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ABSTRACT 

Industrial big data analytics is an emerging multidisciplinary 
field, which incorporates aspects of engineering, statistics 
and computing, to produce data-driven insights that can 
enhance operational efficiencies, and produce knowledge-
based competitive advantages. Developing industrial big 
data analytics capabilities is an ongoing process, whereby 
facilities continuously refine collaborations, workflows and 
processes to improve operational insights. Such activities 
should be guided by formal measurement methods, to 
strategically identify areas for improvement, demonstrate 
the impact of analytics initiatives, as well as deriving 
benchmarks across facilities and departments. This research 
presents a formal multi-dimensional maturity model for 
approximating industrial analytics capabilities, and 
demonstrates the model’s ability to assess the impact of an 
initiative undertaken in a real-world facility. 

1. INTRODUCTION 

Modern manufacturing facilities are becoming increasingly 
more data-intensive. Such environments support the 
transmission, sharing and analysis of information across 
pervasive networks to produce data-driven manufacturing 
intelligence (Chand and Davis 2010; Davis et al. 2012; Lee, 
Kao, and Yang 2014). This intelligence may provide many 
benefits, including improvements in operational efficiency, 
process innovation, and environmental impact, to name a 
few (Fosso Wamba et al. 2015; Hazen et al. 2014). To 
realize these benefits industrial information systems must be 
capable of storing and processing exponentially growing 
datasets (i.e. Big Data), while supporting predictive and 
scenario analytics to inform real-time decision-making 
(Fosso Wamba et al. 2015; Kumar et al. 2014; Lee et al. 
2013; McKinsey 2011; Philip Chen and Zhang 2014; Vera-
baquero, Colomo-palacios, and Molloy 2014). Greater data 
production may be attributed to increased sensing 

capabilities, and persistence of higher resolution operational 
data. These sensing technologies encompass both legacy 
automation networks and emerging paradigms (e.g. Internet 
of Things and Cyber Physical Systems) (Davis et al. 2012; 
Lee, Bagheri, and Kao 2015; Wright 2014). The data 
collected from these networks may be analyzed and 
modeled to produce data-driving insights. These 
technologies and processes are becoming synonymous with 
industrial big data analytics, which incorporates aspects of 
big data analytics, automation, control and engineering.  

Given the contemporary and multidisciplinary nature of 
industrial big data analytics, measuring current industrial 
analytics capabilities can be difficult.  Such measurements 
could identify areas for strategic improvement, while also 
illustrating the impact of historical initiatives. In other 
business domains, capability assessment has been achieved 
using maturity models. While maturity models exist for 
aspects of industrial analytics (e.g. big data), they do not 
capture the dimensions or details needed to support 
capability assessment of the industrial domain. Thus, this 
research presents the development and application of an 
industrial analytics maturity model to approximate 
capabilities across numerous operating dimensions.  

2. RELATED WORK 

Given the contemporary, diverse and multidisciplinary 
nature of industrial analytics, determining current 
capabilities and developing strategic roadmaps may prove 
difficult. Many of these challenges are addressed in other 
domains using maturity models, which approximate 
capabilities and highlight strengths and weaknesses in a 
particular area (Ayca et al. 2016). Examples of such 
domains include Information Technology, Software 
Engineering, Data Management, and Business Process 
Management, to name a few (Koehler, Woodtly, and 
Hofstetter 2015; Ngai et al. 2013; Ofner, Otto, and Österle 
2015; Oliva 2016; Torrecilla-Salinas et al. 2016). While 
there are currently no maturity models focused specifically 
on industrial analytics, several models exist for measuring 
Big Data and Internet of Things (Halper and Krishnan 2014; 
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IBM 2016; IDC 2016; Infotech 2016; Knowledgent 2016; 
Potter 2014; Radcliffe 2014) capabilities. These models are 
predominantly of commercial origin with insufficient 
documentation to support assessment, while their 
methodological and theoretical foundations are unclear.  

Maturity models reflect aspects of reality to classify 
capabilities (Kohlegger, Maier, and Thalmann 2009), which 
may be used for comparison and benchmarking (Rajterič 
2010). Such models typically comprise dimensions and 
levels. Levels are ordinal labels that signify stages of 
maturity, while dimensions represent specific capabilities 
from the domain of interest. These dimensions may be 
further populated (e.g. technologies and processes) to 
facilitate deeper capability assessments (Lahrmann and 
Marx 2010). The contents of each dimension may by 
derived using qualitative research methods, including case 
studies, focus groups and the Delphi method (Lahrmann et 
al. 2011). Given the potential sophistication of some 
models, models are generally limited to measuring a 
particular aspect of a domain (Rajterič 2010), although 
multiple models can be aligned to facilitate broader 
assessments. However, aligning multiple models can be 
challenging when different dimensions and levels exist 
(Kohlegger, Maier, and Thalmann 2009). 

