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ABSTRACT

This paper discusses a mixed method that combines unsu-
pervised learning methods and human expert input for ana-
lyzing telemetry data from long-duration robotic space mis-
sions. Our goal is to develop more automated methods for
detecting anomalies in time series data. Once anomalies are
identified using unsupervised learning methods we use fea-
ture selection methods followed by expert input to derive the
knowledge required for building on-line detectors. These de-
tectors can be used in later phases of the current mission and
in future missions for improving operations and overall safety
of the mission. Whereas the primary focus in this paper is on
developing data-driven anomaly detection methods, we also
present a computational platform for data mining and ana-
lytics that can operate on historical data offline, as well as
incoming telemetry data on-line.

1. INTRODUCTION

As engineered systems have become more complex, self-
monitoring, self-diagnosis, and adaptability to maintain op-
erability and safety have become focus areas for research
and development. Typical goals of such self-diagnosis ap-
proaches are the detection and isolation of faults, identify-
ing and analyzing the effects of degradation and wear, and
providing fault-tolerant and fault-adaptive control Blanke &
Schröder (2006); Chen & Patton (2012); Isermann (2005); Ji
et al. (2003); Noura et al. (2009). The majority of projects
dealing with monitoring and diagnosis applications rely on
models created using physical principles or by human ex-
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perts. However, these models are not always available, and
are often incomplete, and sometimes even erroneous. More-
over, it is hard to maintain the accuracy of these models dur-
ing a system’s life-cycle.

More recently, data-driven alternatives have emerged that ex-
ploit the large amounts of operational data collected from
systems to better understand system operations under nom-
inal and faulty conditions Qin (2012); Yin et al. (2014).
The longer-term goal is to develop Cyber Physical Sys-
tems (CPSs) Lee (2008); Marwedel (2010); Niggemann et al.
(2015) that can monitor their own behavior, recognize un-
usual situations, and inform operators, who can then modify
system operations to ensure safety and ability to complete a
mission. In some situations, this information can also help to
plan maintenance tasks. In the longer term, systems experts
and engineers can use the information gleaned from this data
to update operational procedures, increase autonomy of the
system, and even redesign future versions of the system.

In this paper, we take on the challenges of developing a data-
driven scheme for anomaly detection. As a case study, we an-
alyze telemetry data that was generated by NASA’s Lunar At-
mosphere and Dust Environment Explorer (LADEE) space-
craft1, a robotic mission that orbited the moon to gather de-
tailed information about the structure and composition of the
thin lunar atmosphere, and determine whether dust is lofted
into the lunar sky Hine et al. (2010). The LADEE system
block diagram, shown in Figure 1, shows the four primary
subsystems of the spacecraft: (1) the Integrated Avionics sys-
tem, (2) the Propulsion system, (3) the Attitude Control sys-
tem (ACS)), and (4) the Electrical Power Subsystem (EPS).

1see https://www.nasa.gov/mission pages/ladee/main/
index.html
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Using the lessons learned from this case study, our overall
goal is to develop a general data-driven monitoring approach
for telemetry (i.e., streaming time series) data for purposes of
health monitoring, which includes fault and anomaly detec-
tion, prognosis, and performance analysis of the monitored
system.

Our primary focus in this paper is on developing unsuper-
vised methods for data-driven anomaly detection in complex
systems. However, we want the approach to be viable for
long-duration space missions, which currently take place at
infrequent intervals. For these one-of missions that often op-
erate in environments that are not completely known, it makes
sense that we learn about system operations and anomalies
that occur by collecting and analyzing data during the mis-
sion, and then using the knowledge gained to develop fault
detectors and isolation mechanisms that make it easier to keep
the system operational and safe as the mission progresses.
To enable this approach, we are developing a platform-based
computational architecture that supports data collection and
the setting up of data repositories that support analyses at
multiple time scales. In addition, we demonstrate how the
results of our anomaly detection approach can be used for de-
signing online fault detectors for system health monitoring.

The rest of this paper is organized as follows. Section 2 pro-

vides an overview of the data-driven anomaly detection prob-
lem, and briefly reviews related work in this area. Section 3
formally describes our approach to anomaly detection. Sec-
tion 4 shows an application of our methodology to telemetry
data from the Electric Power System (EPS) of the LADEE
spacecraft. Using examples, we illustrate the intertwining
of the mode and anomaly detection problem. Section 5 dis-
cusses our approach to constructing the fault detection mon-
itors given the features of the anomalies that we learn from
our data-driven analyses. Section 6 then discusses our pro-
posed computational platform architecture for implementing
the anomaly detection and health monitoring schemes. Fi-
nally, Section 7 presents a discussion and conclusion based
on the results of our case study, and briefly discusses how we
will extend this approach in future work.

2. BACKGROUND

Anomaly detection refers to the problem of finding patterns
in operational data that do not conform to expected systems
behavior Chandola et al. (2009). These patterns, typically
called anomalies or outliers, correspond to single data points
or a small group of data points that appear to be sufficiently
different from the rest of the data that make up the operational
behaviors of the system. Traditional approaches to anomaly
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or fault detection typically rely on a model that defines nom-
inal behavior of a system, or on human expertise that char-
acterizes the parameters or thresholds that separate nominal
from anomalous behavior De Kleer & Williams (1987); Iser-
mann (2005); Venkatasubramanian et al. (2003). However, in
many situations, sufficiently accurate and complete models of
the system may not be available. This could lead to misclas-
sifying faults or missing faulty behavior Venkatasubramanian
et al. (2003). In some situations, faulty and anomalous situa-
tions may be unknown because of a lack of sufficient experi-
ence in operating the system Mack (2013). In such situations,
data-driven approaches that lead to discovering anomalies be-
come the key to protecting system safety and integrity Mack
et al. (2016, in press).

