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ABSTRACT 

The goals of this paper are to 1) examine the current 
practices of diagnostics, prognostics, and maintenance 
employed by United States (U.S.) manufacturers to achieve 
productivity and quality targets and 2) to understand the 
present level of maintenance technologies and strategies that 
are being incorporated into these practices. A study is 
performed to contrast the impact of various industry-specific 
factors on the effectiveness and profitability of the 
implementation of prognostics and health management 
technologies, and maintenance strategies using both surveys 
and case studies on a sample of U.S. manufacturing firms 
ranging from small to mid-sized enterprises (SMEs) to 
large-sized manufacturing enterprises in various industries. 
The results obtained provide important insights on the 
different impacts of specific factors on the successful 
adoption of these technologies between SMEs and large 
manufacturing enterprises. The varying degrees of success 
with respect to current maintenance programs highlight the 
opportunity for larger manufacturers to improve 
maintenance practices and consider the use of advanced 
prognostics and health management (PHM) technology. 
This paper also provides the existing gaps, barriers, future 
trends, and roadmaps for manufacturing PHM technology 
and maintenance strategy. 

1. INTRODUCTION 

1.1. Overview 

Reducing waste, improving equipment up-time, and 
optimizing product quality are three metrics important to 

manufacturing enterprises. Organizations have developed 
methods and metrics to measure their performance with 
respect to waste reduction, uptime, and quality to quantify 
their manufacturing performance. The most widely adopted 
metric by manufacturers is the Overall Equipment 
Effectiveness (OEE), which is used to evaluate the 
utilization rate or efficiency of factory equipment 
(Nakajima, 1988; Liker, 2014). Equipment and process 
health states are highly correlated to OEE, thus there is 
growing interest in developing intelligent maintenance 
systems to improve OEE, and predict and prevent 
unexpected equipment and process downtime. 

The various maintenance strategies that manufacturers have 
deployed are in a constant state of evolution given the 
increasing complexity of manufacturing equipment and 
processes. Manufacturers use a combination of reactive 
maintenance (RM), preventive maintenance (PM), 
predictive maintenance (PdM), and proactive maintenance 
(PaM) to maintain their fleet of assets, in which the 
maintenance strategy for a given asset depends on the 
complexity of the machine and the impact an unexpected 
failure has on that machine. With improvements of Internet 
of things (IoT) augmented with computing power, sensors, 
network communication, and machine automation, real-time 
diagnostic and prognostic technologies become emerging 
research topics in various manufacturing sectors (Coble, et 
al., 2015; Samah et al., 2015; Lee et al., 2011).  Despite the 
increased interest in prognostics and more advanced 
maintenance strategies, manufacturers lack a standard 
process and methodology for using prognostic and health 
management (PHM) technologies on the shop floor. 

It is important to understand and define a common set of 
performance metrics for productivity, maintenance, and 
product quality that are being used by manufacturers to 
develop a methodology and standard for PHM technology 
for manufacturing. These metrics can quantitatively evaluate 
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the effectiveness of diagnostic, prognostic, and intelligent 
maintenance activities when compared with other 
maintenance strategies. In addition, it is important to 
understand the best practices in industry for achieving their 
maintenance and productivity goals. Surveying various 
manufacturers can help determine these best practices as 
well as which strategies are less effective. 

1.2. Research Objectives 

The main objectives of this pilot study are the following: 

• Identify the common metrics used by the manufacturing 
industry to assess their productivity, maintenance and 
reliability, and product quality. 

• Investigate the best practices that manufacturers are using 
to improve their productivity, lower their maintenance 
costs, and improve their product quality. 

• Assess the current states of the practice in the 
manufacturing sector with respect to diagnostic and 
prognostic activities, and review some past successes and 
failures. 

Sections 3 and 4 present the outcomes of the afore-
mentioned objectives in detail. 

The information from the survey-based study will provide a 
strong foundation for developing a set of standards and a 
methodology for deploying intelligent maintenance systems 
technology across manufacturing applications. The results 
from this study could determine several important aspects, 
including 1) whether there is a statistical difference between 
the number of successful implementations of diagnostic 
activities for large manufacturers when compared with small 
to medium size enterprises (SME) manufacturers and 2) 
developing an understanding of the common challenges for 
manufacturers for implementing prognostic and diagnostic 
technology. The reporting of these key findings and 
statistical results would be imperative for understanding the 
current status and needs of the manufacturing industry. 
These results would be later used to develop appropriate 
standards for prognostic and diagnostic activities that 
address the identified needs in this survey.  

1.3. State-of-the-Art Research on Maintenance Strategy 
and PHM 

1.3.1. Maintenance Strategy 

Manufacturers employ a range of maintenance strategies to 
reduce waste, maximize equipment up-time, and optimize 
product quality. Maintenance strategies are also determined 
based upon available resources, including technology and 
personnel. Resource availability/limitations can ultimately 

be traced back to available finances. Manufacturers are 
seeking to optimize the amount of money they invest in 
their equipment, technology, and workforce to maximize 
their profit. Part of this optimization problem is to determine 
the most appropriate maintenance strategy for the many 
components, machines, work cells, and lines within the 
factory. Selecting the appropriate maintenance strategy(ies) 
is non-trivial where each strategy is unique with varying 
characteristics.  