The common criticisms associated with maturity models 
include insufficient accuracy, poor documentation, 
inadequate theory, and design bias (Dinter 2012; Lahrmann 
et al. 2011; Lahrmann and Marx 2010) - Dinter concluded 
maturity models cannot mitigate biases, even when 
empirical methods exist (Dinter 2012), while Lahrmann et 
al. (2010) reported many models are poorly documented and 
theoretically weak (Lahrmann and Marx 2010). There are 
three well-established development methodologies found in 
literature - De Bruin et al. (De Bruin et al. 2005), Becker et 
al. (Becker, Knackstedt, and Pöppelbuß 2009) and Mettler 
(Mettler 2009). These methodologies describe iterative 
approaches that facilitate continuous model improvement 
(Dinter 2012; Poeppelbuss et al. 2011). Therefore, maturity 
models must be refined and improved to reflect the nuances 
of the domain. 

Given the contemporary and multidisciplinary nature of 
industrial analytics, determining current capabilities and 
creating strategic roadmaps can be challenging. Many of 
these challenges are addressed in other domains using 
maturity models (Koehler, Woodtly, and Hofstetter 2015; 
Lahrmann et al. 2011; Ngai et al. 2013; Ofner, Otto, and 
Österle 2015; Oliva 2016; Torrecilla-Salinas et al. 2016). 
Although closely related maturity models exist for 
mainstream Big Data and Internet of Things (Halper and 
Krishnan 2014; IBM 2016; IDC 2016; Infotech 2016; 
Knowledgent 2016; Potter 2014; Radcliffe 2014), these 
models do not possess the depth needed to measure 
industrial analytics capabilities.  

3. RESEARCH METHODOLOGY 

This research employs an action research approach to design 
and test a maturity model for measuring industrial analytics 
capabilities (De Villiers 2005). This approach was chosen 
given its ability to link theory and practice when 
investigating real-world challenges (Abdel-Fattah 2015). 
This research presents a maturity model to address 
measurement, comparison and benchmarking challenges 
pertaining to industrial analytics capabilities. The maturity 
model development process of De Bruin et al. (De Bruin et 
al. 2005) was used to construct the Industrial Analytics 
Maturity Model (IAMM). This process consisted of six 
sequential phases (Figure 1), with each phase containing 
criteria that characterized the model.  

 
Figure 1. Model development phases (De Bruin et al. 2005) 

3.1. Model Development 

3.1.1. Phase 1 - Scope 

The scope phase defines model boundaries using predefined 
criteria (Table 1). A model’s focus can be domain-specific 
or generic. Generic models are those that may be applied 
across different domains (e.g. quality), while domain-
specific models are coupled to a particular scenario (e.g. 
software development). Those that have an implied interest 
in the model’s creation are known as development 
stakeholders. These stakeholders can inform the model’s 
development, or benefit from its application. Examples of 
stakeholders may include academia, practitioners, and 
government entities. 

The IAMM was classified as domain-specific given its 
focus on industrial analytics, with academic researchers and 
industry practitioners identified as development 
stakeholders. These stakeholders were deemed relevant 
given the model enables them to (a) illustrate current 
capabilities, (b) highlight areas for improvement, and (3) 
measure the impact of initiatives. These choices are 
highlighted in the selection column (Table 1). 

Criteria Options Selection 
Focus of Model Domain Specific þ 
 General  
Stakeholders Academia þ 
 Practitioners þ 
 Government  
 Combination þ 

Table 1. Scope criteria selection for IAMM 

16th Australasian Conference on Information Systems  Maturity Assessment Model 
29 Nov – 2 Dec 2005, Sydney  de Bruin 

 

 

The CMM has gained such global acceptance that high maturity scores are one of the requirements for accepting 
off-shoring partners.  The SEI has created six maturity models in total and has recently incorporated three legacy 
CMMs into one maturity model now named the Capability Maturity Model Integration – CMMI (Ahern et al. 
2004). Two other stand alone models include the People Capability Maturity Model and the Software 
Acquisition Capability Maturity Model. However, the SEI is not the only developer of methods to assess 
maturity. More than 150 maturity models have been developed to measure, among others, the maturity of IT 
Service Capability, Strategic Alignment, Innovation Management, Program Management, Enterprise 
Architecture and Knowledge Management Maturity. Unlike CMM which has reached the level of a compliance 
standard (Mutafelija and Stromberg 2003), most of these models simply provide a means for positioning the 
selected unit of analysis on a pre-defined scale.   

