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ABSTRACT

The efficiency behaviour of an industrial plant, part of a huge
international structure of plants, is modelled as an emergent
phenomenon in a complex adaptive system. The study is
based on real in-service data obtained from an industrial pro-
duction line monitoring system. Models of complex adaptive
systems and some modern manifold learning methods are in-
troduced in a unified formalism. The emergent behaviour is
efficiently described in this setup.

1. INTRODUCTION

This article should be considered as part of a larger research
programme, which aims to investigate the applications of mod-
ern manifold learning as an efficient tool for modelling emer-
gent phenomena in complex (adaptive) systems. Some ideas
in this direction have been presented during the last years by
the first author in a series of seminars, conference talks and
tutorials (ISI Foundation in Turin, Winter School of Geom-
etry an Physics in Srni, PHME 2016 Conference in Bilbao,
ICTD-CMMNO 2016 Congress in Gliwice). A strong boost
for this programme has been determined by a research project
developed jointly by the Polytechnic University of Turin and
Tetra Pak, in which a relevant motivating example based on
large amount of in-service industrial data appeared.

Emergent phenomena in complex systems are a relevant and
broad topic with important implications in many spheres of
the modern science. Apart from the more quantitative prob-
lems related to storage and processing of huge amounts of
information, in our view one of the main big data related chal-
lenges is the theoretical explanation of those cases in which
qualitatively new and often unexpected features emerge. The
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leading paradigm for the comprehension of emergent phe-
nomena ascribes them to the existence of opposite tendencies
in the local dynamics of subsystems or single agents (frustra-
tion). Very simple one-to-one relations between agents in a
system could give rise to complex global behaviour when the
“synchronisation” of the states of the agents on large scale
is impossible. In other words a complex behaviour in a sys-
tem appears when local phenomena cannot be extended to a
global scale.

Differential geometry, in particular the theory of geometric
structures and gauge theories, offer specific tools able to de-
tect local and global obstructions for certain point-wise con-
structions to be extended to local and global ones.

Manifold learning methods are constructed in a way to be
consistent in the continuous limit. For this reason they natu-
rally appear as suitable tools for treating huge data sets. The
more general research programme, of which this work takes
part, aims to develop modern manifold learning methods able
to introduce the obstruction detection techniques of the the-
ory of geometric structures in a more concrete computational
context. In our view this would be a remarkable tool for
analysing, modelling and quantifying complexity of systems.
Some of these ideas are explained in Section 3 and Section 4
by using analogous formalism. Examples of standard con-
structions in differential geometry are introduced in order to
make the paper more intuitive also for non experts.

2. PLMS DATA AND THE “FINGERPRINT” OF A PLANT

Packaging machines and other packaging line equipment pro-
duced by Tetra Pak are purchased and installed in several
thousands of industrial plants all over the world. The produc-
tive contexts in which this equipment operates are extremely
heterogeneous depending on the specific country, the com-
pany which owns the plant, the market, climatic, seasonal and
many other factors.
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For many issues as maintenance services and contracts, pro-
ductive efficiency, safety, equipment and material supply, the
industrial plant is the relevant level of organization in this
complex system of customers and producers (see for exam-
ple Choo (2016) and O’Donovan (2016)). An accurate char-
acterization (feature extraction and classification) of the spe-
cific “technical behaviour” of a plant is a very important task
also from the viewpoint of large scale anomaly detection and
prognostic applications (see for example Xiao (2016)).

An advanced Packaging Line Monitoring System (PLMS) is
the Tetra Pak standard data management system for collect-
ing, analysing and monitoring the operational performance
of Tetra Pak filling machines and packaging lines. It is in-
stalled on huge part of the machines produced by Tetra Pak.
It provides detailed information on both the health and the
mechanical efficiency of the productive lines. Many technical
parameters (pressures, gear and bearing state indicators etc.)
are measured and collected continuously, so the total amount
of in-service data collected worldwide from all the monitored
machines is very big.

Part of this huge is condensed into a set of indicators defined
and computed on different time scales in order to monitor the
mechanical performances of each machine. In our study we
mainly considered a set of ten mechanical performance in-
dicators computed monthly for each packaging line. These
indicators have been reputed by the Tetra Pak Technical Ser-
vice as relevant and representative features for the overall me-
chanical efficiency. The first two mechanical performance in-
dicators are simply the quantity of produced packages and
the production time of the packaging line. Roughly speaking
(the precise formulas cannot be publicly disclosed) the rest of
the selected indicators take into account the stops, the emer-
gency stops of the equipment in different failure modes, the
restoring procedures of the equipment after an emergency or
a maintenance stop etc. In order to make the different mag-
nitudes of the indicators comparable from multivariare view-
point, the data have been standardised. Several hundreds of
thousands of in service vectors collected worldwide during
2013, 2014 and 2015 were available.

The set of PLMS vectors collected from a single plant repre-
sents all the packaging lines installed in that plant. This set
appears spread in huge portions of the parameter space (see
below on Fig. 1). For this reason standard hierarchic or k-
means clustering procedures lead to rather poor results in the
definition of efficiency behaviour classes or categories.

The PLMS record appears to be influenced by a series of char-
acteristics of the plant and its production. The PLMS record
of each plant depends (obviously) on the specific set of fill-
ing machine systems installed in that plant, the distribution
within the plants production of several characteristics of the
packages like volumes, types, shapes etc. Less obviously, de-
tectable influence of geographic, climatic, “corporative” and

Figure 1. PCA plot of the PLMS record of an industrial plant
collected in 2013 compared to the PLMS record of the whole
calibration set.

Figure 2. LDA on PLMS data collected in 18 different coun-
tries with equal levels of the other qualitative factors. As an
example India is displayed in red and Japan in blue.

economic factors has been observed. The individual impact
of all these qualitative criteria is easy to observe in homoge-
neous conditions i.e. by extracting subsets of data in which
only one of the qualitative factors varies. Standard linear and
quadratic multivariate statistical methods (Principal Compo-
nent Analysis, Linear and Quadratic Discriminant etc.) high-
light this fact (see Fig. 2 snd Fig. 3).

An elementary “filtering” procedure allows to subdivide the
PLMS record of a plant (or a set of plants) into subsets which
are measured for equal levels of all the selected qualitative
factors. We call these subsets the homogeneous groups of a
plant (or a bigger calibration set of PLMS vectors). The num-
ber of homogeneous groups of a single plant is quite variable.

Specific multivariate normality tests (Mardia’s test, Henze -
Zirkler’s test, Royston’s test implemented in R) show that the
PLMS measurement vectors in a single homogeneous group
is close to be normal with exception of less than 20% of
outliers. The interpretation of this fact is that the splitting
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Figure 3. LDA on PLMS data with equal levels of all qualita-
tive factors except the package volume. Red and orange dots
represent two different single portion packages, blue dots - a
family portion package.

Figure 4. PLMS fingerprint of an industrial plant (the same as
in Fig. 1) collected during 2013. Different colours represent
different homogeneous groups in the PLMS record.

procedure eliminates part of the deterministic impact of the
qualitative criteria and the remaining variations can be better
modelled over random white noise. The number of remaining
outliers could be further reduced by introducing additional
qualitative criteria in the splitting procedure.

