. The coefficient values of the initial model are provided
in Table 1.

4.1.1. Generating Data for Update

This section describes the process by which the data for up-
dating the initial model was generated. The model parameters
used for the simulation are given in Table 2.

The inputs, x1 and x2, were sampled randomly from a Uni-
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Table 1. Initial model: Θ0

Coefficient Value
Θ1 0.20
Θ2 0.20
Θ3 0.10
Θ4 0.40

Table 2. Model parameters for generating update data

Coefficient Value
Θ1 0.35
Θ2 0.25
Θ3 0.15
Θ4 0.40

form distribution of [0, 0.5] . A total of 35 data points were
generated for x1 and x2. The model output is then obtained
with generated inputs as per Eq.(13). Additive White Gaus-
sian Noise (AWGN) is then added to the model output to sim-
ulate the effect of measurement noise. This noisy output is
treated as “actual” measurement z̃. 25 out of the 35 data
points were corrupted with zero-mean AWGN with a stan-
dard deviation of 0.01. The remaining 10 points were cor-
rupted with zero-mean AWGN with a standard deviation of
0.1. This is done to explore the robustness of the proposed
update methodology vis-a-vis the standard Kalman Filter ap-
proach with respect to excessively noisy measurements and
outliers. The x1, x2 and z̃ values corresponding to the data
set are provided in Table 3. Out of the 35 data points, 80%
of the data (28 points) were randomly chosen as the training
data. The remaining 7 points constitute the test data. The
training data and test data remain the same for the all experi-
mental results presented subsequently in this paper.

4.1.2. Updating with Standard UKF

The plot of predictions of the initial model Θ0, for the up-
date data set, against the “actual” values (obtained through
simulation that was described earlier) is shown in Figure 3.

From the figure, it is obvious that the initial model predic-
tions are not very accurate. The prediction bounds are shown
merely to visualize the data in an easy to interpret manner.
The average absolute error, for the training data, was found
to be 0.1649 and that for the test data was found to be 0.1989.
Also, 34/35 predictions lie beyond the prediction bounds.
Therefore, this model accuracy can be improved with an up-
date. Further, it is also desirable if the updated values of the
model coefficients are close to the “true” values given in Ta-
ble 2.

To begin with, the initial is updated with a standard UKF, i.e.,
no multiple runs with shuffled training data and no checking
on whether an update with a measurement improves overall

Table 3. Data for model update

Sample x1 x2 z̃
1 0.2565 0.4669 0.3277
2 0.2302 0.1134 0.4710
3 0.1752 0.3930 0.4045
4 0.0475 0.2054 0.3959

5 0.2168 0.0597 0.4092
6 0.3546 0.3172 0.5365
7 0.0580 0.4312 0.4584
8 0.0390 0.0791 0.3436
9 0.1846 0.3006 0.4767
10 0.0168 0.0588 0.3515

11 0.0961 0.3130 0.3836
12 0.2357 0.4176 0.6718
13 0.0725 0.4702 0.4441
14 0.3589 0.2078 0.5145
15 0.3309 0.1360 0.4845
16 0.2159 0.4640 0.5224
17 0.2230 0.4607 0.5274
18 0.2542 0.2710 0.4866
19 0.2640 0.4064 0.5350
20 0.2864 0.0832 0.4559
21 0.1804 0.1602 0.4210
22 0.1682 0.3289 0.4760
23 0.0866 0.0009 0.3791
24 0.0431 0.3145 0.4456
25 0.1967 0.3926 0.4736
26 0.4022 0.1473 0.6683
27 0.0055 0.3948 0.4164
28 0.1166 0.1079 0.4086
29 0.2016 0.0714 0.4170
30 0.4012 0.2887 0.5565
31 0.4311 0.1280 0.5139
32 0.0719 0.0232 0.3752
33 0.1725 0.1355 0.4339
34 0.2062 0.3389 0.4903
35 0.3551 0.1097 0.3610

 

Figure 3. Initial model: actual Vs prediction
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accuracy. The parameters to be updated (“the states”) are
modeled as a random walk process as in Eq.(12). The pro-
cess noise covariance Q was assumed to be diagonal matrix
with a value of 1e − 4 for the elements in the diagonal. The
measurement noise variance R is assumed to be 1e− 4. The
UKF parameters are chosen as α = 1, β = 2 and κ = 0. The
number of iterations of the filter is chosen to be 1.