Whilst maturity models are high in number and broad in application, there is little documentation on how to 
develop a maturity model that is theoretically sound, rigorously tested and widely accepted.  This paper seeks to 
address this issue, by presenting a model development framework applicable across a range of domains.  Support 
for this framework is provided through the presentation of the consolidated methodological approaches, 
including testing, undertaken by two universities while independently developing maturity models in the 
domains of Business Process Management (BPM) and Knowledge Management (KM) respectively.  Throughout 
this paper, these models will be referred to as the Business Process Management Maturity (BPMM) model and 
the Knowledge Management Capability Assessment (KMCA) model.  This paper is structured so that the generic 
phases required for development of a general maturity model are identified first.  Next, each phase is discussed 
in detail using the two selected maturity models as examples. Finally, conclusions are drawn regarding the 
potential benefits from utilisation of such a model and limitations and future research are identified.    

DEVELOPMENT FRAMEWORK 
The importance of a standard development framework is emphasised when considering the purpose for which a 
model may be applied including whether the resulting maturity assessment is descriptive, prescriptive or 
comparative in nature.  If a model is purely descriptive, the application of the model would be seen as single 
point encounters with no provision for improving maturity or providing relationships to performance.  This type 
of model is good for assessing the here-and-now i.e. the as-is situation.  A prescriptive model provides emphasis 
on the domain relationships to business performance and indicates how to approach maturity improvement in 
order to positively affect business value i.e. enables the development of a road-map for improvement.  A 
comparative model enables benchmarking across industries or regions.  A model of this nature would be able to 
compare similar practices across organizations in order to benchmark maturity within disparate industries.  A 
comparative model would recognize that similar levels of maturity across industries may not translate to similar 
levels of business value.  It is argued that, whilst these model types can be seen as distinct, they actually 
represent evolutionary phases of a model’s lifecycle.  First, a model is descriptive so that a deeper understanding 
of the as-is domain situation is achieved.  A model can then be evolved into being prescriptive as it is only 
through a sound understanding of the current situation that substantial, repeatable improvements can be made.  
Finally, for a model to be used comparatively it must be applied in a wide range of organizations in order to 
attain sufficient data to enable valid comparison.  The proposed standard development framework forms a sound 
basis to guide the development of a model through first the descriptive phase, and then to enable the evolution of 
the model through both the prescriptive and comparative phases within a given domain.  Furthermore, we 
propose that, whilst decisions within the phases of this framework may vary, the phases themselves can be 
reflected in a consistent methodology that is able to be applied across multiple disciplines.  Figure 1 summarises 
the phases included in the generic framework. 

Design    Populate Test Deploy Scope Maintain 

 

Figure 1: Model Development Phases 

Whilst these phases are generic, their order is important. For example, decisions made when scoping the model 
will impact on the research methods selected to populate the model or the manner in which the model can be 
tested.  In addition, progression through some phases may be iterative, for example it may be a case of ‘design’, 
‘populate’ and ‘test’ and dependent upon the ‘test’ results, necessary to re-visit and adjust decisions made in 
earlier phases. The usefulness of this lifecycle model is best reflected by showing how it has been applied for the 
independent development of the BPMM and KMCA models.   
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3.1.2. Phase 2 – Design 

The design phase defines model architecture and application 
using predefined criteria (Table 2). These criteria provide a 
deeper understanding of (1) who will use the model, (2) why 
they need the model, and (3) how they can apply the model. 
These design details must manage the trade-off between 
domain accuracy and model simplicity. While simple 
models may not reflect the nuances of the domain, complex 
models may create user adoption challenges (e.g. time-
consuming assessment process). 

The IAMM’s audience was classified as internal executives 
and management, given they are responsible for improving 
in-house industrial analytics capabilities. A self-assessment 
method controlled by staff members was chosen to measure 
analytics capabilities, which would be driven by internal 
roadmaps and objectives (e.g. smart manufacturing). These 
assessments should consider multiple perspectives and 
dimensions (e.g. automation and mainstream technology) to 
evaluate maturity.  