The set of the homogeneous groups in the PLMS data of a
plant is called the “fingerprint of the plant”. On Fig. 4 is
displayed a typical fingerprint of an industrial plant obtained
from its PLMS record over 3 years. The distributions of each
homogeneous group have been characterized by the estimates
of their first and second momenta (the mean vector and the
directions of the principle components of the group).

A practical classifier based on this information has been specif-
ically implemented and validated. It has been first applied on
(inspired by) a set of pre-existing segmentations of the plants
based on commercial criteria and empirical observations of
Tetra Pak Technical Service (plants owned by different com-
panies, classes of plants with different commercial behaviour,
plants with different types of service contracts etc.). An in-
dexed calibration set is used for computing the fingerprints of
each class. A plant is assigned to the class for which its finger-
print matches better with the calibrated benchmark, the class

which minimises (as first criterion) the following expression:

1

N

N∑
j

nj∑
i

1

nj

dj − dji
σj

where N is the number of matching homogeneous groups
in the calibration set of a class, dj denotes the mean Maha-
lanobis distance (MD) from the mean vector of the j-th ho-
mogeneous group in the calibration set, dji denotes the MD
between the mean vector of the j-th homogeneous group to
the i-th element of the j-homogeneous group in the test set,
σj is the standard deviation from the mean MD in the j-th
calibration homogeneous group, and nj is the number of el-
ements in the j-th homogeneous group in the test set. Since
there are 10 degrees of freedom, normal approximation and
the corresponding sample estimates of the Fisher-Snedecor
statistics can be exploited.

As a second subordinated criterion the plant is assigned to
the class which maximises the cosines of the angles defined
by the first four principal components of each homogeneous
group computed in the calibration and in the test set.

A calibration-validation procedure was tested on a pre-existing
internal empirical plant classifications by using 200 individu-
als as a calibration and 64 individuals as a test set and 73% of
the test plants were correctly classified. For obvious reasons
the “multiple fingerprint” classifier cannot be applied when
none of the homogeneous groups of the plant is contained in
the calibration set. The huge amount of available in-service
data made possible avoiding such cases. Situations of partial
covering of the homogeneous groups has been analysed and
the multiple fingerprint classifier performs still very well.

The statistical aspects of the “multiple fingerprint” method,
which was developed in this context, appear interesting on
their own right. A separated paper will be devoted to their
detailed description. Our aim in this pater is to point out that
the objectivity and the consistency of our experimental results
obtained via manifold learning techniques have been tested
by an independently calibrated and validated method.

Any segmentation of the set of plants corresponds to a stratifi-
cation with respect a number of a priori commercial or empir-
ical criteria. Differences between the calibration fingerprints
of a priori separated classes highlight some “interaction” be-
tween the qualitative factors which define the homogeneous
groups and the new segmentation criteria. The application of
the classifier to the existing empirical plant segmentations re-
vealed some interesting and unexpected phenomena. The cal-
ibration fingerprints of the segments differ not only by slight
deviations of the common homogeneous groups, but quite of-
ten more radical large scale modifications are observed. Our
interpretation of these facts is that the large scale phenomena
are provoked by some complex interaction of the qualitative
factors and the segmentation criteria.
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3. COMPLEX ADAPTIVE SYSTEMS

Non local or large scale phenomena which can be hardly mod-
elled or explained by taking into account only the local de-
grees of freedom of a system or local interactions of its sub-
systems are called emergent. Large scale fluctuations, shock
wave propagation, phase transitions, complex collective molec-
ular motions etc. are examples for such somehow unexpected
behaviour.

A system is a structure defined by the set of its elements
(agents) together with the relations (interactions) among them.
In the rest of the paper we will consider single filling ma-
chines as agents of bigger systems as plants, or even systems
of plants. As we will see, the behaviour of a plant can be ef-
ficiently described if we take into account not just the values
of the PLMS parameters of its productive lines, but if we also
try to model an interaction between the machines.

The leading paradigm in the comprehension of emergent phe-
nomena in a complex system asserts that they are generated
by opposite tendencies in the local dynamical behaviour of its
subsystems. This is usually called frustration and makes im-
possible the “synchronisation” of the states (or equivalently
interpretation of the states) of subsystems on large scale in a
complex system. Spin glasses, network fitness models (see
Bianconi & Barabasi (2001)) etc. are important examples
in which extremely simple one-to-one relations between the
agents of a system give rise to a complex behaviour on large
scale. In fact the interaction and the equilibrium configura-
tion of a system of two magnetic dipoles is rather simple, but
in a spin glass locally conflicting interactions make the defi-
nition of a global equilibrium state very difficult. Highly non
trivial large scale fluctuations, phase transitions etc. arise.

In other words emergent phenomena appear when some local
phenomena cannot be extended to global ones.

Neural networks provide excellent tools able to mimic com-
plex behaviour, but less efficient for modelling and explaining
its more specific features.

There are many classical examples of dynamical systems,
whose normal modes are actually global degrees of freedom.
The D’Alamberts equation, which rules the dynamics of a vi-
brating string, can be deduced by modelling the string as a
system of coupled oscillators, but its dynamics is efficiently
described in terms of global harmonic components i.e. the
complete set of eigenfunctions of the space part of the equa-
tion. Another interesting example is the phonon i.e. the
quantization of the vibrational degrees of freedom in quantum
elastic systems. In these cases conservation laws and mate-
rial constrains induce local “contradictions” between coupled
parts of the system. More generally non-local extremisation
procedures in “contradicting” conditions are expressed non-
local degrees of freedom, a “symptom of complexity” (see
below the discussion on harmonic mappings and diffusion).

An efficient approach (adopted for example by the network
fitness model) consists of describing each agent in a system
by two sets of variables, its position (usually a set of de-
terministic “spatial” parameters) and its internal state (often
a random vector variable extracted from ideally continuous
population). Extremely general class of systems can be mod-
elled in this setup (systems of airports, arbitrage stock mar-
kets etc.). A state of a system can be identified in this case
with a vector valued function (field) defined on the space of
deterministic parameters which is sampled in a finite number
of points.

We generalise this viewpoint to the case in which the “spatial”
variables parameterize a differentiable manifolds.

A fibre bundle over a smooth manifold is itself a differentiable
manifold E (total space) which is only locally isomorphic to
the product of the base manifold M with some fibre space F .
More precisely there exists a smooth surjection π : E −→M
which satisfies the following local triviality condition. Given
a point X ∈ E, there exists an open neighborhood U ⊂ M
of π(X) such that π−1(U) is diffeomorphic to U × F .

Example 1. The tangent bundle over a smooth manifold is a
vector bundle i.e. a fibre bundle in which F is a vector space
(in this case F = TPM , the tangent space in a point P of
M ). For the frame bundle LM over a differentiable manifold
the fibre over P ∈ M is the set of the linear bases of TPM .
One linear basis is transformed into another one by means of
the action of the Lie group Gl(R, n) on TPM . The frame
bundle is an example of a principal bundle (the fibre space
is isomorphic to a Lie group) and the tangent bundle is an
example of an vector bundle associated to LM by means of
the Gl(R, n) group action on the vector fibre space.