Some anomaly detection approaches are provided with or dis-
cover regions that correspond to nominal behavior. Then they
apply similarity-based measures to label data points that are
not close to the nominal regions as anomalies Chandola et al.
(2009). Several factors can make this task challenging. For
example, defining every possible region of nominal behavior
for a complex system that has many operating modes may be
difficult. The similarity measure used may accentuate certain
feature differences more than others. Furthermore, as systems
operate under different environmental and operational condi-
tions, and the systems age, their nominal behaviors may keep
drifting and evolving, and current nominal behavior may not
be indicative of future nominal behaviors. And last, training
data labeled as nominal and anomalous may be hard to come
by. Further, even if the data is labeled, noise and corruption
may distort the differences between nominal and anomalous
behavior.

General approaches to exploring a feature space for identify-
ing anomalous instances have employed learning algorithms
that require highly tunable global models and error minimiza-
tion procedures. Such methods include least-squares regres-
sion Bishop (2001) to derive discriminative models from data.
This leads to robust algorithms that can detect a number of
additive faults through the use of receiver operating charac-
teristic curves plotted to tune the detection algorithm and set
the false alarm rates Chu et al. (2010). However, these meth-
ods typically require large amounts of real and simulated data
to derive general and robust solutions. Further, these meth-
ods correspond to supervised approaches, since practitioners
must understand the data and the results of experiments on
the model (accuracy and false positives) in order to tune the
system.

The domain of aviation flight data has produced a num-
ber of techniques for discovering anomalies. These in-
clude SequenceMiner Budalakoti et al. (2009), Orca Bay &
Schwabacher (2003), The Inductive Monitoring System Iver-
son (2004), and Morning Report Chidester (2003). These
methods are built with varying amounts of data, and are com-

putationally expensive. For example, Morning Report, which
was built to be run overnight on the previous days flight data
to generate a report to be examined in the morning. Se-
quenceMiner focuses on clustering methods for exploring a
set of instances by reducing the features signals using a met-
ric for measuring common sequences known as the normal-
ized longest common subsequence Budalakoti et al. (2006).
The use of this metric retains the original feature semantics,
making it easier to characterize and interpret an anomaly in
the original feature space.

Orca uses a scalable k-nearest neighbor approach to de-
tect anomalies in data with continuous and discrete features.
Since each data point is a sample in time and treated as in-
dependent by the algorithm, Orca struggles to detect anoma-
lies with temporal signatures. On the other hand, the Induc-
tive Monitoring System is a distance based anomaly detection
method that focuses on continuous parameters. The method
uses incremental cluster analysis to build models of the ex-
pected operations of the system, but it also does not consider
temporal patterns in the data. Morning Report builds a statis-
tical signature across each feature of a sample to reduce it to
a smaller dimension. This is then used with distance metrics,
such as the Mahalalanobis distance Duda et al. (2012) to find
flights that are outliers from the majority of the data points.
SequenceMiner and Morning Report are designed to interact
with temporal signals in the data. These methods make as-
sumptions, such as SequenceMiner requires a symbolic trans-
formation and Morning Report requires a pass from another
algorithm through the original data to help an expert charac-
terize found anomalies.

More recent approaches that have produced good results in
anomaly detection include an algorithm that combines Princi-
pal Component Analysis (PCA) and density-based clustering,
DBSCAN Ester et al. (1996); Li et al. (2011). The approach
uses PCA to project features in higher dimensional space to a
lower dimensional space, and then applies DBSCAN to clus-
ter the data in the lower dimensional space. Density-based
clustering is robust to noise in the data, it requires little do-
main knowledge to define the size of a cluster, clusters can
be of arbitrary shape, and outliers are easy to find. The prob-
lem with this method is temporal information is lost in the
unrolling process, and the transformed space makes interpre-
tation of the anomalies a much harder task.

Another recent approach is the semi-supervised Multiple Ker-
nel Anomaly Detection (MKAD) method Das et al. (2010,
2011). Like SeqenceMiner, it first preprocesses all continu-
ous time series data into symbolic sequences, and then ap-
plies a similarity measure between pairs of samples or data
points. The pairwise comparisons are organized for learning
by building two kernels that combine the feature streams for
either continuous or discrete values. The kernel method for
both types is based on the normalized Longest Common Sub-
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Figure 2. Unsupervised learning method to distinguish outlier behavior

sequence Budalakoti et al. (2009), the same metric used in
SequenceMiner for measuring common sequences. The ker-
nel is built for a one-class SVM classifier Rätsch et al. (2000).
This method for isolating anomalies attempts to exploit com-
mon sequential information for two samples represented as
a single value. Analysis of flagged anomalies is examined
post-SVM, since the SVM model based on kernel methods is
difficult to interpret.

3. DATA DRIVEN ANOMALY DETECTION

When dealing with one-of space missions, one may not have
access to a lot of historical data on spacecraft operations from
previous missions to characterize faults and errors, that may
form the basis for detecting and analyzing faults during the
current mission. Moreover, for long duration spacecraft mis-
sions, the spacecraft may operate in multiple modes linked to
maneuvering the spacecraft and initiating a variety of science
experiments.