Criteria Options Selection 
Audience Internal Executives and 

Management þ 

 External Auditors and Partners  
Method  Self-Assessment þ 
 Third Party Associated  
 Certified Practitioner  
Driver  Internal Requirement þ 
 External Requirement  
Respondents Management  
 Staff þ 
 Business Partners  

Application Single Entity / Single Region  

 Multiple Entities / Single Region  

 Multiple Entities / Multiple 
Regions þ 

Table 2. Design criteria selection of IAMM 

A maturity model structure and application may take two 
forms. First, models may employ a multi-level approach. 
These models adhere to the continuous maturity principle, 
where multiple dimensions of the model may assert 
different maturity levels. This approach is useful for 
modeling multifaceted domains, and highlighting strengths 
and weaknesses. Second, models may also employ a single-
level approach. These models adhere to the staged maturity 
principle, which use a single label to classify maturity. This 
approach may suit scenarios where natural linear 
progressions exist (e.g. beginner to advanced). 

The IAMM’s architecture follows a multi-level approach 
given multiple disciplines exist in the industrial analytics 
domain (Table 3). This approach also provides the 

flexibility needed to align maturity assessment with 
operational goals and objectives (e.g. not all facilities may 
wish to enhance embedded analytics).  

Dimension Levels Rationale 
Open 
Standards 

10 Standards-based technologies 
and protocols are needed to 
promote interoperability between 
different stages in the industrial 
analytics lifecycle. 

Operation 
Technology 

10 Operation Technology must 
support the systems and 
processes that facilitate the 
acquisition of industrial data in 
the factory. 

Information 
Technology 

10 Information Technology must 
provide the infrastructure and 
technologies needed to support 
the transmission and processing 
of data between different areas of 
the industrial analytics lifecycle. 

Data Analytics 10 Data Analytics must possess the 
knowledge and skills necessary 
to model engineering problems 
that can be deployed in factory 
operations. 

Embedded 
Analytics 

10 Embedded Analytics must 
facilitate the deployment of data-
driven models in the factory to 
affect real-time decision-making 
across operations. 

Table 3. IAMM architecture and dimensions 

3.1.3. Phase 3 - Populate 

The populate phase defines model components and 
subcomponents, which relate to different aspects of the 
domain being assessed. Such components may be identified 
using formal methods, such as literature reviews, 
stakeholder interviews, surveys, and case studies, to name a 
few. Given multi-dimensional industrial analytics maturity 
models do not exist in literature, the IAMM was populated 
(Figure 2) using knowledge derived from previous research 
efforts (Donovan et al. 2015; O’Donovan, Bruton, and 
O’Sullivan 2016). The IAMM structure contains dimension 
components (green) and capability subcomponents (blue). 
These subcomponents describe processes and technologies 
that derive maturity for (1) Open Standards, (2) Operation 
Technology, (3) Information Technology, (4) Data 
Analytics, and (5) Embedded Analytics.  
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Figure 2. Industrial analytics maturity model architecture 

Each dimension’s subcomponents were assessed using 
hypothesis statements (Table 4) to determine approximate 
truth. Such statements enable practitioners to approximate 
maturity using an agreement scale (Yes=2, Partially=1, or 
No=0), with dimension maturity derived from the average 
subcomponent score. 

Code Component Hypothesis Statements  

D1.1 Devices & 
Network 
Protocols 

Devices and instrumentation in the 
factory are accessed using open 
technology standards. 

D1.2 Cloud-to-
Factory 
Integration 

The factory floor is connected with 
cloud platforms using open technology 
standards. 

D1.3 Data I/O 
Acquisition 

Archived operational data can be 
queried using standard I/O interfaces. 

D1.4 Model 
Building 

Data-driven models are interoperable 
with other software, platforms and 
engines. 

D1.5 Model 
Scoring 

Production-ready data-driven models 
are accessed and scored using standard 
protocols. 

D2.1 Data 
Archiving 

All data points and measurements in the 
factory are archived in a central 
location. 

D2.2 Data 
Accessibility 

Archived data is labeled, catalogued, 
identifiable, and directly accessible. 

D2.3 Cloud 
Integration 

Real-time operations utilize cloud 
computing for large-scale data storage, 
processing or analysis. 