Sections of fibre bundles generalise the notion of scalar / vec-
tor / tensor-valued functions on manifolds and their transfor-
mations under basis changes. The analogy is not complete as
global sections of a fibre bundle with specific characteristics
could even not exist on a given manifold. In fact a principal
bundle which is globally isomorphic to the product M × F
is called trivial. Non trivial principal bundles do not admit
global sections (as an example consider the “orientation” Z2-
principal bundle over the Möbius strip). Associated bundles
in general admit global continuous sections, but other require-
ments (everywhere smooth, non-vanishing, non-singular) can
be impossible to satisfy 1.

Fibre bundles are an appropriate tool for measuring the ob-
structions to extend point-wise geometric constructions to lo-
cal or even global structures.

There is plenty of examples for such phenomena coming from
the theory of Geometric structures on differentiable mani-
folds. The integrability of Riemannian, complex, symplectic,

1We invite the reader to construct a self parallel everywhere non-vanishing
vector field on a 2-sphere...
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spin etc. structures measures the extent to which construc-
tions defined on each tangent space can be defined on open
subsets, or at least to coordinate chart domains on the man-
ifold (existence of a set of holonomic i.e. compatible coor-
dinates). The Cartan’s theory on integrability of geometric
structures captures in coordinate independent way the local
obstructions in terms of tensors on the variety i.e. sections of
associated tensor bundles. Torsion and curvature are typical
examples for structure functions i.e. obstructions represented
by sections of tensor bundles (see Sternberg (1963)).

Example 2. A complex structure (an endomorphism J such
that J2 = −Id) can be always defined on the tangent space at
a point of an even-dimensional manifoldM . The Newlander-
Nirenberg Theorems state that complex holomorphic coordi-
nate charts onM exist if and only if a local obstruction onM ,
called the Nijenhuis tensor, vanishes (see for example Joyce
(2000)). This obstruction is the intrinsic torsion (or first struc-
ture function) of what is called an almost complex structure
over the manifold. The celebrated Darboux Theorem states
an analogous result for almost symplectic structures.

Example 3. There is no a priori assigned way for identify-
ing elements in the fibres of a bundle. The identification of
elements which belong to different fibres (for example two
tangent vectors) is itself a non-local procedure. The parallel
transport is a map from one fibre into another which is as-
sociated to what is called an affine connection on principal
bundles (with a corresponding covariant derivative on associ-
ated ones). A connection field is by definition a gauge field
by means of which sections of the associated bundles inter-
act. Parallel transport on smooth manifolds is usually path-
dependent. According to the Ambrose-Singer Theorem the
local obstruction for the triviality of the parallel transport, as-
sociated to a nontrivial holonomy transformation, is a tensor
called curvature (see for example Joyce (2000)).

Global properties of fibre bundles strongly involve topolog-
ical features of the manifold. These relations are captured
by the theory of characteristic classes which associates to
each principal bundle on M a set of cohomological classes
ofM . Characteristic classes are global invariants which mea-
sure how far is the global structure of the bundle from being a
trivial one. Well known characteristic classes as Chern, Bott-
Chern, Stiffel-Withney etc. detect global obstructions for the
extendibility of specific local phenomena (orientability, exis-
tence of a spin structure on the tangent bundle etc.). Practi-
cally the vanishing of the obstructions is often related to the
vanishing of the integral of a special differential form on M .

The “internal state model” can be generalised by saying that
the configuration space of possible states of a system is mod-
elled over a vector (tensor) bundle over a smooth manifold
of “spatial” parameters. More precisely we interpret a state
of a system as a section of a vector bundle sampled in a fi-
nite number of points (its agents). We call a system adaptive

when the internal state of each agent is not merely random,
but is determined by some interaction with other agents (a
spin glass is an example).

This “geometrised” setup becomes interesting when the man-
ifold of the deterministic parameters is not geometrically triv-
ial. Non trivial bundles can be adopted for the description
of the internal states. Introducing the stronger assumption
that the state of the system is a sampling of a locally smooth
section over “spatial” manifold corresponds to introducing
a strong “interaction” between the two types of parameters.
Interesting non local effects arise within this “geometrised”
setup. The very identification of the internal states of the
agents must be done by means of a parallel transport. A
“signal” must be transmitted along the manifold and this is
a non-local procedure.

In our view a consistent construction of affine connections,
curvature and characteristic classes are essential tools in the
elaboration of a gauge theory on emergent phenomena in a
complex adaptive system. The “synchronisation” of the inter-
nal states of the agents of a system becomes a path-dependent
problem Ilinski (2001), Mack (2000) and different paths could
give rise to conflicting outputs. The geometric obstructions
(torsion, curvature, non trivial characteristic classes) for the
extension of local phenomena introduce and model complex-
ity in the system. This is the main focus of our larger research
project mentioned in the introduction to this paper.

4. SOME IDEAS ON MODERN MANIFOLD LEARNING

Manifold learning methods had their origin from the idea that
multivariate data are distributed on (or nearby) a differential
submanifold M immersed in the space of measure variables
Rn. There are two reasons for which manifold learning seems
to be a suitable tool for treating big sets of multidimensional
data. It is constructed in a way to capture some geometric
structure valid in the limit of continuous sampling of points
on M . If one manages to characterise consistently the under-
lying geometric structure of a data set, it is possible to regress
and interpolate missing or out of sample data in a particu-
larly efficient way. One can actually reduce the quantity of
date to handle. In Singer & Hau-tieng (2012) is described a
rather general procedure of regressing and interpolating fields
in out of sample points. A relevant point discussed in Shawe-
Taylor et al. (2005) is that once captured the geometric struc-
ture of the data cloud, the error on out of sample points is
rather small.

The study of the properties of differentiable operators on man-
ifolds is a broad area in the modern (geometrical) mathe-
matical analysis. Differential operators act on sections of
fibre bundles. This approach revealed itself as particularly
powerful and produced relevant and far reaching implications
(for example the celebrated Atiah-Singer Theorem). Another
remarkable example for application of analytical techniques
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for describing specific geometric properties is given by the
proof of the Calabi conjecture given by Yau. The existence
and uniqueness of a metric with certain reduced holonomy is
proved by solving a partial differential equation of Monge-
Amperre type (see for example Joyce (2000)).

The study of the spectral properties of operators concentrates
the analysis onto a reduced set of “special” sections. Close
relations between the spectral properties of differential opera-
tors and geometry have been analysed. There are many exam-
ples of such constructions as harmonic sections, spectral anal-
ysis of the Dirac operators on differentiable manifolds (just as
examples we cite Atiyah (1973), Esposito (1998), I. Agricola
& Friedrich (1999), Jardim & Leao (2008), , Friedrich (2012),
F. T. Agricola I. & Kassuba (2008) etc.). Spectral analysis
gives both local and non-local information on manifolds.

We re-interpret the manifold learning problem in view of the
following more general “geometrization paradigm”:

Definition 1. A feature map is a locally smooth section Y of
a vector bundle E over a smooth manifold M sampled in a
finite number of points Xi ∈M .

