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ABSTRACT

The thermo-acoustic instabilities arising in combustion pro-
cesses cause significant deterioration and safety issues in var-
ious human-engineered systems such as land and air based
gas turbine engines. The phenomenon is described as self-
sustaining and having large amplitude pressure oscillations
with varying spatial scales of periodic coherent vortex shed-
ding. Early detection and close monitoring of combustion
instability are the keys to extending the remaining useful life
(RUL) of any gas turbine engine. However, such impend-
ing instability to a stable combustion is extremely difficult to
detect only from pressure data due to its sudden (bifurcation-
type) nature. Toolchains that are able to detect early instabil-
ity occurrence have transformative impacts on the safety and
performance of modern engines. This paper proposes an end-
to-end deep convolutional selective autoencoder approach to
capture the rich information in hi-speed flame video for insta-
bility prognostics. In this context, an autoencoder is trained
to selectively mask stable flame and allow unstable flame im-
age frames. Performance comparison is done with a well-
known image processing tool, conditional random field that is
trained to be selective as well. In this context, an information-
theoretic threshold value is derived. The proposed framework
is validated on a set of real data collected from a laboratory
scale combustor over varied operating conditions where it
is shown to effectively detect subtle instability features as a
combustion process makes transition from stable to unstable
region.

∗corresponding author
Adedotun Akintayo et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Deep learning models have been shown to outperform all
other state-of-the-art machine learning techniques for han-
dling very large dimensional data spaces and learn hierar-
chical features in order to perform various machine learning
tasks. However, most of the studied applications primarily
have been in the domains of image, speech and texts process-
ing. For example, convolutional neural network-based ap-
plications include object recognition (Farabet, Couprie, Na-
jman, & LeCun, 2013; Akintayo, Lee, et al., 2016), image
enhancement (Lore, Akintayo, & Sarkar, 2016), Graph Trans-
former Networks (GTN) for rapid, online recognition of hand-
writing (LeCun, Bottou, Bengio, & Haffner, 1998), natural
language processing (Collobert & Weston, 2008), large vo-
cabulary continuous speech recognition (Sercu, Puhrsch, Kings-
bury, & LeCun, 2016). It is still not common to apply the cut-
ting edge improvements of deep learning towards developing
advanced Prognostics and Health Monitoring (PHM) algo-
rithm for typical engineering applications. In this paper, we
propose a novel selective autoencoder approach within a deep
convolutional architecture to analyze hi-speed flame videos
for early detection of combustion instability in a gas turbine
engine. Whereas traditional PHM algorithms mainly use time
series data (e.g., pressure and temperature etc.). For this pur-
pose, the proposed approach attempts to advance PHM via
capturing the rich information of hi-frequency video. The
approach performs implicit labeling in order to derive soft
labels from extreme classes that are explicitly labeled as ei-
ther positive or negative examples. This particular property
is significant for tracking continuous temporal phenomenon
such as the transition from combustion stability to instabil-
ity, where labels of extreme states (stable or unstable) are
available but intermediate state labels are not. Explicit la-
bels are utilized to selectively mask selective features while
allowing other features to remain. Fig. 1 shows grayscale im-
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ages describing typical gradual development of instability at
the stated parameters in the swirl-stabilized combustor used
for the experiment.

Figure 1. Grayscale images of gradual time-varying develop-
ment of instability structure at two different parameter values

Labeling (e.g., structured and implicit) can be considered a
multi-class classification problem (Erdogan, 2010). For ex-
ample, three-stage Hidden Markov Models (HMM) were used
for handling speech recognition (Rabiner, 1989) problems,
parts of speech tagging (Meyer, 2011-2012) and sequence la-
beling because they derive the relationships from observations-
to-state and state-to-state in dynamic systems. Maximum En-
tropy Markov Model (MEMM), a discriminative modification
of HMM, was introduced to overcome the latter’s recall and
precision problems especially in labeling texts. In those mod-
els, conditional probability of the desired labels are learnt di-
rectly based on the uncertainty maximization idea. Applica-
tions of MEMM for natural language processing can be found
in (Berger, Pietra, & Pietra, 1996).

Due to “label bias” defects of MEMM, a Conditional Random
Field (CRF), which is a joint Markov Random Field (MRF)
of the states conditioned on the whole observations is later
explored (Lafferty, McCallum, & Pereira, 2001). It enabled
considering the global labels of the observation as against lo-
calization of labels of MEMM (Erdogan, 2010). However,
labeling in this case is made computationally complex by the
relaxation of statistical independence assumption of the ob-
servations which most of the models assume.

Recurrent Neural Networks (RNNs) have been utilized for
sequence labeling problems due to its cyclic connections of
neurons (Graves, 2014) as well as its temporal modeling abil-
ity. Although earlier construction of RNNs is known to have
short ranged memory issues and a restrictive unidirectional
information context access, formulation of a bidirectional Long
Short Term Memory (LSTM) (Graves & Schmidhuber, 2005)
resolved such issues. However, this construction adds to the
complexity of the model significantly as typically two RNNs
get connected through the same output layer.