Table 1 presents the evolution and overview of maintenance 
strategy. Each maintenance strategy (or practice) has a 
variety of characteristics. They are described as: 
• Maintenance Interval – The determination of when 

maintenance is conducted 
• Object – The primary areas of focus of a particular 

maintenance strategy 
• Planning & Scheduling – Strategy in which 

maintenance activities are planned and scheduled 
• Human Factors (inspection & decision-making) – the 

overhead (i.e. cognitive and time demands) placed on 
operators, maintenance personnel, supervisors, etc. 
under the various maintenance strategies 

• Cost Effectiveness – Projected/estimated cost of 
implementing the maintenance strategy 

• Requirement for Technology Readiness – Necessity of 
advanced technology to enable a maintenance strategy 

A brief discussion of each maintenance strategy (identified 
as the column headers of Table 1) is provided to highlight 
the advantages and disadvantages of each approach. 

Reactive maintenance is a corrective action applied on 
observable failures. RM has a relatively low investment cost 
although cost increases typically arise from unscheduled 
equipment downtime and production losses. Preventive 
maintenance involves the repair, replacement, and/or 
maintenance of equipment at predetermined unit, cycle, or 
time interval to avoid unexpected failure during operation. 
The objective of any maintenance program is to minimize of 
the total cost of inspection, repair, and equipment downtime 
(measured in terms of lost production capacity or reduced 
product quality). A successful PM strategy that improves 
equipment availability has two drawbacks: 1) time-based or 
operation count-based PM programs lead to potentially 
over-maintained equipment, especially in instances when 
the PM interval is predetermined without considering 
various operational regime shifts; and 2) replacing the 
component before it severely degrades or fails does not 
allow for insightful information to be learned about the 
equipment’s lifecycle (Lee et al. 2013).  
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PM can become a major expense for many industrial 
companies. Therefore, more efficient maintenance 
approaches, such as predictive maintenance are being 
implemented. PdM is a right-on-time maintenance strategy. 
Predictive maintenance can be classified into reliability-
centered maintenance (RCM) and condition-based 
maintenance (CBM). However, this maintenance strategy is 
more commonly implemented as CBM in most production 
systems where certain performance indices are periodically 
(Barbera et al. 1996; Chen et al. 2002) or continuously 
monitored (Marseguerra et al. 2002). CBM is a technique or 
a process for monitoring the operating characteristics of 
processes and machines (or components). Changes and 
trends in the monitored characteristics can be used to predict 
the need for maintenance before serious deterioration or 
breakdown occurs. Thus, CBM attempts to avoid 
unnecessary maintenance tasks by taking maintenance 
actions only when there is evidence of abnormal behavior in 
a process or machine. By reducing the number of 
unnecessary scheduled preventive maintenance operations, a 
properly established and effectively implemented CBM 
program can significantly reduce maintenance costs (Jardine 
et al. 2006, Mann et al. 1995). For example, based on a 
high-level analysis of the automotive industry, Barajas et al. 
(2008) stated that the best return on investment is achieved 
through predictive maintenance as opposed to reactive or 
preventive maintenance. 
 
Proactive maintenance focuses on understanding the failure 
modes, detecting precursors to failure, tracking degradation 
mechanisms, and predicting the remaining useful life of 
components, systems, and processes. Proactive maintenance 
commissions corrective actions aimed at the sources of 
failure. It is designed to extend the life of mechanical 
machinery as opposed to 1) making repairs when often 

nothing is broken, 2) accommodating failure as routine and 
normal, and 3) preempting crisis failure maintenance. 
 
The decisions to implement an appropriate maintenance 
program must be based on the probability and magnitude of 
the failure along with the associated costs and 
consequences. Designing an effective and efficient 
maintenance strategy requires engineering efforts that 
optimize the relationship between equipment ownership and 
operating profits by balancing the cost of maintenance with 
the cost of equipment degradation and failures, and resultant 
production losses. PdM and PaM usually require an initial 
higher maintenance investment due to higher requirement 
for technology readiness, but can substantially save 
unnecessary failures, extend the life of equipment more so 
than simple RM and PM, and further minimize bad 
part/product generation.   

1.3.2. Manufacturing PHM 

Prognostics and Health Management refers to a set of 
technologies that link studies of failure mechanisms to 
system lifecycle management. Specifically, PHM includes 
health monitoring, diagnostics, prognostics, and 
maintenance techniques. PHM can be used to determine the 
root causes of failures, predict degradation trends, and 
support decisions for optimal maintenance schedules to 
eliminate the sources of failure before problems occur. With 
an effective use of PHM technologies, maintenance can be 
planned more proactively and thus reduce unplanned 
downtime, unnecessary maintenance activities, and labor 
cost. 
 
Manufacturing PHM research can be divided into machine-
level and system-level studies. Much of the machine-level 
research has focused on machine tools, and this includes 
prior work on machine tool spindles (Cao et al., 2012; Vogl 

Maintenance 
Strategy 

Reactive Maintenance 
(RM) 

Preventive Maintenance 
(PM) 

Predictive Maintenance 
(PdM) 

Proactive Maintenance 
(PaM) 

Maintenance 
Interval Fail-and-fix Time based; Usage based Reliability based; 

Condition based Improve & sustain 

Object Component; 
Sub-system; System 

Component; Sub-system; 
System 

Component; Function; 
System 

Component; Function; 
System 

Planning & 
Scheduling Planning on the fly Planning & scheduling 

based on ideal PM interval 
Predictive planning & 

scheduling 
Proactive planning & 

scheduling 

Human Factors 
(inspection & 
decision-making) 

Medium to High Intermediate Low Low (false alarm) 