NB. The value of Y at each point of the sampling is intended
expressed with respect to a local basis assigned on the fibre.
The existence of a discrete sampling Xi in an ambient space
Rn and sampled sections do not imply the triviality of any
bundle.

For example computing the dimension of M corresponds to
a special case of feature extraction. i.e. extract a number
of linearly independent tangent vectors in each point. This is
usually done by well known method of local PCA (see Singer
& Hau-tieng (2012)). The tangent bundle associated to the
frame bundle can be constructed Singer & Hau-Tieng (2013).

Furthermore, in view of Nash’s C1 isometric embedding the-
orems (Nash (1954)) under quite general assumptions M in-
herits a Riemannian metric form the Euclidian space Rn.

By definition sections of vector bundles represent “excita-
tions” of non-local degrees of freedom on M . Relevant sec-
tions of vector bundles can be selected by minimising func-
tionals F (Y ) on M or by analysing the spectral structure of
differential operators L (if the differential operator admits a
formal adjoint the two conditions coincide).

Many of the most popular manifold learning methods can be
“tautologically” assimilated in this context. In fact a global
section of a vector bundle is an embedding of M in the fi-
bre space. Given a finite sampling (Xi, Y (Xi)) := (Xi, Yi)
of a vector bundle section, functionals are defined by finite
summations on that finite set.

F (Yi) =
∑
i<j

L(Xi, Xj , Yi, Yj)Wij

The role of the “affinity function” Wij is to localize i.e. to

restrict (or not) the contribution to the evaluation of the func-
tional to some neighborhood of Xi.

Wij =

{
1 if a condition is fulfilled
0 if the complementary condition is fulfilled

Affinity graphs can be constructed by assigning an edge be-
tween each couple of points for which d(Xi, Xj) ≤ ε (where
d denotes the Euclidian distance) or by connecting toXi the k
nearest points etc. The first case is geometrically intuitive, but
could produce graphs with more than one connected compo-
nents, the second choice provides one connected component.

The function L usually contains some relevant characteristic
of the section which need to be preserved. We list below some
popular examples of this type:

- In Curvilinear Component Analysis (see for example De-
martines & Herault (1997)) we have:

L = (d(Xi, Xj)−d(Yi, Yj))
2, Wij =

{
1, d(Xi, Xj) ≤ ε
0, d(Xi, Xj) > ε

where d denotes the Euclidian distance both in the space of
measured variables and in the fibre. In similar setting Curvi-
linear Distance Analysis can be introduced by replacing the
Euclidian distance in the space of variables by a distance
along a neighbour graph.

- In Multidimensional Scaling Method (see for example Borg
& Groenen (1997); Bronstein & Kimmel (2006)) we have:

L = (f(d(Xi, Xj))− d(Yi, Yj))
2, Wij ≡ 1

where f is a function which defines the model.

- ISOMAP is multidimensional scaling method based on the
graph geodesic distance matrix (see deSilva & Tanenbaum
(2003); Tanenbaum & Langford (2000)).

- Laplacian eigenmaps are defined by minimising some en-
ergy functional (see below).

Whether or not the continuous limit of the above expressions
represents meaningful functionals

F (Y ) =

∫
M

L(X,Y (X))dX

on sections on M is a rather delicate analytic question. The
research of a hypothetical general procedure which leads to
the deduction of the above empiric functionals from contin-
uous analogues (by replacing differences by derivations and
other discretisation tricks) goes beyond the aims of this paper.

In general if the expression of “characteristic” on the fibres
is preserved by the action of some group G, features can be
naturally considered as sections of a vector bundle associated
to a principal G-bundle.

Fredholm’s theory suggests a natural way of implementing
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discrete forms of differential operators acting on finitely sam-
pled sections. Consider a linear differential operator acting on
sections of vector bundles D : ΓE −→ ΓF via:

Dφ = ψ (1)

The Green’s functionG(X,Y ) associated to a differential op-
erator is a special integral kernel related to the Dirac delta
function. More precisely (written component-wise) we have:

DGk(X,Y ) = vkδ(X − Y ),

where vk is an arbitrary constant unit vector. For example the
Green’s functions associated to the Maxwell’s equations in
relativistic and non relativistic formalism, Green’s functions
associated to Dirac operator on spin bundles have been stud-
ied. The above equation can be written in compact tensorial
form by setting:

DG(X,Y ) = Iδ(X − Y ),

where D acts on the columns of G and I denotes the unit
dyad. In these terms Equation (1) can be re-written in integral
form:

φ(X) =

∫
M

G(X,Y )ψ(Y )dY.

In particular for differential operators ΓE −→ ΓE with dis-
crete spectrum λi the Green’s function can be expressed in
terms of its eigenfunctions φi:

G(X,Y ) =

∞∑
i=1

1

λi
φi(X)⊗ φi(Y ).

Definition 2. ConsiderE and F , vector bundles on a smooth
manifold M and a linear differential operator

D : ΓE −→ ΓF.

Denote by G the Green’s function of D . Given a finite sam-
pling Xi ∈ M the coarse discretisation D of D is a liner
mapping defined by:

DG(Xi, Xj) = Iδij

where δij denotes the Kronecker’s symbol.

Let Y (Xi) and Z(Xi) denote features sampled in N points
of M . The transformation DY (Xi) = Z(Xi) induced by the
linear mapping D is obtained by inverting the relation:

Y (Xi) =

N∑
j=1

G(Xi, Xj)Z(Xj). (2)

The contribution to the value of Y (Xi) can be localised by
means of an affinity functionWij . In these terms Equation (2)

becomes.

Y (Xi) =
∑
j

G(Xi, Xj)Z(Xj)Wij .

The affinity function can be absorbed in the definition of G.

If the fibres of E and F are isomorphic to Rn and Rm then D
is element of RN ⊗RN ⊗Rm ⊗Rn. A feature can be repre-
sented by Nn-dimensional vector (a set of N n-dimensional
vectors) and the action of D implemented by Nm × Nn
matrix A with N × N blocks of dimension m × n. Each
m × n block represents a linear map Rn −→ Rm which is
“weighted” by a scalar factor. The affinity function Wij is
constant on each block and puts some blocks equal to zero.

The spectrum of (a “square”) D is the set of eigenvalues λi
of a square matrix A. If A is symmetric, (this means that
G(Xi, Xj) = G(Xj , Xi) and Wij = Wji) , it is easy to
prove that the above definitions lead to:

G(Xi, Xj) =
∑
k

1

λk
Yk(Xi)⊗ Yk(Xj).

The described discretisation of given differential operator is
rather straightforward procedure. The definition of the coarse
discretisation involves a finite summation, so analytical trou-
bles are easily avoided. A typical manifold learning problem
arises when one wishes to recover the expression of specific
linear differential operator on (a priori unknown) manifold
from a point cloud. We call such a linear map the sample
discretisation of a differential operator. The problem can be
formulated as: “Does a sample discretisation coincide with a
coarse discretisation of the differential operator”.