From the application standpoint, early detection of instability
in the combustion chambers of dynamic systems aids antic-
ipative actions for reducing its consequent effects. Visual-

izing the features that characterizes the intermediate frames
of its spectrum is an important approach to unravel the pro-
cesses that precede instability. The authors in (Sarkar, Lore,
Sarkar, Ramaman, et al., 2015) introduced Deep Belief Net-
works (DBN) as a viable technique to achieve the aim with
a view to exploring other machine learning techniques for
confirmation. They improved on that by applying a modu-
lar neural-symbolic approach (Sarkar, Lore, & Sarkar, 2015)
in another publication.

In this paper, we propose a deep convolutional selective auto-
encoder-based anomaly (early) detection framework for the
crucial physical process of combustion for better understand-
ing of the underlying complex physics. Combustion instabil-
ity is a significant anomaly characterized by high-amplitude
flame oscillations at discrete frequencies that reduces the ef-
ficiency and longevity of aircraft gas-turbine engines. Full-
blown instability can be differentiated from stable combus-
tion via video analysis with high confidence because unstable
combustion flames show distinct coherent structures similar
to ‘mushroom’ shapes. But it is extremely difficult to de-
tect an onset of instability early due to fast spatio-temporal
transience in the video data. Therefore, the instability detec-
tion problem boils down to an implicit soft labeling problem
where we train a deep model using hi-speed flame videos with
explicit labels of stable and unstable flames such that it recog-
nizes the onset of instability early as the combustion process
makes transition from a stable to unstable region.

Conceptually, this is similar to cognitive psychologists’ de-
scription of human reasoning in object classification (Tenenbaum,
Kemp, Griffiths, & Goodman, 2011). An example is to con-
sider how a child is taught on intrinsic classes. A similar
problem is how to detect a cross breed of dog and wolf and
how close the animal is to either of the classes. From an ap-
plication standpoint, an early detection of engine’s combus-
tion instability may be useful for computing the instantaneous
values of the remaining useful life, but the computation is
partial since other engine physical use factors are also impor-
tant. Therefore, remaining useful life (RUL) computation is
beyond the scope of the present problem.

Contributions: The main contributions of this paper is de-
lineated below:

• A convolutional selective autoencoder framework based
on emerging deep learning techniques is proposed for a
significant PHM application - early detection of combus-
tion instability;

• The method avoids extensive expert-guided feature hand-
crafting (Farabet et al., 2013) while addressing a com-
plex physical phenomenon like combustion to discover
coherent structures in flames images;

• The proposed framework is able to learn from high di-
mensional data sets (e.g., high speed video) of most ap-
plications and provides a platform for determining the
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degree of relationship between the states of two tempo-
rally close observations;

• A metric to desired level of granularity is constructed to
track the onset of combustion instability and detect pre-
transition phenomena such as ‘intermittence’. Intermit-
tence is a temporary (of the order of millisecond, equiv-
alent in this case to few video frames) blast of instability
characterized by small and partially observable coherent
structure;

• Extensive validation and comparison using CRF tech-
nique are provided based on laboratory-scale combus-
tion data collected under various realistic operating con-
ditions.

Paper organization: The paper is organized in six sections
including the present one. Section 2 presents prior work on
the proposed approach and problem formulation. In section 3,
the main architecture for the problem is discussed followed
by a distance metric that is used to access the result quanti-
tatively. Section 4 provides an opportunity to introduce the
problem dataset collection and then the implementation of the
composite architecture as well as the competing method. The
results obtained for the hypothesis is discussed in section 5.
We conclude the paper in section 6 as well as give some in-
sights into the direction of future works.

2. BACKGROUND

This section provides a brief overview of convolutional net-
works, a description of the example problem of detecting
combustion instability, and the notion of implicit labeling.

2.1. Convolutional networks

Convolutional networks (Krizhevsky, Sutskever, & Hinton,
2012) are a type of deep networks that offer discriminative
advantages as in the MEMM as well as providing global re-
lationship between observations as in the CRF. The architec-
tures rely primarily on local neighborhood matching for data
dimension reduction using nonlinear mapping (i.e., sigmoid,
softmax, hyperbolic tangent and ReLU). Each unit of the fea-
ture maps has common shared weights or kernels for efficient
training with relatively–compared to fully connected layers–
lower trainable parameters. Feature extraction and classifier
learning are the two main functions of these networks (LeCun
et al., 1998). However, to learn the most expressive features,
we have to determine the invariance-rich codes embedded in
the raw data and then, a fully connected layer to reduce fur-
ther the dimensionality of the data and map the most impor-
tant codes to a low dimension of the examples. Many image
processing and complex simulations depend on the invariance
property of the convolution neural network stated in (LeCun
& Bengio, 1998) to prevent overfitting by learning expressive
codes.