D2.4 Resource 
Provisioning 

New compute or technical resources are 
provisioned to support analytics efforts. 

D2.5 Response 
Time 

Basic provisioning and support requests 
relating are fulfilled in 24 to 48 hours.  

D3.1 Data 
Management 

Governance policies exist for 
cataloguing, storing, processing, and 
identifying data sources. 

D3.2 Large-scale 
Processing 

Scalable and robust architectures exist 
to support exponential increases in data 
throughput. 

D3.3 Pipeline 
Automation 

Manually data processing and cleaning 
routines have been automated using 
workflow pipelines. 

D3.4 Resource 
Provisioning 

New compute or technical resources are 
provisioned to support analytics efforts. 

D3.5 Response 
Time 

Basic provisioning and support requests 
relating are fulfilled in 24 to 48 hours.  

D4.1 Data 
Modeling 

Data transformation, wrangling and 
preparation activities are undertaken 
using our own statistical tools and 
libraries. 

D4.2 Line-of-
Business 
Reporting 

Performance reporting and analysis is 
undertaken using productivity tools 
such as MS Excel. 

D4.3 Descriptive 
Analytics 

Basic data relationships and patterns are 
identified in each month using 
statistical software packages. 

D4.4 Advanced 
Analytics 

Predictive data-driven models are 
regularly built to inform decision-
making. 

D4.5 Model 
Deployment 

Accurate data-driven models are always 
deployed to provide end-users with 
access to the new knowledge. 

D5.1 Domain 
Expertise 

Subject matter experts guide analytics 
investigations and questions relating to 
factory operations.  

D5.2 Operational 
Knowledge 

Subject matter experts informing 
analytics efforts always possess an 
intimate knowledge of the process 
being investigated. 

D5.3 System 
Integration 

Production-ready models are always 
integrated in the factory to positively 
impact operations and decision-making. 

D5.4 Data 
Visualization 

Knowledge contained in models is 
presented to end-users in a manner that 
simplifies decision-making. 

D5.5 Performance 
Metrics 

Top-line metrics are used extensively in 
embedded analytics applications 
throughout the factory. 

Table 4. Industrial analytics maturity model assessment 

3.1.4. Phases 4 to 6 - Test, Deploy and Maintain 

These three phases define feedback mechanisms and model 
improvement protocols. While the test phase determines if 
the model’s architecture correctly represents the target 
domain, deploy and maintain phases focus on applying and 
refining the model. Given the IAMM’s design, structure and 
completeness originated from real-world requirements and 
analysis activities, further testing the model’s alignment 
with the domain was not deemed necessary (O’Donovan, 
Bruton, and O’Sullivan 2016). This enabled the deployment 
of the IAMM to a large-scale manufacturing facility, where 
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Data		
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it was used to measure the impact of an energy-focused 
industrial analytics initiative. 

3.2. Model Validity 

Potential threats to the IAMM’s validity may be classified 
as those generally associated with maturity models, and 
those stemming from model-specific design. Some of these 
threats are described in Table 5. 

Threat Discussion 

Accuracy Given IAMM focuses on approximating industrial 
analytics capabilities for comparison and 
benchmarking, accuracy was not considered a major 
threat. We consider assessment consistency across 
longitudinal analysis as a greater threat. Such 
challenges may be addressed by refining assessment 
guidelines, but developing in-house assessment 
policies and procedures are equally important.  

Scoring There is an inherent trade-off between model 
granularity and usability. High-level models lack 
sufficient detail to guide assessment, while low-level 
models may come with significant overheads. 
IAMM adopts somewhat of a hybrid perspective, 
whereby a complete architecture guides assessment, 
but simplified scoring facilitates easy adoption. 
These trade-offs may be addressed in the future.  

Bias Maturity models are naturally subject to design bias. 
Bias cannot be avoided completely given the level of 
interpretation involved in model construction. To 
mitigate direct researcher design bias, the IAMM 
architecture was formed using multiple operational 
perspectives acquired from the factory. Where user-
derived design biases exist, iterative refinement and 
practitioner feedback will facilitate their dilution. 

Coverage Measuring capabilities across entire domains is 
somewhat unrealistic. Hence, maturity models tend 
to address specific aspects of a particular domain. 
IAMM focuses on operational convergences 
associated with industrial analytics capabilities. 
During model design particular capability 
components were filtered to ensure coherence, while 
trying to preserve important capability 
characteristics. Similarly to previous threats, gaps in 
domain coverage can be addressed using iterative 
model refinement and practitioner feedback. 