The ingredients for the construction of a sample discretisa-
tion are an affinity graph and a kernel function K(Xi, Xj)
which must satisfy certain symmetry and regularity assump-
tions (see Singer & Hau-Tieng (2013); Berry & Sauer (2015)).
The kernel functionK(Xi, Xj) in the manifold learning setup
aims to reproduce the expression of the (unknown) Green’s
function of the manifold in terms of the coordinates of the
points Xi in the space of measured variables. A first approx-
imation attempt regarding the expression of the kernel can
be the (often known) Green’s function of the same operator
on Rn computed with the embedding coordinates Xi. Such
an estimate must be corrected by bias terms which involve
the curvature on M , other potential-like terms, finally terms
which take into account the variance of the sample etc.

Formally the explicit form of the operator (and the true corre-
sponding Green’s function) involves sections of several vec-
tor bundles, the tangent bundle TM , the Riemannian metric
onM is itself a section of the vector bundle S(TM∗⊗TM∗)
(where S denotes the symmetrisation of the tensor product).
From our viewpoint this means that the very definition of
the discrete Hessian, the connection Laplacian, the Laplace-
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Beltrami operators is based on several implicit feature extrac-
tions. This point actually gives considerable flexibility to the
construction.

In Berry & Sauer (2015) is provided an interesting result in
this direction i.e. “tracing” the influence of the implicit fea-
tures extraction procedures. The “intrinsic geometry” of so
called local kernels is described both in case of uniform and
nonuniform sampling. The expression of the Laplace-Beltrami
operator changes if the Riemannian metric on M (one of the
implicitly extracted features) changes in a family of metrics
which includes the one induced by the embedding M ↪→ Rn.
This changes are captured by modifications in the form of the
Green’s function of the operator and subsequently in its dis-
cretization. Every symmetric local kernel with exponential
decay corresponds to a Laplacian operator in a Riemannian
geometry and conversely any Riemannian geometry can be
represented with an appropriate local kernel. In the same pa-
per are introduced other relevant geometric applications of
that technique like data driven geometry regularization via
local kernels, conformally invariant embeddings etc.

Given a sample discretization of a differential operator, two
types of convergence problems arise in the continuous limit
of sampling.

- point-wise convergence

DY (Xi) = Z(Xi) −→ Dφ = ψ;

- spectral convergence means that eigenvectors ofD converge
to eigenfunctions (sections) D on M .

Spectral convergence is a stronger condition than point-wise
convergence. Establishing the convergence properties of a
discretized operator is a highly non-trivial analytical problem.
It depends on the manifoldM and its boundary, on the density
of sampling, normalization procedures, opportune parameters
choices (absorbing, redefining overall constant factors, vol-
umes) etc. Remarkable results in this direction have been
achieved in Belkin & Niyogi (2005); Singer & Hau-Tieng
(2013) (see below).

Our viewpoint on manifold learning can be easily applied to a
class of techniques called Kernel methods. In these cases pri-
mary feature extraction remains implicit. An interesting ex-
ample is the kernel Principle Component Analysis. Consider
a feature extraction Y (Xi). The sample covariance matrix (a
new feature) matrix determined by the section is:

C =
1

N

∑
i

Y (Xi)⊗ Y (Xi) (3)

A well-known fact is that the condition

〈Y (Xi), Y (Xj)〉 := k(Xi, Xj)

for some given kernel function is sufficient in order to com-

pute the components of the feature vectors with respect to the
basis of eigenvectors of the covariance matrix C. In other
words this information is sufficient in order to construct a
global basis change on the fibres of the bundle determined
by the orthogonal matrix which diagonalises C. (Taking the
first two or three components of Y (Xi) with respect to the
orthonormal eigenvector basis provides a non-linear dimen-
sional reduction technique.)

In our view this type of approach appears as less descriptive
with regards to emergent phenomena in complex systems. In
fact no functional extremisation is involved, no contrasting
tendencies appear, no action of a differential operator. In
other words no “interaction” of sections appear, just a global
passive, so called gauge transformation induced by 3.

Observe that many of the geometric obstructions mentioned
in the previous section are represented by sections of tensor
bundles i.e. features. Finite (integral) estimates of these fea-
tures can be obtained in discrete context. For a manifold
learning implementation of parallel transport see Zhang &
H. Zha (2004) and Singer & Hau-tieng (2012). Also com-
ponents of the Riemannian curvature tensor can be estimated
in manifold learning context, the Ricci curvature captures the
deviations in the volume of a geodesic ball (see for exmple
Ache & Warren (2014)). The Weyl tensor is the obstruction
for conformal flatness etc.

We call these type of features high level features. We expect
that they could play the role of complexity markers.

5. GEOMETRY, HARMONIC MAPPINGS AND DIFFUSION

Sample discretisations of several relevant differential opera-
tors have been defined in e series of publications. The spectral
analysis of these discrete realizations provides a set of eigen-
functions which play the role of global degrees of freedom
in a non linear dimensional reduction in a space of non-local
features (see for example Donoho & Grimes (2003)).

The rough Laplacian operator acts on tensor fields on a Rie-
mannian (or pseudo-Riemannian) manifold M and is defined
as the trace of the second covariant derivative of the field as-
sociated to the Levi-Civita connection:

∆f = −Tr∇LC∇LCf.

The rough Laplacian acting on R-valued functions on M is
known as the Laplace-Beltrami operator. It can be interpreted
as the divergence of the gradient of a function (the trace of the
Hessian of a real valued function). The spectral properties of
∆ have been largely exploited in geometrical analysis.

The Laplacian operator is of great interest in relation to the
discussion developed in Section 3 for two main reasons. First
of all the solutions of the Laplace’s equation involve non lo-
cal extremisation. Then, it generates diffusion processes by

8
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means of the heat equation. A diffusion process on a vector
field involves non local “synchronization” process.

The connection Laplacian operator is very important in dif-
ferential geometry (we refer the reader to Rosenberg (1997)).
It is directly used in spectral shape analysis, in the theory of
harmonic functions and harmonic vector fields on Rieman-
nian manifolds, which provide specific geometric informa-
tion. Harmonic morphisms are maps which preserve Laplace’s
equation. More generally the theory of harmonic mappings
between Riemannian manifolds, harmonic sections of fibre
bundles leads to many far reaching implications (see for ex-
ample Eells & Sampson (1964); Baird & Wood (2003)). It
is interesting to recall that a smooth map f : M −→ N be-
tween Riemannian manifolds is called a harmonic mapping if
it extremises the energy functional:

E(f) =

∫
M

|df |dω

where dω denotes the volume form. In particular every har-
monic morphism between Riemannian manifolds is a har-
monic map.

The deep geometric meaning of diffusion processes has been
highlighted also by an alternative proof of the Atiyah-Singer
index Theorem based on the analysis of the heat equation (see
for example Gilkey (1995)).

The construction of the so called Vector Diffusion Maps leads
to a consistent sample discretisation of the connection Lapla-
cian on different vector bundles which converges in both point-
wise and spectral sense. In Singer & Hau-tieng (2012) is
shown how the rough Laplacian on the tangent bundle of the
manifold can be approximated from random samples. In par-
ticular it generates a vector diffusion process and its eigen-
vectors generate an Euclidean space in which the data sample
can be embedded. The Euclidean distance this space induces
a metric on the sampled manifold which is called the vec-
tor diffusion distance. This distance approximates, via short
time asymptotic expansion of the heat kernel, the geodesic
distance between nearby points on the manifold.