Cost Effectiveness 
Labor intensive; Labor 

and material 

Costly due to over 
maintenance or ineffective 

& inefficient PM 

Cost-effective; extended 
life & less failure-

induced costs 

Cost-effective: Substantially 
save failures & extend the 

life of equipment 
Requirement for 
Technology 
Readiness 

Low Low to Medium High High 

Table 1. Maintenance Strategy Characteristics 
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et al., 2015-1), cutting tool wear or breakage (Aliustaoglu et 
al. 2009; Amer et al. 2007, Malekian et al. 2009), and 
machine tool feed-axis systems (Liao et at. 2012; Sztendel 
et al. 2012; Vogl et al., 2015-2; Zhou et al. 2011). For 
machine tool PHM applications, the algorithms used by 
researchers include both data-driven and first-principal 
methods. For data-driven methods, a common approach 
includes the use of a classification method after features 
were extracted from the various signals; support vector 
machines, self-organizing maps, and variations on neural 
networks were some of the classification methods used in 
these machine tool case studies, respectively (Malekian et 
al. 2009; Liao et at. 2012; Demetgul, 2013). First principles 
methods include the work by Cao et al. (2012), in which a 
physical model of the spindle was used to determine the 
optimal sensor location for monitoring the health state of the 
spindle.  
 
Industrial robot health monitoring is another popular 
machine-level monitoring application for PHM 
manufacturing research studies. First principle approaches 
that model the kinematics and dynamics of a particular type 
of robot were considered by Brambilla et al. (2008) and Liu 
et al. (2005), in which a residual-based diagnostic can be 
made by comparing the actual and predicted sensor 
responses. A data-driven approach that compares the robot 
joint angle speed and joint angle torque from a baseline 
condition using principal component monitoring statistics 
was conducted by Sjöstrand et al. (2010). This work used a 
variety of signal measurements for robot health monitoring, 
such as axis speed, axis torque, motor temperature, gearbox 
temperature, and calculated quantities such as cycle time 
and energy consumption.   
 
The topic of validation is a challenge for many PHM studies 
including manufacturing applications. A common approach 
in the literature is to use machine (Aliustaoglu, et al., 2009; 
Amer et al., 2007; Malekian et al., 2009, Sztendel et al., 
2012) or subsystem or component testbeds for generating 
data sets to help validate PHM methods and algorithms 
(Vogl, et al. 2015). Testbeds provide a controlled 
environment that allows one to introduce various failure 
modes at a controlled severity level. Data from the factory 
floor is less frequently used to develop and validate PHM 
health models in the literature. This approach is reasonable 
given that there are many uncontrolled factors in the factory 
environment that would make the validation aspect more 
difficult to accomplish. The National Institute of Standards 
and Technology (NIST) is actively developing numerous 
testbeds, including platforms at the component, work cell, 
and system levels, to support verification and validation of 
PHM methods and techniques (Helu & Hedberg, 2015; 
Weiss et al., 2015). 
 
Although the majority of the work is conducted in 
controlled settings, some prior research work used factory 

data for developing their health models. The work of 
Skritich (2012) used various statistical anomaly detection 
methods for monitoring several machine tools used in a 
production setting. In this study, an axis pulley failure 
occurred on one of the machine tools; this problem could 
have been detected several days earlier using the proposed 
monitoring approach.  

For system-level PHM manufacturing applications, the 
work conducted by Muthiah et al. (2008) introduced a new 
metric called the overall throughput effectiveness, which 
can provide a way to benchmark the factories current 
performance with respect to a baseline value. In addition to 
providing a way to monitor factory performance, this 
proposed metric could also be used for detecting factory 
bottlenecks, which are important in diagnosing the root-
cause in a drop in factory performance. For conventional 
metrics, such as OEE, its success depends on the ease of 
collecting the data and enabling operators and plant 
personnel to visualize the information. Given the 
overwhelming majority of the prior work on machine-level 
PHM applications in comparison to system-level PHM 
applications, there appears to be a research gap on system-
level PHM research methods and techniques that should be 
addressed. In addition, even the PHM machine-level 
methods would be aided by common data sets for improving 
and validating their methods and algorithms; generating 
PHM manufacturing benchmarking data sets should be 
considered as a future direction for manufacturing PHM 
research. 

2. METHODOLOGY 

2.1. Survey Questionnaire Development 

Research personnel from the University of Cincinnati (UC) 
and the University of Michigan (UM) – Ann Arbor 
performed pilot surveys and case studies in 2015. The data 
were solicited via emailed questionnaires followed by phone 
interviews and onsite visits of 23 selected U.S. companies. 
The survey questionnaire was formulated to cover a broad 
range of manufacturing industry sectors. The questions were 
based on different perspectives of maintenance practices and 
contained six categories of questions: (1) manufacturing 
system performance measurement, (2) diagnostics and 
prognostics technology, (3) maintenance strategy and 
effectiveness, (4) key factors that affect maintenance 
performance, (5) future trends for PHM technology for 
smart manufacturing from an industrial perspective, and (6) 
challenges and future plan for intelligent maintenance 
technology. 

Sample data were solicited by the UC/UM team via 
questionnaires, phone interviews, and on-site facility visits 
with a variety of manufacturing enterprises ranging in size. 
The focus of the survey and interviews was on 
manufacturing managers, maintenance managers and 
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engineers, and other senior professionals within the 
production and maintenance function. A total of fifteen (15) 
manufacturers ranging in type and size and eight (8) 
technology/consulting companies provided responses to the 
questions through surveys and interviews. Table 2 
summarizes the profile of the respondents. The 
manufacturing enterprises provided the most direct 
responses to the questions based on their own maintenance 
strategy, operations and practices in PHM development and 
implementation, while the technology/consulting companies 
provided more comprehensive information such as common 
PHM solutions to various types of industrial sectors. The 
enterprises represent various sectors within manufacturing, 
including: automotive, aerospace, transportation, machinery 
and equipment, consumer products, and electronics.  
 