 

Figure 4. Standard UKF update: actual Vs prediction

The updated model predictions are shown in Figure 4. It
can be observed that the update did improve the accuracy of
model predictions. But, more than 65% of the training data
(19/28) predictions and over 85% of the test data predictions
(6/7) are still beyond the prediction bounds. The training er-
ror was found to be 0.0767 and the test error was found to be
0.1113. Significant difference between training and test error
suggests that the updated model obtained through this process
may not be optimal.

The plot of the average error, at each update step, is depicted
in Figure 5. The average error, at an update step, is calculated
by predicting on all data with the updated model obtained at
that step. Though the final error of 0.0767 is lower than the
initial model error of 0.1649, it can be observed that the error
does not decrease monotonically as more data is utilized for
the update. This is due to the fact that, at each update step, the
model is being modified in a way to reduce the error between
prediction and actual value at that particular data point. Thus,
an updated model need not necessarily be more accurate than
the previous model across all data.

Further, the significant increases in error, at update step 11
and between update steps 24 and 27, suggest that the standard
UKF based model update is highly sensitive to noisy data. A
few outliers in the data can have a significant impact on the
filter estimates. In fact, it is not inconceivable that the final
updated model may actually be worse than the initial model,

 

Figure 5. Error at each update step - standard UKF

in terms of accuracy, due to a few very extremely measure-
ments in the data used for the model update.

Table 4. Updated coefficients - standard UKF

Coefficient True Value Updt. Value Abs. Error
Θ1 0.35 0.3382 0.0118
Θ2 0.25 0.1699 0.0801
Θ3 0.15 -0.0332 0.1832
Θ4 0.40 0.3211 0.0789

Finally, the coefficients of the updated model along with the
”true” values are presented in Table 4. It can be observed
that while the update did improve the prediction accuracy,
the updated model coefficients are quite different from “true”
values. The average absolute error between the “true” values
and the updated model coefficients was found to be 0.0885.

4.1.3. Updating with Standard UKF - Multiple Runs

It is possible to improve the results obtained with a single run
of standard UKF by shuffling the training data and generat-
ing multiple models and then selecting the model that best
performs on the test data. To illustrate this, M = 5 shuffles
were performed on the training data and an updated model
was generated with all the M permuted training data sets.
Figure 6 shows the average errors obtained at each update
step for all the runs.

The test errors for each of the runs is given in Table 5. The
lowest test error of 0.0326 , obtained from run 2, is smaller
than the value of 0.1113 obtained earlier. The training error
for this run was 0.0329.

The coefficients of the best model, obtained from run 2, is
presented in Table 6. It can be observed that the estimates are

7
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Figure 6. Error at each step - std UKF, multiple runs

Table 5. Test error - std UKF, multiple runs

Run Test Error
1 0.0423
2 0.0326
3 0.1109
4 0.1265
5 0.1291

better than those obtained in section 4.1.2. The average error
is 0.0282 as compared to 0.0885 obtained with a single run
of standard UKF.

Table 6. Updated coefficients - standard UKF

Coefficient True Value Updt. Value Abs. Error
Θ1 0.35 0.3661 0.0161
Θ2 0.25 0.2006 0.0494
Θ3 0.15 0.1719 0.0219
Θ4 0.40 0.3748 0.0252

4.1.4. Updating with Proposed Methodology

In this section, we present the results of updating the non-
linear model with the methodology described in Section 3.
The Unscented Kalman Filter parameters, namely α, β and
κ, the number of iterations, the process covariance Q and the
measurement variance R are the same as those used in Sec-
tion 4.1.2. The training and test data used are also the same
as that used in the case of the standard UKF.

To illustrate the efficacy of the proposed methodology, only a
single run (i.e., M = 1) is performed on the training data.The
predictions of the updated model are shown in Figure 7.

It can be observed from Figure 7 that the updated model pre-

 

Figure 7. Updated model: actual Vs prediction

dictions are significantly more accurate than that of the initial
model. Only 5/28 training data predictions and 1/7 test data
prediction are outside the prediction bounds. The training er-
ror was found to be 0.0297 and the test error was found to
be 0.0309, which are less compared to their respective values
reported in the previous sections.