The feature maps are able to preserve local neighborhood pat-

terns for each receptive field as with over-completeness dic-
tionary in (Aharon, Elad, & Bruckstein, 2006). A full and
detailed review may be found in (LeCun et al., 1998) where
the authors note the advantage of local correlation enforcing
convolution before spatio-temporal recognition. For efficient
learning purposes, convolutional networks are able to explore
the benefits of distributed map-reduce frameworks (Fung &
Mann, 2004) to leverage large training data as well as multi-
GPU computing. With these benefits, the winners of the IL-
SVRC 2012 (Krizhevsky et al., 2012) utilized a large net-
work of 8 layers and 2 GPUs training on the same architec-
ture provided in (LeCun et al., 1998) to achieve the then best
position. Subsequently, GoogLeNet (Szegedy et al., 2015)
and other authors (Simonyan & Zisserman, 2015) have also
reported better performance with larger models found to be
more related to the depth of the network.

2.2. The problem of combustion instability

Combustion instability reduces the efficiency and longevity
of aircraft gas-turbine engines. It is considered a significant
anomaly characterized by high-amplitude flame oscillations
at discrete frequencies. These frequencies typically represent
the natural acoustic modes of the combustor. Combustion
instability arises from a positive coupling between the heat
release rate oscillations and the pressure oscillations. Coher-
ent structures are fluid mechanical structures associated with
coherent phase of vorticity (Hussain, 1983). The generation
mechanisms of the structures vary system wise, causing large
scale velocity oscillations and overall flame shape oscillations
by curling and stretching. These structures can be caused to
shed–or be generated–at the duct acoustic modes when the
forcing (pressure) amplitudes are high. There is a lot of re-
cent research interest on detection and correlation of these
coherent structures to heat release rate and unsteady pressure.
The popular methods resorted for detection of coherent struc-
tures are proper orthogonal decomposition (POD) (Berkooz,
Holmes, & Lumley, 1993) (similar to principal component
analysis (Bishop, 2006)) and dynamic mode decomposition
(DMD) (Schmid, 2010), which use tools from spectral theory
to derive spatial coherent structure modes.

2.3. Implicit labeling

Semi-supervised training for classification takes advantage of
the labels at the final layers. A variant of structured label-
ing by (Kulesza, Amershi, Caruana, Fisher, & Charles, 2014)
called implicit labeling is used to derive soft labels from ex-
treme classes that are explicitly labeled as either positive or
negative examples. Explicit labels usually can be utilized to
selectively mask one feature, especially that one is not in-
terested in while parsing the class of interest. However, ex-
plicit labels on its own can only serve as a classifier for in-
trinsic classes in the test sets learnt from the training set.
Implicit labeling here also bears similarity to the sequence
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Explicit	Label	
Class:	“Stable”	

Explicit	Label	
Class:	“Unstable”	

Implicit	Labels	

Figure 2. Illustration of implicit method of generating soft
labels

labeling (Erdogan, 2010) with an extra constraint of utilizing
prior knowledge provided only by explicit label. It is then
fused with convolutional auto-encoder architecture algorithm
described in section 3.1 to determine the intermediate or tran-
sition phases–a mixed breed of a dog and a wolf for instance–
and more importantly to what degree is the animal a dog or
a wolf. Thus, it attempts to derive soft labels from expert-
informed, hard-mined labels as illustrated in fig. 2 with a
composite architecture.

3. ALGORITHMS

In this section, the algorithms for sequence labeling are de-
scribed. We provide a little more details of the convolutional
autoencoder and its interface with the selectivity criterion.
Subsequently, a brief background on the conditional random
field (CRF) algorithm is provided. Then, we discuss the infor-
mation theoretic metrics that facilitate image dimensionality
reduction, and the basis for our threshold computation.

3.1. Convolutional Selective
Autoencoder

Based on the convolutional network’s (convnet for short) per-
formances on several similar tasks reviewed, it is found a suit-
able candidate for the composite architecture to examine our
hypothesis of soft label generation. A convnet architecture for
low-level feature extraction with a symbolic graphical model
such as STSA at the top level (Sarkar, Lore, & Sarkar, 2015)
has been previously used for this problem. In contrast, we use
an end-to-end convolutional selective auto-encoder (as shown
in fig. 3), designed and tested (Akintayo, Lee, et al., 2016)
to explore another perspective to the current problem. The
constituent steps for the model to learning from the data are
outlined below.

Explicit labels and pre-processing: Given anM×N dimen-
sional image frames and corresponding ground truth labels
(one of the two classes), explicit labels are generated by se-
lectively masking frames with the undesired class with black
pixels. Hence, N pairs of input-output pairs {(Xi, Yi)} for
i = 1, 2, ..., N are generated where X represents the original
images, Y are the masked frames that are considered explic-
itly as ground truth. The images are then normalized where
pixel intensities have zero mean and a standard deviation of 1
as preprocessing.