 SME Large Total Percent 
Manufacturing 
Enterprise 

3 12 15 65.2% 

Technology/Consulting 
Enterprise 

5 3 8 34.8% 

Total 8 15 23 100% 
Table 2. Participating enterprises segmented by size & type 
 
Respondent feedback was based upon individual’s own 
daily observations and estimations. Although the use of 
objective measures would have been more desirable, it has 
been difficult to acquire exact data for a variety of reasons 
such as limited data collection capability, confidentiality, 
and accounting conventions. 
 
By analyzing the responses from the survey and 
summarizing the present status of manufacturing enterprises 
in diagnostics/prognostics technology and maintenance 
strategy, this paper undertakes exploratory work in this area 
to address numerous questions including:  
• What are the commonly used maintenance objectives 

and performance metrics for manufacturing enterprises? 
• Which factors influence the selection of maintenance 

strategy and its effectiveness? 
• Are the manufacturers willing to improve their 

maintenance technologies and strategies? Which factors 
are the barriers for manufacturing enterprises to 
improve their maintenance strategies? 

2.2. Open-Ended Discussions 

Personnel from NIST conducted case studies 
complementary to the efforts of the UC/UM team. NIST 
personnel organized their case studies to better understand 
existing manufacturing processes and operations including 
the investigation of high-value challenges, fault/failure 
modes, and bottlenecks for processes and equipment. Case 
study engagement began with a brief phone conversation so 
that the study’s goals could be presented, and any potential 
concerns shared. NIST personnel then conducted a site visit 

of the participants’ facility that featured discussions and a 
tour. The conversations evolved according to the 
participants’ preferences. Given UC/UM’s focus on large 
manufacturers, NIST focused the 

 case studies on SME manufacturers, technology 
providers/integrators, and consulting enterprises. Space 
limitations restricted discussion of all of NIST case studies 
in this paper; NIST personnel spoke to representatives from 
ten different SME organizations. Three case studies 
conducted by NIST are presented in this paper: two 
represent manufacturers and one represents a technology 
provider. All case study participation was voluntary. 

3. CASE STUDIES AND INSIGHTS 

3.1. Large-Sized Manufacturing Enterprises 

Case Study 1 
During the observational studies and site visits to various 
manufacturers, one particular transportation manufacturer’s 
initiatives on predictive and proactive maintenance 
technologies are worth highlighting.  At the time of the 
survey, this rolling stock transportation manufacturer was in 
their first year of implementing new technology at their 
remanufacturing facility, in which they have approximately 
30 different machines, including machine tools and washer 
equipment. It should be noted that the factory could be 
considered a pilot factory for the company considering 
PHM technology. 
 
As data is one of the critical bottlenecks for developing 
more predictive maintenance practices, this manufacturer 
has put many significant efforts in the past year to develop a 
data collection infrastructure and sensor strategy for various 
machines. In particular, their washer equipment has received 
added instrumentation and sensing, including flow rate, 
temperature, pressure, and conductivity measurements. This 
organization is also in the process of instrumenting the 
machine tools; a deliberate pace is being set to ensure the 
appropriate strategy is focused upon that will align with a 
proper cost-to-benefit ratio for the machine tools. Less 
critical equipment in the plant will not obtain the same level 
of sensing and monitoring but would be upgraded to pull out 
information about the operational status of the machine. 
This operational status information would help facilitate 
OEE calculations and provide a more tractable way of 
comparing and trending the current plants performance. 
 
Although this is a rather significant investment in resources 
for monitoring their manufacturing equipment, the 
organization has already obtained some early success from 
monitoring one of the critical washer machines in their 
remanufacturing facility. For this particular machine, they 
have had three different alarming events, in which they had 
an early indication of an impending failure that was 
correctly detected and corrected before any costly downtime 
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or failure occurred. Although the current detection method 
was a combination of statistical process control and visual 
inspection of the sensor signals, the goal is to automate this 
analysis in the future. The organization’s plan is to leverage 
their company’s existing portfolio of data analytics and 
anomaly detection algorithms to automate this process as 
they collect more data and have a better baseline fingerprint 
for each machine.  
 
Case Study 2 
A case study visit with an aerospace manufacturer provided 
another insightful perspective on some of the barriers for 
achieving success with implementing this PHM technology. 
This manufacturing facility performs assembly of aviation 
systems, and consists of machine tool and quality inspection 
equipment. In one of their past monitoring examples, the 
organization developed an early warning (anomaly 
detection) system that had a detection accuracy with a low 
false alarm rate. From a technology perspective, this early 
warning system was a success; however, there were 
additional challenges that resulted in this monitoring system 
not providing the value that was expected. In particular, the 
operators ignored the early warning system even though the 
early warning system was accurate in providing a correct 
detection. It is hard to conclude why the operators ignored 
this warning system, yet it shows that there are significant 
work cultural barriers for implementing PHM technology 
within a manufacturing facility.  
 
This same aerospace manufacturing facility also had a 
manufacturing PHM case study with machine tools that 
highlighted some additional challenges for achieving 
successful implementation of this technology. During a pilot 
research study, they developed a machine tool health 
monitoring system, in which various controller parameters 
were collected and monitored during a routine machine 
motion profile/test that was conducted once per shift or day. 
Various analytics and multivariate statistical tools were then 
applied to the collected data to generate a health metric. In 
turn, this metric was used to estimate the health condition of 
the various machine tool subsystems and components over 
time.  
 