Table 5. Summary of research validity threats  

4. RESULTS AND DISCUSSION 

This section describes the deployment and application of the 
IAMM to measure the impact of an energy-focused 
industrial analytics initiative in a large-scale manufacturing 
facility. The impact was determined using capability 
assessments recorded before and after the implementation of 
an industrial analytics architecture (O’Donovan, Bruton, and 
O’Sullivan 2016). This capability assessment was 
undertaken to demonstrate the application and usefulness of 
the IAMM as a means of measuring change, and 

highlighting operational strengths and weaknesses in the 
context of data-driven energy operations. 

4.1. Assessment Protocol 

Figure 3 illustrates the assessment protocol used to measure 
industrial analytics capabilities in this research. The figure 
shows actions undertaken by each researcher (i.e. three 
assessors) in the outer section (e.g. score, reason etc.), 
which were collaboratively synthesized to derive final 
capability levels. This enabled researchers to make their 
own assertions regarding capability changes, while knowing 
any individual bias would eventually be diluted. Table 6 
summarizes each step in this assessment protocol. 

 
Figure 3. Capability assessment protocol 

Step Description 
Score Each researcher evaluated and scored the 

hypothesis statements (Table 4) for before and 
after the implementation of the industrial analytics 
architecture. 

Reason For each score asserted, the researcher was 
required to rationalize their decision using a textual 
description.  

Code In addition to a textual description, the researcher 
was also required to explicitly label the 
architecture diagram to illustrate where they 
envisaged the capability improvement. 

Discuss After scoring, reasoning and coding all 
components in the model, the researcher presented 
their assertions, and these were discussed and 
evaluated by the group. 

Synthesize Finally, the individual assessments were 
synthesized during group discussions to form the 
final capability levels for before and after 
implementation. This unified capability data is 
presented and discussed in the following sections.  

Table 6. Capability assessment protocol 

Synthesize	

Score	

Reason	

Code	

Discuss	
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Figure 4 illustrates industrial analytics the synthesized 
capabilities across energy operations, before and after the 
implementation of the industrial analytics architecture. 
While the facility’s traditional energy operations and 
systems were state-of-the-art, maturity assessments 
highlighted gaps between legacy and emerging technologies 
(e.g. data analytics). These gaps are assessed and discussed 
in the following sections. 

 
Figure 4. Comparison of industrial analytics capabilities 

4.2. Industrial Analytics Architecture 

Figure 6 illustrates the industrial analytics architecture for 
assessment (O’Donovan, Bruton, and O’Sullivan 2016). 
This architecture was originally implemented to promote 
consistent data flows between multidisciplinary teams, 
establish clear boundaries and responsibilities, and classify 
data streams to facilitate industrial analytics. These streams 
are labeled as batch and real-time. Batch streams are 
responsible for acquiring, cleaning and serving operational 
data to build data-driven models, while real-time streams 
leverage these models to monitor and inform real-world 
factory operations.  

 

The codes overlaid (e.g. D1.2) on the industrial analytics 
architecture correspond to the IAMM’s hypothesis 
statements (Table 4). These codes were added during the 
assessment protocol, which required those undertaking 
capability assessments to explicitly highlight and rationalize 
assertions. The final codes indicate capability improvements 
were evident across operational convergences (e.g. 
integration and interoperability) and analytics pipelines (e.g. 
building and deployment).  

4.3. Open Standards 

Positive changes in standards were evident across all areas 
excluding operational technology (Figure 5). Open 
standards were used (e.g. OLE Process Control) for building 
automation and control (Hong and Jianhua 2006), while no 
standards existed to support integration with cloud 
computing and analytics frameworks. This resulted in 
capability improvements relating to D1.2, D1.4 and D1.5. 
These improvements are discussed in Table 7. 

 
Figure 5. Open standards comparison 

 

.



 

Component Rationale 

D1.1  
Devices & 
Network 
Protocols 

Open standards are currently used for building 
automation and control, while the industrial 
analytics lifecycle implementation does not 
target improvements at this level (Bacnet 2006; 
Hong and Jianhua 2006; Kastner et al. 2005). 
Therefore, no capability changes were expected 
or recorded.  

D1.2  
Cloud-to-
Factory 
Integration 

The industrial analytics lifecycle implementation 
(Figure 6) shows Hypertext Transfer Protocol 
(HTTP) supporting factory-to-cloud integration 
(Verivue 2008). An improved capability of 
‘partial’ was assigned given a proprietary 
software library was used to support aspects of 
integration. 