Convolutional layers: Convolutional autoencoders (CAE),
also called deconvolution nets (Zeiler & Fergus, 2014) or
fully convolutional networks (Long, Shelhamer, & Darrell,
2015) start with propagation from the input layer to the con-
volution layer. Also, the step before the output layer is the
deconvolution layer. At each convolution or deconvolution
layer, a chosen (c×c) filter size is convolved with the patches
to learn a zo−dimensional feature map from which joint weight
over the zi−dimensional feature maps that are useful for en-
forcing local correlation is learnt to characterize all maps as,

Ŷzo(m−c+1)(n−c+1) = C[Xzimn ? Wzicc + bc] (1)

where C is the squashing function, ? is the convolution op-
erator of the joint weights, Wzicc, bc the biases and input
from previous layer Xzimn. To enhance the invariance fur-
ther, pooling is done to propagate representative features in
local neighborhoods. It ensures that all the neurons activation
in a locality do not have high entropy enough such that infor-
mation is diffused. In this case, maxpooling (Scherer, Muller,
& Behnke, 2010) is selected as a representative for a p × p
neighborhood.

Fully connected layers: The feature maps from the previous
convolution and subsampling layers are flattened. In order
to reduce the number of parameters for the fully connected
layers, combat the problem of overfitting and to avoid get-
ting trapped in local optima, some features are randomly left
out with a dropout layers (Hinton, Srivastava, Krizhevsky,
Sutskever, & Salakhutdinov, 2012). Dropout in the hidden
layer produces better results as it eliminates the necessity for
regularization parameters used previously (Akintayo, Lore,
Sarkar, & Sarkar, 2016). A layer encodes the most impor-
tant feature from the input of the previous layer with Ŷe =
E[WeŶ +be] and another layer reconstruct the useful features
with Ŷd = D[WdŶe + bd], where E and D stands for the rec-
tified linear unit (ReLU)-type encoder and decoder functions
respectively. b denotes the biases and W denotes the weights
of the layer. The subscripts e and d indicates the encoder and
decoder. Note that the ReLU nonlinearity on a parameter is
represented by ReLU(f) = max(0, f). Intuitively, it has the
advantage of easier training compared to other nonlinearity
types because the activations of each neuron is a piece-wise
linear function of argument f and do not saturate.

Unpooling: In this layer, a reversal of the pooled dimension
is done by stretching and widening (Jones, 2015) the identi-
fied features from the filters of the previous layer. It is also an
upscaling of the feature maps around the axes of symmetry
where the reconstructed feature maps are optimized through
the back-propagation algorithm.

Error minimization: This phase is akin to a feedback stage
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Figure 3. Structure of the convolutional autoencoder with selectivity masks. The encoder portion extracts meaningful features
from convolution and sub-sampling operations, while the decoder portion reconstructs the output into the original dimensions
through deconvolution and upsampling. Best viewed on screen, in color.

in a control paradigm or a scenario where a teacher–labeled
data–provides feedback in performance measure on how well
a student–the machine–has learned features related to a par-
ticular application–the task. The process included a regu-
larization function as in (LeCun et al., 1998) to avoid over-
fitting the data. The Nesterov momentum-based (Sutskever,
Martens, Dahl, & Hinton, 2013) stochastic gradient descent
is used for improved results when compared to other loss
functions such as adaptive subgradient (ADAGRAD) (Duchi,
Hazan, & Singer, 2011) and adaptive learning rate method
(ADADELTA) (Zeiler, 2012) for the reconstruction error up-
dates given the reconstructed output Ŷmn and the labels, Ymn.
Let θ = {W,b} be the set of weights and biases for all lay-
ers that are to be optimized by minimizing the loss function
L(θ). The loss function is a mean square error cost function
given by,

Ltrain(θ) =
1

mn

m∑
i=1

n∑
j=1

(Yij − Ŷij)2 (2)

Subsequently, the weights are updated at each time step, k,
via stochastic gradient descent (LeCun et al., 1998),

W (k) =W (k−1) − α∂L(W
(k−1))

∂W (k−1) (3)

where α is the learning rate equivalent of step size in op-
timization problems. More details can be found in (Masci,
Meier, Ciresan, & Schmidhuber, 2011) while the background
materials presented thus far and those in subsection 3.3 are
the more important aspects to describe our embedded im-
provements.

3.2. Conditional Random Field (CRF)

CRF is another class of well-studied (Domke, 2013) and for-
mulated models for labeling problems. It is an improvement
of the Markov Random Field, MRF where one is interested
in determining the conditional probabilities of newer obser-
vation such as our test data given the knowledge of previous
ones such as the explicit labels. The benefits of CRFs are
their improvements in the learning stage on previous likeli-
hood estimation by including inference approximation. The
algorithms have been shown (Barbu, 2009) to perform well
on complex image problems such as image denoising task as
well as being robust to model misspecification. Therefore,
we also incorporated selectivity condition into the CRF in a
similar way to that of CAE.

3.3. Instability Metric

Similar to that presented in (Liu, Ghosal, Jiang, & Sarkar,
2016), a metric based on the Kullback-Liebler (KL) diver-
gence (Kullback & Liebler, 1951) is chosen to measure the
distance of the results from the image frames in each transi-
tion protocol from the expected result of a stable flame frame.
This yields a KL distance, z for each image frame, I ∈ I,
where I represents the set of input images frames. It can be
expressed mathematically as,

z(I) =
∑
i∈I

lim
T(i)→0+

I(i)log
I(i)
T(i)

(4)

where i represents each pixel in the image frame and T rep-
resents the training label/target image. The implication of the
limit is that we intend to drive the flame image pixel values
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to zero in the stable combustion region. This physically cor-
responds to taking the distance of each image from the refer-
ence of the stable flame. The present metric has the advantage
of using a common reference for all the test transition pro-
tocols rather than being specific to a particular image frame
within one test protocol (Akintayo, Lore, et al., 2016).