During the pilot study, the developed analytics were 
evaluated against historical data and the results showed that 
this approach could provide an early detection of a failure 
with one of the machine tool axes. After the pilot study, the 
solution was deployed and used to monitor a set of machine 
tools over a one-year time-period. However, during this 
time-period, no failures occurred. Considering that the 
routine test took time away from production and that no 
failures occurred since the solution was implemented, they 
eliminated the routine test and monitoring solution. 
However, after this monitoring was discontinued, a similar 
axes failure occurred on one of the machine tools and they 
are now considering renewing this monitoring solution.  

 
This chain of events highlights the challenge that many 
PHM solutions could face, in that they will have to 
overcome short-term performance and evaluation metrics. 
For many manufacturing equipment, it might be difficult to 
justify PHM solutions in the short-term given that many 
components degrade over time and failures would likely not 
occur in the short-term.  

 
Case Study 3 
A large consumer products manufacturer has been actively 
developing and adopting its own PHM and maintenance 
optimization methodologies. The manufacturer’s 
methodology goes beyond the traditional fail-and-fix 
maintenance mode, and uses to high-end engineering with 
predictive capabilities and an uptime vs. downtime focus. 
The main challenges for the manufacturer to implement new 
PHM technologies and preventive maintenance strategies 
are mainly attributable to the unique characteristics of the 
high-throughput, high-speed production systems. Yet fail-
and-fix is a costly option.  Stoppages due to machine 
breakdown could significantly reduce the OEE, and cause 
hundreds of defects during the restart/transient period. 
Hence, the goal of the manufacturer is to improve the OEE 
ratios to be at or exceed 95 %, and reduce the downtime-
induced defect. 
 
This manufacturer has realized that, although the adoption 
of lean and sigma programs creates greater awareness that 
optimized production pays big dividends in output and 
quality, the production speed and efficiency are not 
sufficient enough to compete globally. The manufacturer 
envisions that a set of intelligent maintenance tools and 
PHM technologies need be adopted within their 
manufacturing facilities in the near future. These 
technologies include smart sensors found on automated 
controls, remote monitoring systems, and software 
applications that can detect and diagnose problems – even 
remotely – or generate repair orders directly to maintenance 
management system. The manufacturing system would also 
need other specialized machines to monitor key operational 
indicators such as abnormal hot spots, leaks, and vibration 
problems. 
 
The challenge of investing in resources for new sensing, 
diagnostic, and analysis technologies has more to do with 
motivation rather than money. The first step for the 
company to move from a fail-and-fix mode to a preventive 
and/or predictive mode is to create a culture of change that 
moves from passive to proactive maintenance. The next step 
is to update operators and maintenance technicians with the 
expertise to run the latest computerized monitoring tools 
and devices. To address these challenges, additional 
incentives for interdepartmental collaboration and research 
and development (R&D) development will be needed.   



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

7 

3.2. Small to Mid-Sized Manufacturing Enterprises 

Three SME case studies are presented in this section. 
Perspectives from two manufacturers and one technology 
integrator are specifically highlighted.  

Case Study 4 
The first SME case study participant is a relatively small 
original equipment manufacturer (OEM) who is responsible 
for manufacturing a component of varying sizes for their 
parent company. This OEM produces these components 
using a combination of sheet-metal forming, machining, and 
welding processes. These components are predominantly 
used in the shipping, chemical, pharmaceutical, and food 
industries. The company currently employs a little less than 
100 people where approximately 75 % work on the shop 
floor. This organization delivered nearly 20,000 parts in 
2015 where it typically takes two to four weeks to fabricate 
a single part. At any given moment, the shop has between 
400 to 600 orders as work in progress (WIP). The 
company’s current enterprise resource planning software is 
SAP (Karnouskos et al. 2010; Giriraj and Muthu, 2010) 
whereas their previous solution was custom-made to handle 
day-to-day operations. The transition was expensive for the 
company and challenging – there was little experience with 
SAP and it did not integrate well with the existing systems.  
 
For this organization, it is critical they measure and track 
conformance to original cost estimate, expected time of 
delivery, and part specification. Their maintenance strategy 
is driven by the high operation and tooling costs, and 
challenges faced when ordering spare parts (i.e., they are not 
readily available). Preventative maintenance is the dominant 
strategy, yet reactive maintenance still occurs if/when 
machines unexpectedly fail. Most of these failures are 
typically tied to bearing issues. To minimize this downtime, 
the company has invested in a spare parts inventory, which 
is kept in an adjacent warehouse. The company is very 
interested in transitioning to a predictive maintenance 
strategy. With the high demand of their machines, the hope 
is that a predictive maintenance strategy will enhance the 
ability to plan necessary maintenance around critical 
machining operations with both minimal downtime and 
minimal financial impact.  
 
To achieve a predictive maintenance strategy, the company 
is taking the very critical step of transitioning from manual 
(their current modus operandi) to paperless data collection. 
Data collection is challenged, and the transition will be 
challenged, by the large WIP. To support this transition, the 
company is exploring networking equipment and systems, 
cloud-based services for data storage, and job tracking 
systems to determine status and improve scheduling. 
Significant concerns exist in making this transition 
including expected difficulties with integrating solutions 
across heterogeneous systems, lack of sufficient data to 
support analysis and decision-making (i.e., there is not 

paperless baseline data with which to draw upon), and the 
disruptions to daily operations that can occur with such a 
transition. 