We have developed a multi-step unsupervised learning
method to distinguish outlier behaviors and link them to
anomalies or faults. Figure 2 illustrates this process. Typi-
cally, a large majority of the time segments of the telemetry
data will represent nominal operations of the spacecraft, but
a small subset may represent anomalous and faulty behav-
iors. We hypothesize that the clusters or groups that con-
tain a large number of the time segments represent nomi-
nal operations, whereas outliers (single time segments) and
smaller groups may represent anomalous situations. In pre-
vious work, researchers have developed classifier or super-
vised methods for characterizing known faults (e.g., Hodge &
Austin (2004); Mack et al. (2016, in press); Yin et al. (2014))
and semi-supervised and unsupervised methods for discover-
ing and characterizing unknown faults and anomalies (e.g.,
Chandola et al. (2009); Ester et al. (1996); Das et al. (2010);
Li et al. (2011)).

We propose a mixed method that combine unsupervised
learning and expert analysis for anomaly detection in robotic
space missions (see Figure 2). Together Figures 2 and 3
describe a four step approach: (1) data curation and pre-
processing; (2) unsupervised learning using a hierarchical
clustering approach; (3) identifying outlier groups and de-
riving the significant features that characterize each outlier
group from the nominal: and (4) expert characterization of
the anomalous groups. We describe the first three steps in
greater detail below. Step 4 is discussed in the Case Study
section 4.

3.1. Pre-processing and Feature Extraction

In this work, anomaly detection is applied to telemetry data
streamed to earth stations from different subsystems of the
spacecraft. As a first pre-processing step, we derive a set of
objects from a curated version of the time series data. Each
object is defined by a set of signals, and each signal is ex-
tracted from a longer time series signal representing the vari-
able waveform over the entire mission. Our approach divides
the time series representing the entire mission trajectory into
segments, i.e., O = {O1, O2, ..., On}, and each segment rep-
resents an object of interest on the mission time line. The
time interval width (the window size) is derived empirically:
to reduce the number of data objects to a reasonable number,
but not to make the size of the interval so large to dilute the
temporal signature of anomalies. Not using small window
sizes also helps to mitigate the effects of noise in the teleme-
try waveforms.

Since measurement sampling rates vary, aligning the data
across measurements can be a complex task Mack et al.
(2016, in press). We apply data alignment techniques to sim-
plify subsequent analyses. We start with each time series
waveforms that captures the relevant aspects of system op-
erations represented as a variable; therefore, each data object
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Figure 3. Anomaly detection process
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Figure 4. Data pre-processing and feature extraction

is represented by a set of variables, V = {v1, v2, ..., vm},
and each variable is a time series made up of kj samples,
1 ≤ j ≤ m. For example, in this work, our focus is on
the power generation and distribution systems of the LADEE
spacecraft, so we select variables related to the solar array
panels, the battery, switches, and the electrical loads in the
spacecraft.

The next step feature reduction converts each time series sig-
nal to a set of discrete features whose values are derived by
applying the wavelet transform Burrus et al. (1997) to con-
tinuous signal. The wavelet transform captures the time-
frequency characteristics of signal waveforms, and, in this
process it can also be used to capture the frequency charac-
teristics of the signal at different time intervals in the signal.
Figure 4 illustrates the feature extraction process on the time
line for each signal segment, while the feature extraction pro-
cess that we describe in greater next, is illustrated in Figure 5.

We employ the discrete Haar wavelet transform
(DWT) Strang (1993) to extract the time-frequency
characteristics of the signals at specific intervals, and,
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Figure 5. Discrete wavelet transform

in this process, compress the continuous signal waveforms.
Computing the Haar wavelet coefficients is equivalent to
passing the continuous signal through a series of shifted
and cascaded low- and high-pass filters that decomposes the
signal into high and low frequency bands, g[n] and h[n],
respectively, which are then down-sampled to capture the
local time-frequency characteristics of the signal. Figure 5
shows the first three levels of the computation. The compu-
tational scheme requires the number of discrete samples in
the signal must be a power of 2. In our work, we selected
the first coefficient at each level as features that define the
signal. Therefore, the set of features extracted for each
object, Oi, is represented as a vector fi ∈ Rm∗l in Figure 2,
where m represents the number of time series signals, and l
is the number of levels extracted for each signal by the Haar
transformation. Therefore, each data object was represented
by a set of m ∗ l features.

3.2. Clustering the data objects

For unsupervised learning in step 2, we have applied a hi-
erarchical clustering algorithm Jain & Dubes (1988) (see
Algorithm 1). First, we adopt the Euclidean distance as
the metric to compute the dissimilarity matrix Dnn =
dist(Oi, Oj), 1 ≤ i, j ≤ n. For clustering, we run a generic
UPGMA (Unweighted Pair Group Method with Arithmetic
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Mean), agglomerative (bottom-up) hierarchical clustering al-
gorithm Day & Edelsbrunner (1984), and represent the order
of cluster formation as a dendrogram. Consider two clus-
ters X and Y , where X and Y have |X|, and |Y | number of
objects, respectively. UPGMA defines the mean distance be-
tween the clusters as the mean distance between the objects
in X and Y :

dist(X,Y ) =
1

|X||Y |
∑

Oi∈X

∑
Oj∈Y

dist(Oi, Oj). (1)

Note that X and Y may be singletons, i.e., clusters with one
data object. At each step, two existing clusters that are the
closest to each other are merged into a higher-level cluster.
To achieve computational efficiency in the next step of merg-
ing, the algorithm calculates the distance between the new
cluster X ∪Y and all other clusters Z, using the proportional
averaging of dist(X,Z) and dist(Y,Z):

dist(X ∪ Y,Z) = |X|dist(X,Z) + |Y |dist(Y, Z)
|X|+ |Y |

. (2)

The algorithm saves the distances between merged clusters in
a distance vector, dv . One of the advantages of generating
dendrograms by hierarchical clustering is that we can apply a
number of heuristic methods to choose the level at which to
cut the dendrogram, and, in this process establish the num-
ber of clusters or groups in the data set. Several approaches
have been proposed for determining the number of clusters in
a data set (e.g., Milligan & Cooper (1985); Yan (2005)). Typ-
ically these methods use metrics that are derived from within
cluster distances Hartigan (1975); Hubert & Levin (1976),
the ratio of within cluster distances to between cluster dis-
tances Caliski & Harabasz (1974), the ratio of within cluster
to between cluster variances Fukunaga & Koontz (1970), or
from information theory Sugar & James (2011) to establish
the number of clusters in a data set.