The plot of the average error, at each update step, is depicted
in Figure 8. It can be observed that the error non-increasing
as more data is utilized for the update. This is due to the
fact that in the proposed approach, at each update step, the
model modified if and only if the update leads to an overall
decrease in error across all data. Thus, the updated model, at
any given update step, is guaranteed to be no worse than the
initial model when compared with all data.

 

Figure 8. Error at each update step - proposed methodology
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Table 7. Updated coefficients - proposed methodology

Coefficient True Value Updt. Value Abs. Error
Θ1 0.35 0.3525 0.0025
Θ2 0.25 0.2497 0.0003
Θ3 0.15 0.1443 0.0057
Θ4 0.40 0.4141 0.0141

Finally, the coefficients of the updated model along with the
”true” values are presented in Table 7. It can be observed that
the updated model coefficients are quite similar to the “true”
values. The average absolute error between the “true”values
and the updated model coefficients was found to be 0.0056,
much less than the error of 0.0885 obtained in the case of a
standard UKF and 0.0282 obtained with multiple runs of stan-
dard UKF. It can be observed that while the performance of
the standard UKF with multiple runs and proposed approach
(single run) are similar in terms of prediction error on test
data, the proposed methodology is superior in estimating the
coefficients of the underlying model. While, in this example,
superior results were obtained with a single run of the pro-
posed model update methodology, it is suggested to use a M
value greater than 1 in practical applications.

Even though, the data for update came from a single source
(i.e., simulation with a set of model parameter values), this
example illustrated the robustness of the proposed approach
with respect to excessively noisy measurements and outliers.
Thus, the proposed update methodology can be more effec-
tive than the standard approach for updating models. Metrics
for the all the three approaches discussed so far are summa-
rized in Table 8.

Table 8. Summary of metrics

Method Train. Error Test Error Coeff. Error
Std UKF 0.0767 0.1113 0.0885
Mult Runs 0.0329 0.0326 0.0282
Proposed 0.0297 0.0309 0.0056

4.2. Updating a Damage Model

A model that tracks the damage in a part was built to predict
the fraction of the overall fielded components expected to be
declared as scrap at the time of inspection. A component is
deemed “scrap” if there exists a defect of size greater than a
certain limit.

Blades, nozzles and shrouds in high pressure turbine sections
of a gas turbine are prime examples of parts that require accu-
rate damage models. This is because, these parts experience
the harshest conditions in the gas turbine in terms of high
temperatures and pressures. Damage of these parts are thus a
function of operating conditions of the gas turbine as well as
the variations in design parameters such as material proper-

ties and manufacturing variability.

The damage model is a hierarchical model that takes the oper-
ational inputs such as airflow pressures and temperatures that
are measured and compute the damage as a function of cy-
cles and stresses in specific locations. The stresses are in turn
computed as a function of thermal and mechanical loads on
the part. The thermal and mechanical loads are in turn func-
tions of the operational inputs. Thus, the hierarchy of a dam-
age model can get very complex depending on the part and
the operational characteristics. Since details of all the con-
stituent models and parts are proprietary, we have represented
the model mathematically as a collection of coefficients (Θ)
and operational parameters. Although the proprietary restric-
tions prevent us from sharing the underlying models and data
sets, we hope that details presented below throw light on the
applicability of the techniques developed here for real-world
non-linear applications.

The scrap rate z is modeled as:

z = h (Th, Tc, H,N,Γ, d0, d1, d2, d3, d4, d5) (15)

where Th and Tc respectively, are the hot and cold tempera-
tures experienced by the component, H is the hours of opera-
tion, N is the number of cycles and Γ represents the material
properties. A Bayesian estimation was performed to compute
the initial coefficients of the model. The model predicts the
distribution of crack lengths as a function of operating cycles.
The model predictions are distributions because the coeffi-
cients are computed through Bayesian estimation accounting
for variability and uncertainty in the system. This predicted
damage distribution was then used with a damage threshold
to compute the predicted scrap rate. All results presented in
this section are provided in terms of a scaled version of scrap
rate. The median values of the posterior distribution are used
as the initial value of the model coefficients in the UKF.

The parameter vector Θ, represents the coefficients d0, d1,
....d5.

Θ = [d0, d1, d2, d3, d4, d5] (16)

An initial model (Θ0) was developed with data obtained from
14 industrial gas turbines. The model coefficients are given
in Table 9.