Case Study 5 
The second SME case study participant can be described as 
a larger-scale contract shop that specializes in large work 
volumes. This shop is predominantly focused on computer 
numerical control (CNC) machining. The produced parts 
and components support the chemical processing, energy, 
mining, machine tool, aerospace, paper, plastic, and steel 
industries. Two of this SME’s key metrics are basic 
utilization (in-cycle versus not-in-cycle), and start-time 
versus in-cycle. The company has thousands of part 
numbers (in total) where approximately 600 are currently 
under contract. Low volumes are typically requested when a 
specific part is produced. Standardization of software 
packages, machine tools, and controllers is sought as 
challenges when working with heterogeneous systems and 
interfaces.  
 
Given the company’s high burn rate1 for equipment, 
successful maintenance and scheduling strategies are 
required to minimize nonproductive times. Job estimates 
(including cost and resource allocations) are based upon 
tribal knowledge, yet there has been a historic trend of 
underestimating when comparisons are made to actuals, 
which has a negative impact on burn rate. Another job 
scheduling issue is that jobs are not planned beyond 2+ 
weeks of operation. A significant challenge to enhancing 
their maintenance strategy is the lack of staff that are open 
to and support modernization and emerging technology. The 
company’s current maintenance strategy is largely reactive 
where prior efforts to introduce preventative maintenance 
were met with heavy resistance from the staff due to culture. 
Another attempt is being made to implement preventative 
maintenance.  
 
Presently, unexpected breakdowns occur every few days 
which usually take, on average, over a day to resolve. 
Unexpected issues have been more prevalent in the summer 
when temperatures are above normal during operations. 
Given these factors, the organization is also interested in 
condition-based maintenance where active health 
monitoring can better inform personnel of when and where 
maintenance should occur. As such, support is increasing 
for real-time supervisory monitoring and control of shop-
floor operations along with dynamic scheduling. In addition 
to the cultural challenges of advancing their maintenance 
strategy, the company also faces a lack of sufficient data to 
support equipment health analysis. Low volume part runs 
have made it difficult to learn much from current operations 
so data collection efforts have mostly targeted work centers 

 

1 Burn Rate is the rate at which an enterprise spends money, especially 
venture capital, in excess income. 
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that maintain relatively consistent operations. Similar to the 
Case Study 4, this organization is also challenged by the 
heterogonous systems mix given their lack of common 
interfaces and licensing issues. Another challenge is with 
respect to communications given specific cyber security 
requirements. These requirements are usually imposed 
internally to maintain the integrity of the data and the 
overall manufacturing operations. 
 

3.3. Technology Providers/Consulting Enterprises 
 
Case Study 6 
One case study participant is a SME technology integrator; 
they are contracted by manufacturing customers to provide 
various solutions to enable specific manufacturing 
capabilities, typically in the form of developing and 
deploying new work cells. These work cells often blend 
industrial arm robotics, programmable logic controllers, 
networking equipment, and other automation technologies 
to complete a specific process. This integrator is not tied to 
any specific industry, and has provided work cell solutions 
to a range of organizations including those in power tools, 
medical devices, and food/beverage packaging.  
 
In creating work cell solutions, the integrator noted it is very 
rare for their customers to ask for specific diagnostic and 
prognostic techniques; rather, they have specific 
productivity, performance, and quality requirements that the 
integrator must target. Any maintenance information that is 
provided to the customer comes from the manufacturers of 
the individual pieces of equipment (e.g., embedded sensors, 
robotics, and safety systems) that the integrator builds in to 
create the work cell. Two example work cells that the 
integrator recently developed incorporate multiple industrial 
robotic arms, and feature a majority of the work cell secured 
behind a fence. Minimal diagnostic and prognostic 
capabilities are integrated into these work cells because 
these were not requested by the customers.  It is typical for 
the customer to not specify any diagnostic or prognostic 
capabilities because they are either unaware of such 
capabilities, or they recognize that this will increase the cost 
of the solution. However, the customer requirements 
typically dictate that the integrator is responsible for 
designing and creating the human-machine interfaces.  
These interfaces provide the operators with the necessary 
controls and information to operate the machines effectively 
and safely. Since the integrator’s solutions are motivated by 
the customer’s requirements, there is little motivation for the 
integrator to add/enhance their PHM capabilities in their 
engineering solutions if the customer is not requesting it. 

4. RESULTS, ANALYSIS, AND DISCUSSION 

4.1. Preliminary Observations  

Based on the survey and case studies, we summarize the 
maintenance objectives across the various manufacturing 
enterprises and technology/consulting companies and 
classify the commonly used maintenance performance 
measures into six categories: 
(1) Equipment performance (e.g., availability, reliability, 

mean time to failure),  
(2)  Product quality performance (e.g., defect rate, yield),  
(3) Maintenance productivity performance (e.g., manpower 

utilization, efficiency),  
(4) Maintenance cost (e.g., maintenance labor and material 

cost),  
(5) Safety and environment (e.g., safety, health and 

environment incidents), and 
(6) Production/process performance (e.g., work-in-process, 

cycle time). 

4.1.1. Survey Results and Analysis 

The key findings according to the respondent’s selection of 
important objectives are the following: (1) safety (92 %) and 
(2) availability and reliability (77 %) are the top two highly 
rated maintenance objectives. Productivity and quality are 
equally important (69 %) to the manufacturers because they 
directly affect the cost-effectiveness of their production 
systems. Typically, manufacturing organizations use 
performance metrics to measure system-level performance 
such as productivity, maintenance, product quality, or a 
combination of these metrics. The majority of the 
manufacturer surveys draw both statistically significant 
conclusions on individual metrics (e.g., throughput, 
defective parts per hour, and maintenance-related metrics) 
and a combination of these metrics. This is well aligned 
with the trend of companies adopting OEE metrics to 
measure for factory performance monitoring and evaluation 
(Jonsson and Lesshammar, 1999; Liker, 2014). 
 