In Singer & Hau-Tieng (2013) connection Laplacians on other
vector bundles are discretised. The introduction of a principal
bundle construction from a sampled set of data provides good
theoretical setup in which the Laplacian eigenmaps method,
the diffusion maps method, the vector diffusion maps method,
and the orientable diffusion maps (see Singer & Hau-Tieng
(2011)) can be successfully unified. These models are in-
troduced in terms of sections of suitable different associated
bundles.

In this construction the space RN in which the sample Xi

is collected is considered as the total space of a fibre bun-
dle in which M is the base manifold and the fibres represent
the overabundant nuisance parameters. A group G of linear

transformations with simple transitive action on the space of
some nuisance parameters can be considered as a structure
group of a principal bundle in which M parameterises the set
of orbits.

For example the principal bundle exploited in the construc-
tion of orientable diffusion maps is the Z2 orientation bundle
on the tangent bundle of M .

A natural notion of parallel transport is introduced in discrete
setup. Special local sections of the principal bundle can be
defined by means of the optimal alignment procedure with
fixed radius (we refer the reader to Zhang & H. Zha (2004)
and Singer & Hau-tieng (2012)). The products of the linear
transformations associated to a sequences of vertices (discrete
paths) generates a translational group i.e. a consistent notion
of parallel transport on each associated bundle. In this frame-
work, the affinity between two agents is defined by consider-
ing the parallel transport along all the paths of certain length
which connect them. The “synchronisation” of the internal
states of Xi and Xj is obtained by weighting and summing
the transformations computed along all these paths. A path
dependent “synchronisation” which “contrasting outputs” is
very important from the viewpoint of the complexity mod-
elling.

Observe that the Euclidean metric in RN takes into account
the nuisance parameters. A metric on M which defines dis-
tances between orbits in the total space must be invariant un-
der the action of G on the total space. Invariant metric can be
defined also by optimal alignment (see Singer & Hau-Tieng
(2013)).

The above construction fits perfectly with the general discus-
sion developed in Section 5. In Singer & Hau-Tieng (2013)
a sample estimate of a differential operator is built under the
following assumptions.

- The base manifold M is smooth and smoothly embedded in
RN , a metric is induced by the canonical Euclidean metric,
∂M is either empty or smooth.

- A principal bundle with a connection and an associated bun-
dle on M are fixed, a metric is induced on the fibre space.

- A probability density function p ∈ C3 is uniformly bounded
from above and from below.

- A data cloud is sampled according to the probability density
function, the elements in the fibre of the principal bundle are
sampled uniformly over the structure group G.

- The kernel function K(|X|) ∈ C2(R+) is a strictly positive
function etc.

Consider an undirected affinity graph defined by Wij and set

Pij =

{
K(Xi, Xj)gij (Xi, Xj) ∈W
0d×d, (Xi, Xj) /∈W
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where gij is an orthogonal transformation on the vector state
defined by summing the orthogonal transformations associ-
ated to all paths of certain length connecting Xi to Xj .

The diffusion map method evaluates given kernel K(Xi, Xj)
on all pairs from the data set, but then different types of nor-
malisation are applied.

The first normalization divides the columns of the matrix as-
sociated to the operator by the column sums, to some power.
This normalization is equivalent to multiplying the matrix on
the right by a diagonal matrix with entries equal to a power
of the sampling probability p. The aim of this procedure is
to remove the bias introduced by the fact that the differential
operator is estimated from a data set evaluated according to
some probability density.

The second normalization takes the right-normalized matrix
and divides the rows by the row sums. In this way the matrix
which implements the differential operator becomes a row-
stochastic matrix (or Markovian) matrix. In the continuous
limit this type of normalization eliminates the curvature de-
pendent term in the expansion of the kernel. Consider the
Nd×Nd block diagonal matrix

Di,i =
∑

j|(Xi,Xj)∈W

K(Xi, Xj)I.

With these assumptions (up to some constant factors not quite
relevant in this general discussion) have been proved the point-
wise convergence in the continuous limit:

D−1PY (Xi)− IY (Xi) −→ ∆Y (Xi)

Furthermore a spectral convergence Theorem in Singer & Hau-
Tieng (2013) states that the eigenvectors Y (Xi) of D−1P−I
are discrete approximations of the eigenvector fields of the
rough Laplacian operator on M with homogeneous Newman
boundary conditions which satisfy:{

∆Y (X) = −λY (X), X ∈M
∇Y (X) = 0, X ∈ ∂M

In other words the above sample discretisations are proved
to be coarse discretisations of the connection Laplacian op-
erator. Observe that a different convention on the adopted
normalisation leads to a different embedding in the space of
eigenfunctions.

If the above general construction is applied to R-valued func-
tions, we recover the diffusion map and the standard Lapla-
cian eigenmaps models. It is based on a principal bundle
with fibre G = e and fibre R. In other words we have a
trivial total parallelism on the associated bundle. The dis-
cretisation of the operator is implemented by N × N matri-
ces with scalar entries and the normalised graph Laplacian is
again L = D−1P− I.

Both the harmonic and the diffusion aspects are immediate in
this case. The sample discretisation of the Laplace-Beltrami
operator on a Riemannian manifold is obtained by minimis-
ing a discrete graph version (see Belkin & Niyogi (2003))

E(f) =

N∑
i,j=1

(Y (Xi)− Y (Xj))
2Wij , Y

TDY = 1 (4)

of the energy functional.

E(f) =

∫
M

‖∇f‖2dx =

∫
M

〈∇f(x),∇f(x)〉dx, ‖f‖ = 1

In fact (see Belkin & Niyogi (2003)) for a C2 R-valued func-
tion f on M ⊆ Rn smooth and compact Riemannian mani-
fold occurs that

|f(x)− f(y)| ≤ ‖∇f(x)‖dM (x, y) + o(dM (x, y))

where dM is the distance inherited from RN and ‖ · ‖ is the
L2 norm on M .