Table 9. Initial model: Θ0

Coefficient Value
d0 7.6370E-01
d1 9.4537E-01
d2 1.0709E+00
d3 4.6795E+00
d4 3.2849E-04
d5 5.5086E-01

9
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The model predictions versus the actual scrap, for the data set
used for model building, are depicted in Figure 9. The pre-
diction bounds are derived from acceptable error limits for
scrap prediction. These limits are proprietary. The normal-
ized scrap rate and the model predictions are always greater
that zero. The parallel prediction bounds are shown for the
purpose of easier interpretation. It can be observed that over
85% of the predictions are within the prediction bounds. Only
2 out of 14 points have an error beyond the prediction limits.
The average absolute prediction error, for the scaled scrap
rate, was found to be 0.0080.

 

Figure 9. Initial model: actual Vs prediction, training data

Predictions were then obtained for a new data set comprising
13 industrial gas turbines with this model. Figure 10 shows
the plot of actual scaled scrap Vs model predictions. It can be
observed that almost 50%(6/13) of the predictions have error
beyond the prediction limits. The average absolute error was
found to be 0.0229.

The initial model is then updated with the new data to im-
prove its prediction accuracy. The model parameters are mod-
eled as a random walk process as in Eq.(12). To illustrate the
efficacy of the procedure described in Section 3, the model is
first updated with a standard Unscented Kalman Filter. The
updated model predictions are provided in Figure 11.

It can be seen from Figure 11 that the performance, in terms
of average error, of the updated model is worse than the orig-
inal model shown in Figure 10. This is due to the fact that
in a standard UKF based update of “fleet” models, there is no
guarantee that an update with a measurement leads to an over-
all improvement in performance. The overall average abso-
lute error, calculated at each update step, is plotted in Figure
12. It can be observed that an update can lead to an increase
in error, across all points, even if it reduces the error for that
particular measurement. Also, there’s no guarantee that the

 

Figure 10. Initial model: actual Vs prediction, new Data

 

Figure 11. Std UKF update: actual Vs prediction, new data

10



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

model obtained at the end of the update process is better in
performance than the original model.

 

Figure 12. Error at each update step - standard UKF

The initial model is then updated as per the procedure de-
scribed in Section 3. Of the 13 data points, 11 points were
chosen randomly to form the training data set and 2 data
points were used for testing. The results are depicted in Fig-
ure 13.

 

Figure 13. Updated model- actual Vs prediction, new data

It can be observed that the updated model is more accurate
than the original model in predicting scrap rate. The num-
ber of predictions with error beyond the prediction limits has
been reduced from 6 to 4 and the average absolute error has
been reduced from 0.0229 to 0.0185. The updated model co-
efficients are provided in Table 10.

Table 10. Updated model coefficients.

Coefficient Value
d0 8.0416E-01
d1 9.6754E-01
d2 1.2450E+00
d3 4.8198E+00
d4 4.7651E-04
d5 1.8026E+00

5. CONCLUSION

This paper presented a Kalman Filter based methodology to
update prognostic models. Unlike prior approaches, where
unit-specific models (applicable to a single reservoir or an
aircraft engine) were updated with sensor measurements, the
problem of updating “fleet” models (applicable to all entities
of a fleet) was considered in this paper. The various chal-
lenges involved in updating such “fleet” models were dis-
cussed and a methodology for mitigating the challenges has
been proposed. In this approach, the standard Kalman Fil-
ter based model updating framework is adapted in a manner
where a portion of the data is randomly chosen for training the
filter while the remainder is used for testing purposes. Fur-
ther, the methodology guarantees non-decreasing accuracy by
choosing to update the model coefficients with new data only
if the updated model outperforms the current model in terms
of reducing the error across all measurements. Also, in an
effort to ensure robustness, the training data is permuted sev-
eral times and an updated model is obtain with each permuted
set. Finally, the best among these updated models is chosen
through validation with the test data. The efficacy of the pro-
posed update methodology was demonstrated through its ap-
plication to a simulated non-linear model and to a real-world
problem of scrap rate prediction in an industrial gas turbine.
While the train-test approach was employed for selecting the
best updated model in this paper, a k-fold cross-validation ap-
proach could potentially yield better results.
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