For maintenance strategy, it was important to have a grasp 
on the manufacturers’ current maintenance practices and 
whether these practices are effective, or if they have room 
for improvement. This provides some measure of where 
manufacturing organizations are in terms of maintenance 
strategy and this could influence their future adoption of 
more advanced maintenance technologies. For preventative 
maintenance effectiveness, the response from the 
manufacturers is provided in Figure 1.  The noted level of 
effectiveness was diverse among the surveyed 
manufacturers. The general observations from the surveyed 
companies were that some of the larger manufacturing 
facilities had a more effective preventative maintenance 
program. However, this would also depend on the diversity 
of assets that they had in their facilities along with the age 
of the factory and equipment. For some of the smaller 
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manufacturing facilities visited during this study, reactive 
maintenance (instead of preventative maintenance) was 
noted as their current strategy. 
 

 
Figure 1. Manufacturers – Preventative Maintenance 

Effectiveness Survey Response 
 
Some important insights were also gained on whether 
condition-based maintenance (CBM) strategies for certain 
types of machines or processes had been considered by 
manufacturing organizations surveyed in this study. A vast 
majority of organizations (72.7% of the survey 
manufacturers) are considering condition-based 
maintenance (CBM) approaches. We performed a Chi-
square statistical hypothesis test in the following general 
form of equations (1) and (2) to provide statistical evidence 
that manufacturing organization are starting to consider and 
move towards CBM strategies.  Chi-square test is used to 
investigate the “goodness-of-fit” between the observed and 
expected. The test statistic χ2 is defined as equation (1) with 
degree of freedom (df) of n-1, where n is the number of 
observations. The test-statistic and p-value with a 
significance level of α = 0.05 indicate that there is evidence 
that the responses are not random and the null hypothesis is 
considered as true. 
 

           (1) 

 
        (2) 

We further investigated whether the manufacturers who 
have started CBM had past and/or active projects in 
manufacturing diagnostics and prognostics. A Chi-square 
test is a statistical test procedure for categorical variables 
consists of comparing the expected bin frequencies to the 
observed bin frequencies. Based on the hypothesis that the 
responses are random, one would assume an expected 
frequency count that was even for each bin group. Test 
results reveal that manufacturing organizations are starting 
to move towards CBM strategies although the sample size is 

relatively small. More test details can be found in a prior 
publication (Jin et al. 2016).  
 
One of the interesting questions that was asked to both the 
surveyed technology providers and manufacturers is how 
does one determine which machine(s) or process(es) has the 
greatest need for a prognostics and health management 
system. Determining which machine is important and which 
failure mode to target can help determine the value and 
return on investment that a PHM system provides to the 
manufacturing organization. The response from the 
surveyed technology providers is highlighted here, since a 
technology provider might have a more diverse perspective 
if one considers that they work with multiple manufacturing 
organizations. The responses from the technology providers 
in Figure 2 indicate that the majority of them consider the 
impact/cost of failure as a key criterion for ranking 
machines and failure modes. The frequency of failure was 
also mentioned, although some mentioned that the 
frequency of failure might be misleading if the cost of the 
failure or downtime is low for that failure mode.   
 

 
 

Figure 2. Technology Providers – Failure Mode /Criticality 
Analysis Survey Response 

 
A Chi-square hypothesis was also performed for this 
response and the results in Table 3 indicate that there was 
not significant evidence to reject the null hypothesis that the 
responses were random. Perhaps there is not an 
overwhelming consensus on which criterion for failure 
mode ranking and criticality should be used. 

cχ2 5.5 
α 0.05 
df 3 

p-value 0.1386 
Hypothesis H0 

Table 3. Chi-Square Test Results – Failure Mode/Criticality 
Analysis Response 
 
One of the other important elements to gain some 
observations during this study was the perspective of 
manufacturers and technology providers on the future 
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outlook for manufacturing PHM. With respect to the 
technology providers, the majority had a very optimistic 
view on manufacturing PHM (Figure 3). A few thought 
manufacturing PHM would have a slight increase or remain 
flat, while the vast majority felt that it would have a large 
increase in the next few years. The Chi-square test results in 
Table 4 also highlight that there was sufficient evidence to 
reject the null hypothesis and the responses appear to favor 
the optimistic viewpoint. One interesting comment was that 
there was past precedence within manufacturing to adopt 
trends from some leading manufacturing organizations, such 
as lean manufacturing. The rationale was that a similar trend 
would occur for manufacturing PHM, once a few leading 
manufacturing organizations had successful demonstrations 
of PHM systems and could highlight the value and cost 
savings.  

 
Figure 3. Manufacturing PHM Trend Optimism - Survey 
Response 

cχ22 11.6 
α 0.05 
df 3 

p-value 0.0089 
Hypothesis Ha 

Table 4. Chi-Square Test Results – Manufacturing PHM 
Trend Optimism 
 
Although the technology providers had a very optimistic 
viewpoint on the future trend for manufacturing PHM, it 
was also important to see if the same sentiment was 
obtained from the manufacturers. The manufacturers would 
be the ones that would ultimately deploy and use this 
technology on their manufacturing floor and their level of 
optimism for manufacturing PHM might be a better gauge 
for the future trend and outlook in this technology area. The 
responses in Figure 4 indicate that many manufacturers have 
planned future diagnostic and prognostic projects, while 
only a few are just focused on RCM with no future PHM 
projects on the horizon. With the vast majority of 
manufacturers having future projects planned in this area, 
the manufacturers also appear to be optimistic about 
manufacturing PHM. 
 