In this paper, we select the number of groups based on a met-
ric is derived from the distances between successive cluster
formations in the dendrogram. The distance level (y−axis
on the dendrogram) at which the clusters are partitioned is
defined by a distance threshold (say, dt) to define a distinct
grouping of clusters, i.e,X and Y are merged iff dist(X,Y )
≤ dt. Therefore, by increasing or decreasing dt, we can de-
crease or increase the number of clusters considered. Our
approach to selecting the value dt ensures that the clusters
or groupings formed are unambiguous and stable, i.e., small
changes in dt do not result in large changes in the number of
clusters generated. Toward this end, we apply a Z-test Biswas
et al. (2003) to determine where the change in the distance
vector, dv is statistically significant. We consider the last N2

distance values dv to compute the mean value of distance dis-

tribution (assumed to be a normal distribution):

µd(k) =
1

N2

k∑
i=k−N2+1

d(i). (3)

The last N1 samples (typically, N1 � N2) to compute the
variance:

σ2
d(k) =

1

k −N1 − 1

k∑
i=k−N1+1

(d(i)− µd(k))
2. (4)

The confidence level for the Z-test, α, determines the bounds,
z−, and z+, and, therefore, the number of clusters the algo-
rithm generates.

P (z− < (d(k)− µd(k)) < z+) = 1− α. (5)

The Z-test is implemented as follows:

z− < d(k)− µd(k) < z+ → merge the clusters
Otherwise→ stop

(6)

Algorithm 1 Clustering

1: input: O
2: output: G , dv
3: for each Oi, Oj ∈ O do
4: D(i, j)← dist(Oi, Oj)
5: G← O
6: while |G| > 1 do
7: for each X,Y ∈ G do
8: if dist(X,Y) is equal to min distance in G then
9: merge X and Y

10: add dist(X,Y ) to dv

3.3. Extracting significant features and expert-supported
anomaly detection

Steps 3 and 4 are designed to assign meanings or labels to
the derived groups. As a first step, we consider large groups
derived from the clustering algorithm to be nominal (this cor-
responds to the assumption that the system operates normally
most of the time). Singletons and smaller groups that are suf-
ficiently distant from the nominal groups are labeled as out-
liers or anomalies. As discussed earlier, spacecraft missions
are complex, and they may involve multiple phases and op-
erational modes, corresponding to trajectory maneuvers and
conducting of scientific experiments, over the duration of the
mission. Some of the smaller clusters, initially labeled as
anomalies or outliers, may, in reality correspond to special
modes of operation, and, therefore, are not of interest in dis-
covering discrepant and faulty behavior. Therefore, an addi-
tional challenge we face in this work is separating the special
modes of operation from truly anomalous behaviors.

We have developed an approach to extract additional cues to
identify special operating modes. We map the objects con-
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stituting the smaller groups back onto the mission timeline,
and look for discrete switching signals that may explain the
differences in system behavior from the nominal. For exam-
ple, the reaction wheels are activated to correct the attitude of
the spacecraft, and this can be detected by a switch turning
on to supply power to the reaction wheels. The activation of
the reaction wheels increases the overall load currents in the
power system, but since this increase can be primarily be cor-
related with the switches being commanded on, the outlier
group corresponding to this phenomena is labeled as a spe-
cial operational mode rather than an anomaly. This approach
is generalized and applied to detect other special modes of
operation. Other groups of data objects not be explained by
observed mode changes in spacecraft operations, are then pre-
sented to human experts for further characterization. These
may turn out to be additional special modes that are not easily
interpreted from the switching signals, or they may represent
anomalous behaviors that are linked to faults in the system.

To facilitate discovery of anomalies and special modes, we
picked significant features that best differentiate each anoma-
lous group from the labeled nominal groups.

Definition 1 (Significant features) Significant features are
a single feature or a set of features that best distinguish an
outlier group from nominal operations of a system.

These features help our human experts better understand and
characterize the anomalous situation as potential faults, or
special modes of operation.

Different methods, such as variance decomposition Grömp-
ing (2012) and information gain measures applied to decision
trees Ishwaran (2007) can be applied to extract significant
features for each outlier cluster. In our work, we developed
a simple Euclidean distance based method to extract signif-
icant features: The distance measure between normal opera-
tion group, a, and an outlier group, b for signal variable, j is
computed as:

Dj
ab =

√√√√ l∑
i=1

(
E[ojai]− E[ojbi]

E[ojai]
)2, (7)

where E[ojai] represents the mean value of the ith level coef-
ficient of signal j in group a. When summed over all m vari-
ables, the total distance between the normal operation group,
a and an outlier group, b is computed as:

Dab =

√√√√ m∑
j=1

(Dj
ab)

2, (8)

We define the importance of each time series waveform vj in
distinguishing an outlier group, b, from normal operations, a,