4. DATASET AND IMPLEMENTATION

In this section, we motivate the attempts at solving the prob-
lem by describing the dataset, the experimental setup for gath-
ering the data and how it is collected. We also describe the
implementation of the two competing algorithms by explain-
ing the choices that were made and stating the important se-
lected parameters for such choices. Finally, the threshold val-
ues for analyzing the results are determined.

4.1. Dataset collection and experimental setup

To collect training data for learning coherent structures, thermo-
acoustic instability was induced in a laboratory-scale com-
bustor with a 30 mm swirler (60 degree vane angles with ge-
ometric swirl number of 1.28). Fig. 4 (a) shows the setup
and a detail description can be found in (Sarkar, Lore, Sarkar,
Ramaman, et al., 2015). In the combustor, 4 different instabil-
ity conditions are induced: 3 seconds of hi-speed videos (i.e.,
9000 frames) were captured at 45 lpm (liters per minute) FFR
(fuel flow rate) and 900 lpm AFR (air flow rate), and at 28 lpm
FFR and 600 lpm AFR for both levels of premixing. Fig. 4 (b)
presents sequences of images of dimension 100× 237 pixels
for unstable (AFR = 900lpm, FFR = 45lpm and full pre-
mixing) state. The flame inlet is on the right side of each im-
age and the flame flows downstream to the left. As the com-
bustion is unstable, fig. 4 (b) shows formation of mushroom-
shaped vortex (coherent structure) at t = 0, 0.001s and the
shedding of that towards downstream from t = 0.002s to
t = 0.004s. For testing the proposed architecture, 5 tran-
sition videos of 7 seconds length were collected where sta-
ble combustion progressively becomes unstable via ‘intermit-
tence’ phenomenon (fast switching between stability and in-
stability as a precursor to persistent instability) by reducing
FFR or increasing AFR. The transition conditions are as fol-
lows (all units are lpm): (i) AFR = 500 and FFR = 40 to 28,
(ii) AFR = 500 and FFR = 40 to 30, (iii) FFR = 40 and AFR =
500 to 600, (iv) AFR = 600 and FFR = 50 to 35, (v) FFR = 50
and AFR = 700 to 800. For clarity, these data sets are named
as 50040to38, 50040to30, 40500to600, 60050to35, and 50700to800
respectively for analysis in the subsequent sections of this pa-
per.

4.2. Training process

In training the networks, 63, 000 grayscale frames having di-
mensions 100 × 237 are resized to 16 × 16 for computa-

tional simplicity. A total of 35, 000 frames is labeled stable
while the remaining 28, 000 were labeled unstable. These im-
ages were a combination of datasets with different premixing
lengths of either 90mm or 120mm and a wide range of air and
fuel LPMs for which the combustor is either in a stable or an
unstable state. The whole training dataset is divided into two
parts: 75% of it is used to train the algorithm, while 25% is
held out for validating their results and setting our thresholds.

CAE: The convolutional autoencoder parameters include learn-
ing rate of 0.0001 with momentum = 0.975 is found to train
the model best in the Nesterov based stochastic gradient de-
scent formulation. The network is trained to 100 epochs in
order to conveniently strike a good minima of the validation
error. Training is done on GPU Titan Black with 2880 CUDA
cores, equipped with 16MB video RAM, using the python-
based machine learning frameworks such as Theano, Lasagne
and NoLearn (Bergstra et al., 2010; Thoma, 2016). Lasagne
offers a wide variety of control over the layer types, nonlin-
earity types, objective functions, interfacing with The- ano,
and many other features built into it. NoLearn, on the other
hand, is a coordinating library for the implementation of the
layers in Lasagne which offers model visualization features.
While training, a filter of c×c pixels (c = 3 in the implemen-
tation) and a non-overlapping p×p (p = 2) maxpooling were
found to be experimentally less costly to produce the results.
Algorithm training is done in batches of 128 training exam-
ples which is found to be suitable via cross validation. The

 Results 

Unstable 

Stable 
Test Input 

Trained Model 
Temporal  

Progression 

Figure 5. Schematics of implementation of trained network
on transition test data

architecture in fig. 3 shows how the layers are interlinked in
the training stage which leads to an overall of 416, 779 learn-
able parameters. From this point onwards, CAE model that is
trained to be selective is referred to as convolutional selective
autoencoder (CSAE).