D1.3  
Data I/O 
Acquisition 

OLEDB, ODBC and standard I/O streams could 
be used to access energy data from repositories 
on the network. Similarly to device standards, 
the implementation being assessed does not 
target improvements for factory-level I/O, and 
therefore, no capability changes were expected 
or recorded. 

D1.4  
Model 

Energy focused data-driven models were not 
used before implementation. Therefore, no 

Building standards existed to support such models. The 
industrial analytics lifecycle implementation 
(Figure 6) utilizes Predictive Modeling Markup 
Language (PMML) (Data Mining Group 2016)to 
encode data-driven models. Full agreement with 
the hypothesis statement was chosen given there 
were no indications that PMML could not be 
used as the basis to encode future models. 

D1.5  
Model 
Scoring 

Given the lack of data-driven models, standards 
to facilitate the scoring of energy data were not 
necessary. The industrial analytics lifecycle 
implementation (Figure 6) employs web 
services to score data-driven models. These 
services are initiated using HTTP requests, while 
data exchanges are facilitated using JavaScript 
Object Notation (JSON). Full agreement with the 
hypothesis statement was deemed appropriate 
given the complete use of standards from the 
client-side. 

Table 7 Open standards assessment 

 
Figure 6. Coded analysis of lifecycle implementation (O’Donovan, Bruton, and O’Sullivan 2016) 
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4.4. Operation Technology 

Positive changes in operation technology largely stemmed 
from data accessibility and availability of cloud computing 
technologies (Figure 7). This resulted in capability 
improvements relating to D2.2 and D2.3. These 
improvements are discussed in Table 8. 

 
Figure 7. Operation technology comparison 

Component Rationale 

D2.1  
Data 
Archiving 

Full maturity was applied given the Building 
Management System (BMS) logs all energy-
related data points in the facility.  

D2.2  
Data 
Accessibility 

Existing energy data repositories exhibited 
arbitrary naming conventions and were largely 
inaccessible to networked users and processes. 
Improvements were realized using a workflow 
engine to contextualize data segments, while 
processed data was accessible via HTTP. 

D2.3  
Cloud 
Integration 

Solely in the context of energy operations, auto-
scaling compute resources were implemented to 
handle large-scale data processing and requests. 
Given the ingestion and processing of all energy 
data in the facility was previously demonstrated, 
full maturity was assigned in this instance. 

D2.4  
Resource 
Provisioning 

No specific policies or processes existed to 
support provisioning of tools or technologies for 
industrial analytics. Given the technical nature of 
the industrial lifecycle implementation, such 
capabilities were not addressed or affected. 

D2.5 
Response 
Time 

General policies for provisioning resources were 
not aligned with the quick turnaround times 
specified in the hypothesis statement. Given the 
technical nature of the industrial lifecycle 
implementation, such capabilities were not 
addressed or affected. 

Table 8. Operation technology assessment 

 

4.5. Information Technology 

Given only minor convergences existed between operation 
and information technology for energy operations, many 
positive capability changes were observed (Figure 8). These 
improvements are discussed in Table 9. 

 
Figure 8. Information technology comparison 

Component Rationale 

D3.1 
Data 
Management 

While factory-level energy repositories used 
arbitrary naming for data points, the 
implemented data lake comprised many tags that 
described the origin and application of the data. 
These tags were used to form a catalogue to 
identify data sources for mapping and cleaning 
operations.  

D3.2 
Large-scale 
Processing 

Given the auto-scaling configuration used during 
the industrial analytics lifecycle implementation, 
data ingestion and workflow processes exist to 
manage large datasets and interoperate with big 
data tools. 

D3.3 
Pipeline 
Automation 

Formal implemented workflow processes 
facilitated the turnkey cleaning and 
transformation of energy data. This resulted in 
analytics-ready data being served to end-users 
and processes.  

D3.4 
Resource 
Provisioning 

On-demand cloud computing enabled the 
seamless provisioning of virtual resources to 
support industrial analytics efforts. 

D3.5 
Response 
Time 

Additional resources for existing infrastructure 
were automated to reduce provisioning time.  