Iab(vj), as the ratio of Dj
ab to Dab, i.e.,

Iab(vj) =
Dj

ab

Dab

(9)

The importance of a set of variables, Vk = {v1, v2, ..., vk} in
distinguishing b from normal operation, a, is defined as:

Iab(Vi) =

√√√√ k∑
i=1

(Iab(vk))2. (10)

Let V = {v1, v2, ..., vm} denote the set of variables. We
select a subset of variables Vb to guarantee a minimum re-
quired importance, Ir, in distinguishing b from normal oper-
ation with minimum cardinality, i.e.,

min Vb ⊆ V
s.t. Iab(Vb) > Ir

(11)

Once the significant features have been established and
ranked, this information is presented to the human expert to
further characterize the anomalous group. After study, the ex-
pert may establish that this group represents a true anomaly,
i.e., unexpected or aberrant behavior, or otherwise it is a mode
of operation that cannot be easily characterized using the dis-
crete switching signals and the time of occurrence.

4. CASE STUDY: LADEE ELECTRICAL POWER SYS-
TEM

The data used for this case study was telemetry data from the
LADEE lunar mission directed by the NASA Ames Research
Center. This mission lasted for approximately a year from
launch till the spacecraft was intentionally crashed onto the
moon’s surface. The telemetry data we analyzed contained
2, 949 time-series waveforms that represented variables from
the different subsystems of the spacecraft. The sampling rates
for the waveforms differed between subsystems, and they also
differed during the different phases of the mission. Overall,
the data set contained 1, 894, 285, 525 samples, which was
about 14 GB of data.

For this case study, we focused on the Electric Power System
(EPS) of the spacecraft. This subsystem included 265 time
series variables from 223 days of the mission, which corre-
sponded to 574, 687 data samples for each variable. From
the 265 variables, we selected 34 continuous voltage and
current variables for analysis. Of these 7 represented volt-
age variables; this included the battery voltage, solar panel
voltages, and load voltages. 27 were current measurements,
such as, battery, solar panel, and load currents. 67 variables
were binary-valued, and they helped us interpret the different
modes of operation of the EPS. The remaining variables, tem-
perature measurements and status checks on the data trans-
mission, were not considered for this study.
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4.1. Data pre-processing and feature extraction

For our analysis, we subdivided the 34 continuous voltage
and current telemetry waveforms into 1512 windows, with
each window corresponding to a data object. Each time win-
dow contained 380 samples. As discussed earlier, the sam-
pling rate of the recorded data was not constant, therefore, a
time window represented anywhere between 5 minutes to 10
hours of operation. The average window size was 3 hours and
31 minutes. The Haar wavelet transform (from the R pack-
age Aldrich (2010)2) was applied to each waveform segment
to extract a set of 8 wavelet coefficients as distinct features
representing that segment. The result was that the set of volt-
age and current waveforms for each data object were trans-
formed into 34×8 = 272 features. To apply the discrete Haar
transform, each waveform segment had to be represented by
a number of samples that were a power of 2, therefore, we
padded our waveform represented by 380 samples with 0′s to
make 29 = 512 samples.

4.2. Clustering

Figure 6. The dendrogram generated by applying the UP-
GMA hierarchical clustering algorithm. The red line repre-
sents the chosen threshold distance for cluster formation. The
green section of the dendrogram (the large cluster) represents
normal operations, and the outliers and smaller groups are
represented by different colors

The Euclidean distance metric was used to create the dissim-
ilarity matrix of 1512 × 1512 object pairs. Then we applied
the UPGMA hierarchical clustering algorithm (the R func-
tion, hclust) to generate the dendrogram shown in Figure 6.
The dendrogram is a graphical representation of the order in
which the objects and groups merge to form larger clusters.
Figure 7 represents 1511 distance values at which the objects
and groups merged to form larger groups in the dendrogram.
For this case study, which was conducted more as a proof-of-
concept as opposed to an attempt to exhaustively generate all
of the special modes and anomalies. Therefore, we intention-

2see http://www.R-project.org/

ally set a very high confidence bound of 99.7% to establish
the level at which the dendrogram would be cut to establish
the number of clusters.

Figure 7. Distance values indicating levels of cluster forma-
tion

Application of equation (6) produced the distance threshold
and the corresponding red line shown in Figure 7. As ex-
pected, this produced one large cluster that we assumed to
represent the nominal behavior of the spacecraft. In addi-
tion, Figure 6 shows that we generated eight smaller clus-
ters. We studied these groups in greater detail by comparing
them against the nominal group to determine if they repre-
sented special modes and anomalies. Of the eight groups,
three turned out to be modes of operation that were identifi-
able because of their correspondence to the switching signals.
In this paper, we analyze the other five groups in greater de-
tail. To study the five smaller clusters, we identified the ob-
jects corresponding to these clusters on the spacecraft mission
timeline. Figure 8 shows these objects as dots on the timeline
plot.

As a first step toward mode characterization, we studied the
discrete switch values during these intervals to see if they pro-
vided information about special modes of operation. When
we were unable to assign a definite interpretation to a cluster,
we extracted the significant features that differentiated that
cluster from the nominal group. Using equation (11) we se-
lected significant features by setting the threshold, Ir = 0.9.
The significant features represented an ordered subset of fea-
tures that contributed the largest amounts to the distance from
the mean of the outlier group to the mean of the nominal, and
the chosen subset accounted for 90% of the distance between
the outlier and nominal group means. Table 1 summarizes
the significant features of five of the outlier groups we iden-
tified by our clustering approach. We presented the signif-
icant features for each anomalous group and the position at

8
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Figure 8. Clusters projected back on the mission timeline

Figure 9. Reaction wheels (OFF=0, ON=1)

which they occurred on the mission time line to our experts
to help us further characterize and classify the special modes
and anomalies.