CRF: In training the linear to linear type conditional ran-
dom field, the main hyperparameters are again the loss func-
tion which usually is approximated and how the gradient of
such objective function are computed. For the present prob-
lem, based on multiple trials for hyperparameter, we found
the loopy variant of the truncated tree re-weighted (TRW)
belief propagation a good inference type for the problem.
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t = 0 s t = 0.001 s t = 0.002 s

t = 0.003 s t = 0.004 s

(a) (b)

Figure 4. a) Schematics of the experimental apparatus. 1 - settling chamber, 2 - inlet duct, 3 - inlet optical access module
(IOAM), 4 - test section, 5 & 6 - big and small extension ducts, 7 - pressure transducers, Xs - swirler location, Xp - transducer
port location, Xi - fuel injection location, (b) Visible coherent structure in grayscale images at 900 lpm AFR and full premixing
for 45 lpm FFR

Furthermore, for better performance, we chose a clique type
loss because of the benefits over simple univariate type loss.
A quasi-netwon method, Broyden-Fletcher-Goldfarb-Shanno
(BFGS) was chosen to optimize its error backpropagation.
The algorithm is also implemented in batches of 512 to re-
duce computation time, and in a gradual fashion while the
regularization parameter used was 0.0001. The model re-
sulted in 8064 cliques. Subsequently, like the CAE, we re-
fer to a CRF model that is trained to be selective as selective
conditional random field (SCRF).

4.3. Threshold Determination

Given the models learnt from each of the algorithms, CSAE
and SCRF individually, with the training sets as illustrated in
fig. 6, the algorithms are separately validated on the validation
set. The validation result for each algorithm is used to deter-
mine the value of the instability metric, z at which transition
takes place, called transition threshold. This is taken as the
upper limit of the 95% confidence interval (CI) for the distri-
bution of z (see eqn. 4) for stable flame frames. The schemat-
ics in fig. 6 summarizes how it is implemented for each algo-
rithm. We note that this helps to utilize expert knowledge re-
garding the stable and unstable regions to determine the start
of transition from the stable region. Note that these are de-

Training 

Trained
Model 
(CSAE, 
SCRF)

Stable 
part 

Training 
Set

Validation 
Set

Training 
dataset

25% 

75% 

Transition 
threshold 

Metric 95% CI

Figure 6. Schematics of selection of transition threshold

rived by replacing I in subsection 3.3 with the known stable
part in the validation results.

5. RESULTS AND DISCUSSIONS

In this section, results obtained from the algorithms are dis-
cussed and analyzed. The subsections are arranged to build
up the argument for early detection of unstable region’s prop-
erties in frames. Such unstable flame properties can be de-
tected even in the transition region enabling early instabil-
ity detection. Then we discuss how the network explores the
space between the stable and unstable regions to get softer la-
bels. Let the stable region be denoted by ‘SR’ on one end of
the spectrum and the unstable region be ‘UR’ on the other end
of the spectrum. Note, training of the algorithm is performed
with explicitly available ground truth labels. The ground truth
labels are categorized into frames of stable flame types and
frames of unstable flame types. As discussed before, units of
frames in the stable region are masked with ‘0’, while those
in the unstable region are retained during training. Figure 7
shows the algorithm’s ability to satisfy the training criteria in
one stable and one unstable validation frames. Figure 7 shows
how CSAE learns to be selective in masking the stable region
as trained. Feature maps from the model are shown in fig. 8
to highlight the detected features and the reconstructed out-
puts. For frames closer to UR in the transition stage, the cor-
responding feature maps showed more pixels activated mush-
room structures that characterize UR. For frames in SR how-
ever, information is seen to be rapidly diffusing from the in-
put into the hidden layers. At each layer, joint parameters
capture the trade-off between discarded and retained informa-
tion from the stable and unstable training sets. The fully con-
nected layers serve at least two important purposes, namely:
(1) to reduce further the image dimensions towards only rich
explanatory features, and (2) ensuring structural consistency
for optimal layer-wise features by reshaping the output im-
ages into dimensions similar to the input. Due to the impor-
tance of the layer, an optimal number of units search is re-
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“Unstable”
Labeled Output

Unstable Region
Unlabeled Input

“Stable”
Labeled Output

Stable Region
Unlabeled Input

Figure 7. Illustration of CSAE’s ability to reproduce explicit
labels.

Stable 

Region 

Unstable 

Region 

(a) (b) (c) (d) (e) 

Figure 8. Feature maps for (a) the third convolution layer, (b)
the second pooling layer, (c) the fourth convolution layer, (d)
the unpooling layer and (e) the deconvolution layer.

ported in the next subsection.

5.1. Optimal Code layer size

Among the many models parameters, the main influencing
parameters that motivated this search is the size of the encode
layer of the CAE. This is also related to the number of output
values of the CRF model. Having the speed-up provided by
the GPUs for training CSAE, a search for an optimal size of
the code layer is conducted. It is done to reduce arbitrariness
in the choice of the number of coding units, and to ensure ob-
taining the most effective results. Therefore, 100 epochs of
CSAE algorithm is run for each of code layer sizes: 8, 10,
20 and 40 units. We started off with 8 units because of its
closeness to the presence of two classes in the training data.
Then, we allowed more degrees of freedom to see which re-
sult demonstrated mostly, the known physical properties of
short time bursts while achieving the goals for our training,
i.e., selectivity. The results in fig. 9 and every other results in
the following subsections are also uniformly smoothed with
a simple locally weighted moving average filter Matlab func-
tion loess having a span of 0.1 to arrive at the smoothed
lines. Transition threshold described in subsection 4.3 are
shown on each plot of fig. 9. The transition thresholds with

respect to 8, 10, 20 and 40 units at the coding layer are found
to be 0.003455, 0.003901, 0.003438 and 0.005738 respec-
tively.