Table 9. Information technology assessment 

4.6. Data Analytics 

Positive changes in data analytics were demonstrated by the 
use of statistical tools to apply analytical methods and 
deploy data-driven models (Figure 9). This resulted in 
capability improvements relating to D4.1, D4.3, D4.4 and 
D4.5. These improvements are discussed in Table 10. 
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Figure 9. Data analytics comparison 

Component Rationale 

D4.1 
Data 
Modelling 

Existing information systems were used to 
display energy data and operations, with no 
apparent application of statistical data analysis. 
Post-implementation such activities were 
demonstrated using R Studio and associated 
software packages. 

D4.2 
Line-of-
Business 
Reporting 

Some aspects of energy operations demonstrated 
ad hoc analysis using MS Excel and MS SQL. 
These capabilities were not targeted or affected 
after the lifecycle implementation. 

D4.3 
Descriptive 
Analytics 

The implementation demonstrated descriptive 
analytics using RStudio to identify anomalies in 
time-series trends for Air Handling Units 
(AHU’s) in the factory. These capabilities were 
directly enabled by the accessibility of clean and 
processed energy data from the workflow engine. 

D4.4 
Advanced 
Analytics 

The implementation demonstrated advanced 
analytics capabilities by training a machine 
learning model to automatically identify issues 
with heating components in AHU’s. These 
capabilities were informed by findings from 
previously mentioned descriptive analytics 
efforts. 

D4.5 
Model 
Deployment 

The implementation facilitated the deployment 
of PMML encoded data-driven models to 
accessible cloud-based repositories. This enabled 
model to collaborate with scoring components to 
facilitate deployment in the factory. 

Table 10. Data analytics assessment 

4.7. Embedded Analytics 

Positive changes in embedded analytics stemmed from the 
ability to operationalize analytics models informed by 
subject matters (Figure 10). This resulted in capability 
improvements relating to D5.1, D5.2, and D5.3. These 
improvements are discussed in Table 11. 

 
Figure 10. Embedded analytics comparison 

Component Rationale 

D5.1 
Domain 
Expertise 

Incorporating subject matter expertise was 
facilitated by the analytics lifecycle, where 
knowledge relating to AHU diagnostics was to 
guide the construction and deployment of a 
diagnostics application. 

D5.2 
Operational 
Knowledge 

This particular capability was graded ‘partial’ 
given expertise for industrial energy, utilities and 
diagnostics were used to demonstrate the 
analytics lifecycle implementation.  

D5.3 
System 
Integration 

The operationalization of data-driven models for 
energy operations did not exist before the 
implementation of the industrial analytics 
lifecycle. The industrial analytics lifecycle 
demonstrated the integration of factory-level 
operations with analytics output via a diagnostic 
application embedded in the facility. 

D5.4 
Data 
Visualization 

Different information systems were used in the 
factory to present and explore energy data 
recorded in the facility. The implementation did 
not extend these capabilities, which resulted in 
capabilities being unaffected. 

D5.5 
Key 
Performance 
Metrics 

Internal metrics relating to energy consumption 
are used to gauge performance. Given the 
implementation did not enhance these 
capabilities, maturity levels remained the same. 

Table 11. Embedded analytics assessment 

5. CONCLUSIONS 

There are many challenges associated with developing 
industrial analytics capabilities. Some common challenges 
include managing heterogeneous technologies and 
platforms, forming multidisciplinary teams, and formalizing 
prescriptive approaches, to name a few. Such challenges are 
exacerbated further where no methods exist to measure 
current capability levels, and strategically identify areas for 
improvement (e.g. technical roadmap). Thus, this research 
considered the use of maturity models to classify and 
quantify industrial analytics capabilities. 
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The industrial analytics maturity model (IAMM), which was 
developed during this research, was used to highlight 
capability improvements across energy operations after the 
execution of an industrial analytics initiative. These results 
showed positive improvements, but this was expected given 
energy operations had no analytics infrastructure before 
implementation. However, maturity assessments should not 
be considered isolated events, but rather a longitudinal 
process, where capability levels are continuously monitored, 
improved and compared. Such processes organically 
produce quantifiable benchmarks, which may be used to 
compare capabilities across departments and facilities. The 
IAMM provides a foundational framework for capability 
assessment, which researchers and practitioners may extend 
to meet specific requirements. Indeed, these refinements and 
extensions are necessary to improve the representation of 
the domain being assessed.  

Future work will focus on the refinement and extension of 
the current model, as well as the development of an IAMM 
compliant cloud-based web and mobile application to 
support ongoing capability assessment and reporting.  
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