4.3. Characterizing Special Modes and Anomalies

In this section, we present our characterization of the five
smaller clusters in greater detail that we generated using ex-
pert input. Our mission experts and specialists from NASA
Ames are acknowledged at the end of this paper. Cluster 1
represented the nominal behavior of the spacecraft. CLusters
2-6 are discussed below.

4.3.1. Cluster 2: The reaction wheels control problem

The behavior represented by this cluster covered two time
windows that occurred early in the mission. The behaviors
covered 40 and 6 minutes of the corresponding data objects.
Figure 9 shows that the reaction wheels went off twice (cor-
responding to Reaction Wheels = 0) during the mission. Our
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Figure 10. Significant features for cluster 2

experts confirmed after studying the mission operator logs
that the reaction wheels only went off once during the mis-
sion, and the second zero in the figure was a case of bad
data. Figure 10 shows that different currents in the SATORI
board3#2 were the most significant features for this cluster.
Figure 11 shows that the SATORI #2 current variable for
both data objects in group 2 repeatedly exceeded the 95%
confidence bounds of the current during nominal operations.

The high current values read by the sensors on the SATORI
#2 boards indicated that this incident very likely was related
to the guidance navigation and control unit. The fact that
these currents were related to the three Reaction wheels fur-
ther confirmed this interpretation. The experts from NASA
further substantiated this anomaly as follows. In the first few
orbits around the earth, the spacecraft began to spin at a faster
rate than was expected, and the reaction wheels were turned
off by the control software to avoid a high load current, and,
therefore, draining of the battery. This stopped the spacecraft
rotations, but, as a consequence, the side of the spacecraft fac-
ing away from the sun got became too cold. Several heaters
went on to prevent the equipment from freezing, and this led
to the high currents in a number of units connected through
the SATORI board#2.

4.3.2. Cluster 3: Lunar orbit insertion

Figure 8 shows that the cluster 3 data objects corresponded
to three time intervals that occurred on three different days of
the mission. Each time interval was about six minutes long.
Two different currents in the Power-switching and Pyro Inte-
gration boards (PAPI) board4#2 were the significant features
that characterized this group (see Figure 10). Figure 13 shows

3The SATORI boards provide power to the Command & Data Handling Sys-
tem.

4The PAPI boards route power to the Thermal Control, Guidance, Navigation
& Control and the Propulsion Subsystems.
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Table 1. Summary description of the detected modes and anomalies

Group Detected Mode or
Anomaly

Significant Features Switches

1 Normal operation mode
2 Anomaly: Reaction wheels

• Four SATORI #2 currents • Propulsion heater turned on
• Star tracker went off

3 Mode: Lunar orbit insertion
• Two PAPI #2 currents • Pressurant tank heater went on

• Valve driver unit went on

4 Anomaly: Laser commu-
nication test (during dark
phase)

• Three SATORI #1 currents
• Load Current
• Battery Current

• Laser communications switch
went on

5 Anomaly: Eclipse lasted
longer than expected • Battery Voltage

• SATORI #1 Voltage
• SATORI #2 Voltage
• PAPI #2 Current

• Several heaters went on (e.g.
Propulsion heater)

6 Mode: Safe
• Battery Voltage
• SATORI #1 Voltage
• SATORI #2 Voltage
• SATORI #2 High Pressure

(HP) Current
• PAPI #2 Current
• Solar Array (SA) Current

• Several loads (e.g. star tracker)
turned off

that the PAPI #2 high pressure current number 7 during these
three time intervals. The high amplitude in the PAPI # 2
propulsion subsystem current was the second significant fea-
ture for this cluster. However, unlike Cluster 6, the increase
in PAPI board #2 current did not occur simultaneously with
the battery voltage drop.

With the help of our experts, we found out that the valve
driver unit, which controls the propulsion subsystem and the
pressurant tank heaters, (part of the propulsion subsystem
(see Figure 1)) were ON for the three time intervals. This
corresponded to a unique behavior, however, our experts con-
firmed that the behavior was not anomalous. Instead, it rep-
resented the lunar orbit insertion process. There were three
firings of the propulsion subsystem that occurred to get the
spacecraft into lunar orbit and our algorithm successfully
grou-ped them into a single cluster.

4.3.3. Cluster 4: The laser communication test

This cluster included two time windows, each about 20 min-
utes in duration. Figure 15 shows the SATORI #1 current,
which was the most significant feature for this cluster. The
current values exceeded the 95% upper bound for nominal
operations.

The load current and battery current are the next two signifi-
cant features for this cluster. Further analysis showed that the
data points in this cluster corresponded to laser communica-
tion tests, which were part of the mission plan. The laser com-
munication tests increased load currents significantly. The
two time intervals in this cluster also coincided with the oc-
currence of a new moon, which meant that the solar arrays
were not generating any current (values recorded were very
close to 0) during this period. The high battery current caused
the battery to discharge below acceptable levels, and, the bat-
tery voltage dropped below set thresholds. Our experts char-
acterized this as an anomaly in operations because the laser
communications test led to unintended consequences of the

10
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Figure 11. SATORI #2 high pressure current for cluster 2
objects

battery voltage dropping below specified thresholds.