We remark again that the minimisation is a global “dynam-
ical” process which combines contrasting local tendencies.
Since L = −∆ and ∇ are formally adjoint operators, ac-
cording to the Courant-Fischer-Weyl minimax Theorem the
energy expression is minimized by the eigenfunctions of L
corresponding to its lowest eigenvalues. In fact Stokes’ theo-
rem allows to write∫

M

〈∇f(x),∇f(x)〉dx =

∫
M

f(x)L(f)(x)dx,

which corresponds to:

N∑
i,j=1

(Y (Xi)− Y (Xj))
2Wij = 2Y TLY

By constructionL is thus a positive semidefinite matrix. Stan-
dard numerical analysis considerations (see Sameh & Wis-
niewski (1982)) imply that the minimization is achieved by
the eigenvector of L corresponding to its lowest eigenvalue.
The trivial solution Y (Xi) ≡ 1 corresponding to λ = 0 is
ignored within the minimization procedure. The dimensional
reduction is performed by the lowest accomplished by the L
non-constant solutions of:

Lf = λDf

An immediate way to implement the “diffusion process” view-
point in this case consists of sampling the Green’s function
Ht of the Laplace operator on points Xi ∈ Rn. In these
terms the generic solution u to the Laplace equation with ini-
tial condition f , {(

∂
∂t + ∆

)
f = 0

f(x, 0) = u(x)
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is written as:

f(x, t) =
∫
M
Ht(x, y)u(y)dy

Ht(x, y) = (4πt)−
dimM

2 e−
‖x−y‖2

4t (φ(x, y) + o(t))

where φ ∈ C∞(M ×M) has the property φ(x, x) = 1, so
that when ‖x− y‖ → 0 and t → 0, Ht can be approximated
by a Gaussian function

Ht(Xi, Xj) ≈ (4πt)−
dimM

2 e−
|Xi−Xj |

2

4t

In Belkin & Niyogi (2003), Coifman & Lafon (2006) etc is
proved that the sample discretisation constructed by means of
the graph Laplacian with the above choice of kernel (wh op-
portune normalisation, constant definitions etc.) converges to
the Laplace-Beltrami operator both point-wise and in spectral
sense for an uniform and not uniform sampling.

6. EFFICIENCY BEHAVIOUR SEGMENTATION

In the context of the considerations presented in the previous
sections, manifold learning methods have been applied to the
available PLMS record of industrial plants. The calibration
set contains the PLMS record for 2013, 2014 and 2015 of
771 plants installed worldwide which contain 3363 monitored
packaging lines.

The set of agents (single filling machines) is embedded in the
physical space of the PLMS parameters. In our “double vi-
sion” setup the efficiency behaviour at a plant level depends
both on the positions and the “interactions” between its agents
(machines) in the PMLS space. The effects of these relations
are captured by the non local characteristics of the geometric
structure of the plants fingerprint. Our aim is to characterise
and categorise the geometric structure of the plants finger-
prints. Assigning a plant to a class means finding the class to
which the shape of the plant’s fingerprint adapts better.

We decide2 to describe the internal states of the machines,
responsible for their relations, by means of a scalar “material”
field (section of a bundle with fibre R). The discrete Laplace-
Belrami operator transforms such features and the analysis of
its spectral structure provides deep geometric information on
the smooth manifold M on (nearby) which the PLMS data
are sampled.

2First of all for simplicity, then in order to keep the analogy with the standard
fitness model, as in Ilinski (2001) we avoid (at least for the moment) the
complications introduced by less trivial gauge transformations, but most
of all because we had some purely technical computational difficulties in
working with high order matrices, and implementing VDM procedure on
the available PLMS data set enhances considerably the dimensions of the
matrix which represents the discretized operator. Intention of the authors is
to work on a separated case study of the application of VDM on the same
PLMS data set.

Figure 5. Different viewpoints on the Laplacian eigenmap
scores of the whole available PLMS data set.

As we pointed out, the structure of the PLMS data can be
considered approximatively as overlapping of normally dis-
tributed homogeneous groups. So we can consider the hy-
potheses of Belkin & Niyogi (2005); Coifman & Lafon (2006)
as satisfactorily fulfilled and compute the discrete eigenfunc-
tions fi of the Laplace-Beltrami operator from the complete
experimental data set. On Fig. 5 are displayed different view-
points on the plot of the whole available data set with respect
to the second, the third and the fifth eigenfunctions of the
Laplacian (denoted by f2, f3 and f5). These are the eigenfunc-
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tions which appear as more “sensitive” to the phenomenon we
are interested in. Recall that the coordinates of a point X of
the sample in that feature space are given by fi(X).

The eigenfunctions of the Laplacian on M provide a set of
global degrees of freedom. Their level sets f = const define
hyper-surfaces in M (as observed before, the discretisation
permits to neglect many regularity issues). The set of points
Xi of a single plant could be largely spread in M , but the
set of values of f(Xi) could be much more condensed. This
would mean that the shape of the cloud Xi resembles (adapts
to) a level set of an eigenfunction f .

Now we can introduce a similarity (affinity) relation based
on the internal states of the agents of a plant. Interpreting a
plant as an adaptive system, in this sense means hypothesis-
ing that its PLMS record assumes certain characteristic shape
in the physical space because of the internal states of its ma-
chines. The eigenfunctions of the Laplace-Beltrami opera-
tor (which itself involves the Levi-Civita connection on the
base manifold) are not arbitrary functions on M , but they are
obtained by means of the extremisation of the tension func-
tional involving local contrasting tendencies. The definition
of the eigenfunctions is a dynamical geometric process. In
this sense our interpretation goes beyond the well-known ap-
plications of the Laplace-Beltrami operator in spectral shape
analysis (see Reuter & Peinecke (2005)).

To sum up, a plant is modelled as a complex adaptive system,
its overall performance as an emergent phenomenon which
depends on a deep interaction between the spatial positions
and the internal states of its agents. This approach appears
as very efficient. In fact the PLMS plot of each single plant
becomes quite compact and homogeneous (see below) in the
space generated by the Laplacian eigenfunctions.

Next we construct a spontaneous data driven clustering of
plants in this feature space. This segmentation is based on
sampling some special configurations of the internal state field
(eigenfunctions of the Laplacian) in the complete experimen-
tal data set. It can be therefore interpreted as sampling and
classifying the possible relations between the machines in a
plant. In Shi & Malik (1997) and Ng A.Y. & Weiss (2002) it
was first asserted that the spectral properties of graph Lapla-
cians can allow to overcome classical non-linear constraints
of data points clusters. Interpreting the observations as ver-
tices of an undirected graph with weighted edges, the goal is
in fact to minimize the “flow of similarity” amongst different
clusters while maximizing intra-cluster affinity.

The first step is the creation of a weight matrix W with non-
negative entries, which elementWij represents the strength of
the similarity between Xi and Xj ; then suppose the graph is
partitioned into K clusters C1, . . . CK , and define the “flow
of similarity” between cluster Ci and the remaining part of
the graph as F (Ci, Ci) =

∑
Xj1∈Ci,Xj2 /∈Ci

Wj1j2 . Spectral

Figure 7. Plant affinity clustering.

clustering aims to minimize the so-called ”Ratio Cut” of the
partition

Figure 6. Spectral clustering on machines.

RC(C1, . . . CK) =
1

2

K∑
i=1

F (Ci, Ci)

|Ci|
(5)

where the cardinality |Ci| is taken into account to normalize
the similarity with respect to the dimension of the cluster. Let
H ∈MN×K(R) be an indicator matrix such that

Hij =

{
1√
|Cj |

if Xi ∈ Cj

0 if Xi /∈ Cj
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Figure 8. PCA scores, Laplacian eigenmap scores and kernel
PCA scores of the PLMS records of 18 industrial plants (6
randomly extracted from each of X, Y and Z classes) com-
pared to the whole PLMS calibration set in 2013.