The results in fig. 9 corroborate our previous results (Akintayo,
Lore, et al., 2016; Sarkar, Lore, & Sarkar, 2015; Sarkar, Lore,
Sarkar, Ramaman, et al., 2015) of transition stage being be-
tween the two regions. It is observed that with 40 units, al-
gorithm does not satisfy the selectivity condition of masking
the stable part unlike the other units. This may happen due to
the decrease in noise rejection capability with increase in de-
grees of freedom at the coding layer. Also, the discriminatory
ability of the results are assessed. It is a metric that quantifies
the maximization of the inter-region separation, while min-
imizing the intra-region separation similar to a Fisher Lin-
ear Discriminant analysis. However, for result assessment in
this problem, a conservative way is to examine ratio of the
variance to the mean provided. The larger the spread around
the average, the more the discrimination capability between
stable and unstable regions. Therefore, the distribution of z
found in eqn 4 are also examined on this basis for each of the
test protocols.

From the trends of the statistics on table 1, including early
signal of the transition shown by the frame #, coding layer
with 10 units produced the best results, both visually and sta-
tistically. It however fails to be the most discriminatory due
to its large mean despite also having the largest variance. We
note that performance improves with increase in coding layer
length from 8 to 10, while it reduces when the coding layer
length is increased further. While an optimal length of the
coding layer can be found between 10 and 20, we selected
10 units for performance comparison with SCRF presented
in this paper. Transition frame # for 40 units of the layer is
not easily found because the validation results are less sup-
pressed compared to the test frame. Hence, in this case early
detection may not be feasible.

Table 1. CSAE optimum encode layer size metric and transi-
tion start frame # for protocol 50040to30

# of units µ(z) Σ(z) Σ(z)
µ(z)

frame #
8 0.0222 0.0238 1.071 11710

10 0.0289 0.0302 1.045 11650
20 0.0241 0.0258 1.072 11710
40 0.0175 0.0246 1.041 ≈ 12620

5.2. CSAE and SCRF comparison

A visual comparison of the distributions of z (eqn 4) on test
transition protocol, 50040to30 via their instability metrics are
plotted against frame number for both algorithms. These are
shown in fig. 10. Clearly, the results of CSAE is more dis-
criminatory in nature, i.e., it has more scatter around its local
mean than that of SCRF. CSAE also shows a greater capa-
bility than SCRF, to satisfy the training criteria on a new test
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Figure 9. Code layer selection for 50040to30 with, (a). 8 units, (b). 10 units, (c). 30 units and (d). 40 units

data set. Therefore, CSAE will be more effective for early de-
tection of instability. Note, the transition threshold for SCRF
as defined in subsection 4.3 is found to be 0.03636. On the
other hand, threshold for CSAE with 10 code layer units is
0.003901.
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Figure 10. Results of: (a). CSAE and (b). SCRF for test
transition protocol, 50040to30

Other differences in computation and memory complexity are
shown in table 2. Note that with the demonstrated advantage

Table 2. CSAE and SCRF comparison

Factor CSAE SCRF
platform Python Matlab

model size O(Mbytes) O(Kbytes)
CPU inference rate ≈ 4.7ms/frame ≈ 0.24secs/frame
GPU inference rate ≈ 1µs/frame –

of GPUs, dedicated field programmable gate arrays (FPGAs)
built for the proposed CSAE scheme can enable an on-line
real-time instability detection tool for real engines.

5.3. Early detection

The speed of detection is in terms of the number of frames
seen in the stable region before bursts of instability are de-
tected. However, due to the consistency of the CSAE algo-

rithm with our selective training and domain knowledge (i.e.,
most of the stable frames are suppressed) on the problems
analyzed, its results for 4 test transition protocols are shown
and discussed in this subsection. CSAE results on different
test transition conditions are presented in fig. 11. It shows
the capability of the model to suppress stability features of
frames in the SR, while revealing some anomalous instability
features in the same frames. It also shows the anomalies to
be more prominent in the transition regions. Instability met-
ric introduced in section 3.3 has been used to evaluate the
strength of each algorithm’s ability to mask examples closer
to the SR compared to those nearer to the UR. The results
are comparable with those found in (Sarkar, Lore, & Sarkar,
2015) where the framework used a neural-symbolic approach
with a combination of convolutional neural networks and sym-
bolic time series analysis to obtain instability metrics. Note,
no background knowledge is provided other than domain knowl-
edge regarding the possibility of short-time instability bursts
in the stable regions. Figure 11(a) and (b) have similar transi-
tion conditions. The latter has a leaner mixture and it shows
more short term fluctuations in the post-transition phase com-
pared to (a) (as marked by a dotted box in (b)). Furthermore,
it signals earlier (at frame 42) regarding the presence of insta-
bility compared to (a) where first indication is approximately
around frame 2870. Moreover, possibly in accordance with
what is known from physics (Li, Zhou, Jeffries, & Hanson,
2007) about lean mixtures, the protocol in (c) has the most
unstable intermittency in both the SR and the transition phase.
It may be considered to be the closest to instability of all the
protocols as highlighted in the example frames. In contrast
to (c), transition protocol in (d) generally shows results that
are closer to stability. This is probably due to the balance
provided by its originally richer mixture. It also has the most
‘late detection’ of the early burst of instability as well as de-
parture from stability among all the protocols.