4.3.4. Cluster 5: The eclipse

The objects in this cluster extended over a 5 hour time span.
It should also be noted that the sampling rate was also signif-
icantly lower, because this was the end of the mission. The
most significant feature for this group was the battery volt-
age, which fell below the 95% bounds of normal operation
(see Figure 16). The drop in battery voltage led to drops in
the SATORI #1 and SATORI #2 voltages. Figure 17 shows
SATORI #1 and SATORI #2 voltages were the next set of
significant features.

The experts confirmed that cluster 5 behavior was directly
the consequence of the eclipse that happened at the end of the
mission. The solar array current was zero during the first 2
hours of this time interval, and it fluctuated between zero and
small non zero values after that. The lack of sunlight caused a
significant drop in temperatures (we did not include temper-
ature values in this analysis), and several heaters came on to
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Figure 12. Significant features for cluster 3

prevent large temperature drops, which would have affected
spacecraft operations. This increased the load current sig-
nificantly. A simultaneous increase in the load currents and
decrease in the solar array current put an unprecedented load
on the battery, which led to large voltage drops in the battery
voltage. This likely jeopardized the battery health, therefore,
it clearly represented anomalous or unexpected behavior of
the EPS.

4.3.5. Cluster 6: The safe mode

The system went into the safe mode right after the eclipse
ended. This mode was about 4 1

2 hours long. The battery volt-
age was again the most significant feature that distinguished
this group from nominal operations. Figure 18 shows battery
voltage during this time interval. The remaining significant
features for this cluster and their importance factors are pre-
sented in Figure 19.

To preserve the health of the battery, several loads were
switched off to reduce energy consumption and give the bat-
tery a chance to recharge. Figure 18 shows that the battery
voltage came back to an acceptable level during this mode.
Our experts explained that the data points in this group repre-
sented a unique behavior in spacecraft operations. However,
they did not classify the behavior to be anomalous, since the
spacecraft systems operated exactly as they should have to
avoid larger failures and possible loss of the spacecraft power
system. Hence, this was a special operational mode, i.e., the
“safe mode” to allow for EPS recovery.

5. DESIGNING THE ONLINE FAULT MONITORS

In order to leverage the above anomaly detection process, and
leverage the findings to make actionable decisions, such as in-
vocation of a corrective mechanism to preserve mission goals
and sub goals, accurate detection and isolation of degraded or
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Figure 13. PAPI #2 high pressure current number 7 for clus-
ter 3 objects
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Figure 14. Significant features for cluster 4
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Figure 15. SATORI #1 high pressure # 6 current for cluster
4 data points

failed components is crucial. The following section focuses
on leveraging the anomaly detection results for subsequent
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Figure 16. Battery voltage for cluster 5 data points
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Figure 17. Significant features for cluster 5

failure identification and isolation through a model-based ap-
proach using QSI’s TEAMS R©suite of tools.

5.1. TEAMS R©model based methodology fault identifica-
tion from anomaly detection

QSI’s TEAMS suite of tools captures the failure or degra-
dation cause and its corresponding functional failure effects
dependency relationships through a multi-signal modeling
methodology Deb et al. (1995). The multi-signal modeling
methodology used in TEAMS can be conceptualized as a
colored dependency graph, where, as in structural models,
but rendered from a failure-space perspective, the structural
components’ modes of failures are modeled as nodes and the
directional links denote dependencies based on structural ad-
jacency. Failure manifestations perceived through anomalous
sensed data, such as out of range voltage measurements for
a battery, are denoted as tests. Corresponding signals repre-
senting the loss of specific functionality, as appropriate, are
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Figure 18. Battery voltage for cluster 6 objects
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Figure 19. Significant features for cluster 6

also attached to these effects and tests.

The TEAMS-RT R©inference engine processes failure events
(error codes, built-in test failures, performance anomalies,
etc.), as they become available. It uses the data to infer the
status of the root causes (the identification of one or more
component faults) and is appropriate for processing onboard
data that is either received in real time or downloaded post-
mission/operation. The ability of the TEAMS-RT inference
engine to diagnose faults in real-time for large complex inter-
connected systems, such as the Ares-I and the Orion space-
craft and most recently on the Exploration Test Flight launch
has been demonstrated by NASA.
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5.2. Modeling the LADEE power system in TEAMS R©-
designing intelligent tests from anomaly detectors

Using the high level schematics, inputs from subject matter
experts (SMEs) and other documentation such as LADEE
comprehensive design review (CDR) presentations, we built
a simplified TEAMS model for part of the Electrical Power
System (EPS). The electric power system (EPS) in LADEE
consists of a solar array, a battery pack, a power distribution
system and various spacecraft loads. We modeled the orga-
nization of the cells in the battery, and the solar cells in the
various modules in great detail, but had to make assumptions
about the sensor locations and various loads. A top level view
of a hierarchical TEAMS model is shown in Figure 20.

Figure 20. Top Level view of the Power System of LADEE

Figure 21. Testability analysis and Test recommendation re-
port from TEAMS R©

A key value proposition of this overall effort is to lever-
age the information gathered through the anomaly detection
techniques and incorporate them in the design of intelligent
fault isolation and degradation tests that can detect failures or
degradations of the relevant functions of the various LADEE
system components thereby improving both real-time and
prognosed system health determination of the system. The
TEAMS reasoning engine such as the one in TEAMS-RT,
when presented with the appropriate behavior of the sys-
tem reasons across the entire set of observations, translates
them into appropriate test results based on these anomaly de-
tections methods that have been incorporated as part of the
mechanism for test result determination, and identify the root

cause(s) for the degradations and failures as stated earlier. In
addition, of key importance is to distinguish system opera-
tional modes or phases (such as the lunar orbit insertion mode
as described in Section 4.3.2) from true anomalous behavior.