Figure 9. PCA scores, Laplacian eigenmap scores and kernel
PCA scores of the PLMS records of 18 industrial plants (6
randomly extracted from each of X, Y and Z classes), com-
pared to the whole PLMS calibration set in 2013.
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In these terms the minimization of (5) is expressed as:

min
C1...CK

Tr(H ′LH)

where L denotes the graph Laplacian. Since the indicator ma-
trix H takes values into a discrete set, this in a NP-hard prob-
lem; the relaxation of H to a matrix Y which is allowed to
take real values, with the only constraint Y ′Y = IK (i.e., an
arbitrary scaling constant is irrelevant), finally reveals the in-
timate relation with Laplacian eigenmaps. A simple k-means
algorithm with k = K is thus applied onto H’s rows to ex-
tract the clusters. The version proposed by Ng A.Y. & Weiss
(2002) normalizes Y’s rows before running k-means, in order
to limit the influence of the degrees of the nodes on the value
of the eigenvectors’ components.

We remark that the connectivity of the affinity graph, whose
vertices represent machines, is determined by the their inter-
nal states i.e. clustering occurs in the feature space. The anal-
ogy with fitness network models is obvious, but in this case
the state of each agent in the adaptive system is not random,
but is obtained by a non-local extremisation process.

Spectral clustering is closely related to the geometric struc-
ture captured by the Laplacian eigenmaps, but the direct ap-
plication of this method provides clusters of filling machines
and not plants. The fact that plants, identified with the set of
observations of their machines Il = {Xi1 . . . XiNl

} (where
Nl denotes the number of observations on systems of plant
Il), are characterised by condensed images in the feature space,
suggested an alternative clustering method. We define a pseudo-
convolutional measure of similarity between plants Il and Ih
based on feature coordinates φl = {Yi1 . . . YiNl }:

s(Il, Ih) =
∑
Yi∈φl

∑
Yj∈φh

e−
‖Yi−Yj‖

2

σ2 (6)

where σ2 is an arbitrary parameter. Once the similarity matrix

Slh =

{
s(Il, Ih) if l 6= h

0 if l = h
(7)

is evaluated, the spectral clustering algorithm is executed us-
ing (7) as a weight matrix and considering plants as nodes of
a graph. Given the diagonal degree matrix

Dll =

Nplants∑
h=1

Slh,

a graph Laplacian normalised by LS = D−
1
2SD−

1
2 is then

computed, and the first K̃ eigenvectors (excluding the first
one), are grouped into a feature matrix Z, which is normal-
ized by rows; finally, a k-means algorithm with k = K̃ is
applied on Z’s rows, labeling plants by their features’ convo-
lutional affinity.

This clustering method is applied on plants, but care must be
taken as the similarity measure (6) depends on a metric, so it
is liable to errors when computed on discrete sets of points. In
fact “pathological” examples of particular situations of wrong
plant assignment can be easily constructed, but their impact
in huge data samples appears to be marginal.

Both algorithms was applied for k = 3, 4, 5, 6. For K = 4
and K̃ = 4 the two methods lead to remarkably collimat-
ing outputs, neat homogeneous clusters emerge both on level
of plants and single machines (compare Fig. 6 to Fig. 7). A
4-group classification has been therefore adopted. From one
side, the global features seem to model efficiently the rela-
tions between agents in the system (single machines). From
the other, emergent clusters correspond to classes of geomet-
rically similar plant fingerprints.

The emergent clusters have been analysed and interpreted as
different production efficiency plant profiles i.e. efficiency
segments. Segments Z and Y represent highly efficient plants
with very different profiles from the viewpoint of quantity and
complexity (number of different volumes, types shapes etc...)
of their production. The segment X contains plants which are
less efficient. Segment T represents sort of transition or “at
risk area” between low and specific high performances.

On the first diagram of Fig. 8 are displayed the PCA scores of
eighteen plants (six plants are randomly extracted from each
of the segments X,Y and Z). Plants form the same segment are
colored in the same way. The second diagram of Fig. 8 rep-
resents the Laplacian eigenmap scores of the same eighteen
plants. The reader can compare the highly spread and over-
lapped images of the segments (the same regards the image of
a single plant) in the physical space to the neat, compact and
homogeneous images in this feature space. The same proce-
dure of random extraction has been repeated many times with
analogous results, Fig. 9 represents a different set of eighteen
plants.

We have thus constructed a spontaneous classification of the
efficiency categories of plants. Building completely data driven
models typically runs into two types of risk. First of all struc-
tures could emerge accidentally from the data set, without be-
ing expression of some objective phenomenon. Furthermore
objective but trivial structures might emerge.

The classification of the efficiency behaviour which emerged
in our case is highly non-trivial with respect to the pre-assigned
qualitative criteria in the sense that the efficiency segment are
completely transversal with respect to their levels. The seg-
mentation does not reproduce the distribution of the machine
systems, the volumes, types or shapes of the produced pack-
ages or any geographical grouping. Actually the marginal
distributions of all these qualitative criteria change in the seg-
ments and this gives the possibility to identify a typical plant
in the segment. More importantly Z and Y represent plants
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Figure 10. A plant “migration” in the period 2013-2015.

which are both efficient compatibly with quite different pro-
ductive profiles.

A series of consistency checks have been done in order to
confirm the objectivity of the classification:

- the application of the multiple fingerprint classifier to this
segmentation on the same calibration and validation set men-
tioned before led to a correct re-classification of 93% of the
plants. This result is much better if compared to the direct
k-means (21%) and hierarchical clustering procedures (36%)
applied directly on the physical PLMS data.

- more that 81% of the plants kept stable their segments in the
period 2013-2015, this is a strong indication for the low level
of “noise” in the model.

- the history of many cases of “migrations” of plants from
one segment to another has been analysed by the experts of
Tetra Pak. Remarkably the majority of these migrations can
be attributed to objective causes. Our model detected con-
crete events as system upgrades, radical changes in the com-
mercial profile of the plant or even changes in the plant man-
agement. We illustrate this last case on Fig. 10, where a clear
transition of a plant from Y to X through T is visible.

Kernel PCA model is calibrated on the same PLMS set. We
use the same functional form of the heat kernel:

〈Y (Xi), Y (Xj)〉 = k(Xi, Xj) = e−
‖Xi−Xj‖

2

σ2 ,

where σ is a real parameter. The plot of the kernel PCA scores
of the same set of 18 plants is displayed at the bottom of Fig. 8
and Fig. 9. We observe that the Kernel PCA plot is rather sim-
ilar to the PCA plot. A slight “improvement” in fingerprints
separation occurs with respect to classical linear PCA, but in
our view kernel PCA does not provide particular advantages
because of its “passive” nature. On the contrary the Laplacian
method takes into account a dynamically interacting field and
for this reason models better a complex adaptive system.

7. CONCLUSIONS

The overall mechanical performance behaviour of an indus-
trial plant has been efficiently described as an emergent phe-
nomenon in a complex adaptive system. The behaviour was
highlighted by means of modern manifold learning methods.
Many consistency tests have confirmed the objectivity of the
results obtained from large amount of in-service data. This
study provides an interesting motivating example for the fur-
ther exploration of the use of modern manifold learning meth-
ods in modelling complex emergent phenomena.
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