Finally, table 3 shows a summary of the results obtained from
the algorithms for all the test transition protocols.
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Figure 11. Results of transition protocols for: (a). 50040to30, (b). 50040to28, (c). 50700to800 and (d). 40500to600 where dashed
arrows indicate the results for frames near the unstable flame in the transition region, and thick arrows show results for frames
in the supposedly stable regions

Table 3. Performance metrics and transition start frame # for Transition Protocols

CSAE SCRF
Protocol µ(z) Σ(z) Σ(z)

µ(z)
frame # µ(z) Σ(z) Σ(z)

µ(z)
frame #

50040to30 0.0289 0.0302 1.045 11650 0.1449 0.0310 0.2139 –
60050to35 0.0266 0.0378 1.4211 14470 0.1264 0.0380 0.3006 –
50040to28 0.0175 0.0194 1.1086 12260 0.1417 0.0330 0.2329 –
50700to800 0.0142 0.0125 0.8803 11640 0.1303 0.0150 0.1151 –
40500to600 0.0045 0.0033 0.7333 13210 0.1262 0.0177 0.1403 –

5.4. Frame labeling

An extension of the algorithm’s objectives could be made to
implicit labeling. This is achieved by searching through all

the frames to detect frames that are adjacent neighbors to a
given frame. In clear terms, this means finding the label of a
frame given the knowledge of the label of an adjacent flame.
This kind of search is usually difficult with most primitive
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Figure 12. Adjacency labeling result of transition protocols for 60050to35 at the different regions of the profile. The image
frames without any boundaries represent the inputs to the protocols at the points indicated by the arrows

low dimensional local labeling algorithms (e.g. HMM and
MEMM) due to dependency depth and ’labeling bias’ limita-
tions respectively. For this purpose also, we were motivated
to compare the results of CSAE to those of SCRF. We show
that such high dimensional problem can be simplified with
scalars that are calibrated in scales such as our instability met-
ric. The highlighted examples in fig. 12 show how labeling
may be achieved with the algorithms. Based on qualitative
frame-to-frame visualization, labels provided by CSAE are
shown in fig. 12 to outperform that of SCRF. CSAE is able to
differentiate labels from frame to frame better than the CSAE
in the separate flame regions. Frames in the region closest
to UR have their the mushroom structures better labeled by
CSAE while SCRF does not activate all the units for such
labels. Importantly also, we find a gradual transition in the
labels of frames in the almost linear transitioning stage of
CSAE in much similar way as that of SCRF. Note that all
input examples used for comparison in the figure are chosen
at the similar frame numbers for both algorithms. The re-
sults provides briefly the potentials of the algorithm to deriv-
ing soft labels from intrinsically labeled classes, two classes
in this case.

6. CONCLUSIONS AND FUTURE WORKS

An end-to-end convolutional selective autoencoder is devel-
oped to perform early detection of combustion instabilities
using hi-speed flame video. Validation results are performed
on data from a laboratory scale swirl-stabilized combustor.
In addition to that, the framework was also used to generate
fuzzy labels from prior knowledge of hard labeled examples
as solution to implicit labeling problem. Conditional random
field model results are used to compare the effectiveness of
our deep learning based solution approach in both applica-
tions. Moreover, CSAE results shown confirm the expert’s
physical observation in the presence of coherent structures in
stable flame regions. Some observed differences in the re-
sults are that: (i) CSAE is able to learn and generalize selec-
tivity better than SCRF via more efficient masking the stable
region; (ii) Unlike CSAE, SCRF introduces a bias in the in-
stability metric computation for test data, such that its ability
to act as an effective filter is hindered;(iii) SCRF succumbs to
high false alarm rate during stable combustion. The fact that
CSAE can detect instability early for various new (unseen in
training phase) protocols while being trained on different pro-
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tocols shows the generalizability of the proposed algorithm.

The results have been presented in the light of KL-distance
based instability metric to determine the closeness to domain
knowledge of stable flame frames reproduced by the mod-
els. Using the same metric, the architecture was extended
to addressing the neighborhood implicit graph labeling prob-
lem. The framework can be generalized to soft-labeling of
high-dimensional data. While the framework is shown to be
an efficient diagnostics technique for combustion process in
laboratory experiments, large scale validation is underway to
demonstrate its wide-range applicability. Some of the future
works are: (i) to extend the framework to labeling in multi-
class scenarios; (ii) validation of possible coherent structures
identified by CSAE in the transition region by using expert
knowledge and fluid mechanics and (iii) to compute, in con-
junction with other use-factors, the instantaneous estimate of
the remaining useful life (RUL).
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