In order to demonstrate the power of diagnosis driven prog-
nostic framework, we conducted a design for prognostics
study to improve prognostics capabilities in the LADEE
power system model. The prognostics recommendation re-
port for the LADEE system, shown in Figure 21 (table on
the right-side), proposes adding 5 degradation detection type
tests that will look across multiple existing sensors to detect
voltage degradation functions. This motivated the develop-
ment of the Battery Voltage Anomaly Detector test point as
shown in TEAMS model in Figure 20. Multiple anomaly de-
tection tests with their own ability to detect appropriate func-
tional failure (signal) and can incorporate the anomaly detec-
tion mechanisms described in Sections 4.3.3 (The laser com-
munication test) and 4.3.4 (The Eclipse) can reside in this
Battery Voltage Anomaly Detector test point. In addition, the
operational mode or phase related information for these two
test cases can also be incorporated as detection mechanisms,
provided there are no other direct and readily available mech-
anisms from the vehicle telemetry to assert the presence of
those operational modes or phases. Examples of the different
failure propagation for the same degradation failure during
different operational modes through the model is shown in
Figures 22 and 23.

Thus the design of intelligent fault and degradation tests
based on the anomaly detectors provides proof of concept
how model-based analysis has the potential to improve diag-
nostics and prognostics capabilities of future spacecraft sys-
tems. It enables one to judiciously utilize precious develop-
ment dollars and add useful prognostics capability without
necessarily increasing sensor requirements.

Figure 22. Solar cell failure propagation in a charge-off mode

6. A GENERIC COMPUTATION PLATFORM FOR EN-
CODING THE MULTI-TIMESCALE ANALYTICS
WORKFLOW

Traditionally, centralized architectures have been used for
both data analytics either for real time applications or for an-
alyzing historical data. For example, in modern power dis-
tribution systems, data is collected in real-time from smart
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Figure 23. Same solar cell failure propagation in a mode
when charging is active. Figure shows the degradation be-
havior being propagated through the system and detected by
the Voltage Degradation Sensor anomaly detector during the
charging mode

meters, however, all the analysis happens in a centralized
control center Budka et al. (2010). However, as large-scale
data collection, processing, and analysis are becoming com-
monplace, especially in large cyber-physical systems (CPS)
and smart and connected communities, the shortcomings of
this centralized model are becoming apparent: increased la-
tencies, the lack of scalability, single points of failure, and
saturated communication resources.

The emerging CPS/IoT ecosystem platforms such as Beagle-
bone Blacks, Raspberry Pi, Intel Edison and other edge de-
vices such as SCALE Benson et al. (2015), Paradrop Willis
et al. (2014) are providing new capabilities for data collec-
tion, analysis and processing at the edge Vaquero & Rodero-
Merino (2014) (also referred to as Fog Computing). This al-
lows the dynamic composition of computing and communi-
cation networks that can be used to monitor and control the
physical phenomena closer to the source. Supported by tradi-
tional cloud services, this kind of computation platform can
support both long-term model constructions, a computation
heavy task and an online real-time classification, providing
anomaly detection.

Figure 24 describes a potential encoding of the application
defined in this paper as a workflow. As can be seen in the
figure, the workflow can be cleanly separated into a section
for long-term processing that is used to produce fault models,
and a section for real-time online classification that supports
anomaly detection and failure mode isolation. Designing and
managing these applications with different temporal require-
ments is difficult because they require different computation
and communication patterns. For example, real-time appli-
cations in this domain require a traditional control loop com-
putation pattern. In comparison, a long running, computa-
tion heavy, big-data application is usually implemented using
some notion of a computation graph supported by existing
dataflow engines such as Storm Apache Software Foundation
(n.d.-b), Spark Apache Software Foundation (n.d.-a), or Ten-
sorFlow Abadi et al. (n.d.). These differences require us to
devise solutions that facilitate integration of and interaction
between applications with varying computation models.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a mixed anomaly detection
method that combine unsupervised learning methods com-
bined with human-expert support to analyze telemetry data
from spacecraft missions. We have described the various
steps of the method from the data pre-processing, genera-
tion of the feature space, applying a clustering algorithm, de-
termining nominal and outlier processes, associating signifi-
cant features with the outlier groups, to the consultation with
experts resulting in the identification and characterization of
special modes of operation as well as anomalous behavior of
the system. In addition, we discussed how anomalies, once
detected may be used to design and deploy online monitors
within the TEAMS-RT environment. Last, we provided a
general computational architecture that can support historical
analysis of data for anomaly detection as well as the online
mechanisms needed for fault detection and isolation.

As a case study, we applied our approach to analyzing teleme-
try data from the Electric Power System (EPS) of a recent lu-
nar mission called LADEE. Our case study provided interest-
ing results. We were successful in working with mission ex-
perts to identify a set of special modes as well as some anoma-
lies that occurred during the mission. The use of significant
features as well as the projection of the outlier data groups
back onto the mission timeline greatly facilitated the mission
experts’ tasks of identifying and characterizing the special
modes and anomalies. This approach shows great promise
in generalizing to complex cyber physical systems (CPSs),
where well-developed models of the system are not readily
available, therefore, operational data has to be used to under-
stand and evaluate system operations, and detect anomalies
and outlier behaviors.

In future work, we will scale up the anomaly detection work
using computational architectures like CHARIOT Pradhan et
al. (2015), and investigate different algorithms to improve our
anomaly detection and fault classifier methods. We will scale
up our case study for the LADEE system to include all of the
subsystems of the spacecraft.
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