 
Figure 4. Manufacturers -Prognostic/Diagnostic Future 

Outlook - Survey Response 
 
4.1.2. Case Study Findings of SMEs and Technology 
Providers 
 
NIST’s discussions with SMEs and technology providers 
were very insightful. From the SME perspective, this 
category of manufacturers is typically limited in their 
equipment and computing resources investment unless they 
can clearly justify the cost(s) and reasonably estimate the 
pay-back period of such investments. In most instances, this 
holds true for investing in PHM technology. These 
expenditures may be risky to a SME’s survival. If the 
investment yielded or exceeded the expected returns, then 
the company increases its overall health and profitability 
where further growth can be achieved. On the other hand, if 
the expected financial returns are not met, a SME may be 
faced with tough decisions in terms of cutting its workforce 
or even closing its doors. 
 
Technology providers are in a different position with respect 
to investing in PHM technologies. Their technology 
development and implementation is motivated by their 
customer’s requirements. In this case, the manufacturer is 
the customer where a significant percentage of the 
technology providers’ customer base is from the SME 
community. Technology providers will add technology/ 
feature enhancements to their solutions if it is a financially 
sound decision (i.e., if the customer is willing to pay for it, 
then the technology provider will do it). Unless technology 
providers are aware of emerging and advanced PHM 
technologies, and can highlight their value to the 
manufacturing customers or manufacturers have a direct 
appreciation of PHM, the PHM technology advancement 
within the SME community will be very limited.  
 
Another insight that was discovered is that culture has a 
tremendous impact on how the overall organization 
perceives advanced and emerging technologies that are 
intended to augment an operator’s knowledge and capability 
at the shop floor level. PHM is one such technology where 
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some SME operators viewed it with distrust or skepticism. 
In this case, the operators viewed the technology as 
supplanting some of their responsibilities (e.g., “the 
technology is doing something that I am equipped to do”) or 
the technology was not trusted to provide accurate 
information (e.g., false alarms). Several SMEs highlighted 
how culture played a significant role in how easily PHM 
was embraced or they noted how a resistant culture forced 
upper management to revise their PHM deployment 
strategy.  
 
A strong commonality among the SMEs that were surveyed 
was that they are all subjected to reactive maintenance (i.e., 
as much as they tried to prevent failures, they still occurred). 
However, all took steps to balance this out with limited 
preventive maintenance strategies. Very few SMEs 
surveyed employed predictive maintenance approaches. 
Any predictive maintenance that was performed is very 
limited in scope for a SME. None of the SMEs that 
participated presented end-to-end predictive maintenance 
strategies that covered the entirety of their manufacturing 
processes. Rather, when predictive maintenance was found, 
it was in isolated instances at the machine or component 
level. 
 
Technology providers illuminated the fact that their only 
motivation to incorporating PHM technologies into their 
manufacturing solutions was if it was required to satisfy 
specific customer requirements. Granted, added levels of 
PHM increase the cost of the overall solution where some 
manufacturers pushed back against higher costs. In turn, the 
technology providers noted that achieving a lower cost 
called for stepping down the capabilities of the system. The 
manufacturers had to weigh whether or not the added the 
cost of the PHM solution was worth the investment.  

4.2. Maintenance Factors: Comparison between SMEs 
and Large-Sized Manufacturers  

This section focuses on comparing the level of development 
of intelligent maintenance technologies and the strategies 
between SME manufacturers and large-sized manufacturers 
from various aspects. This study has identified eight key 
factors related to maintenance based on the questionnaire 
results. Each factor is scored on a 0 % - 100 % scale, where 
66.7 % - 100 % represents the most advanced level in terms 
of performance and effectiveness (level 3), 33.3 % - 66.7 % 
represents the intermediate level (level 2), and 0 % - 33.3 % 
corresponds to the beginning level which is least intelligent 
in maintenance technology and strategy as well as their 
effectiveness (level 1). Table 5 in the Appendix of this paper 
defines the levels for each of the eight factors. 
 
The responses to the interval questions are averaged and 
plotted in radar charts for large-sized enterprises and SMEs, 
respectively, to study how enterprise size may influence 

these key factors of maintenance. According to the 
responses to the interval questions based on Table 5, the 
average levels of eight key factors are presented for large 
firms and SMEs in Figure 5.  

 
 

 
 
Figure 5. Radar charts for manufacturing enterprises with 
different sizes: (a) large-sized manufacturing enterprises, (b) 
SMEs 

4.3. Correlation Analysis for Maintenance Factors 

The survey responses, as obtained by UC/UM, can be seen 
as ordinal data; thus, correlation analysis is adopted. The 
Spearman’s rank correlation and Kendall’s tau correlation 
are both recommended for the analysis of ordinal data 
(Muchiri et al., 2010). Therefore, both the Spearman’s rank 
correlation and Kendall’s tau correlation are adopted. 

The Spearman’s rank correlation coefficient is defined as 
the Pearson correlation coefficient [Edwards, 1976] between 
the ranked variables. For a sample of size n, then raw scores 

 are converted to ranks , and the Spearman 
correlation coefficient  is computed as: 

                                (3) 
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where di is the difference between the two ranks of each 
observation and n is the number of observation [Daniel, 
1990]. 

The results of Spearman correlation analysis for eight 
maintenance-related factors are presented in Table 6. The 
Kendall’s tau correlation is a measure of rank correlation: 
the similarity of the orderings of the data when ranked by 
each of the quantities. The results of Kendall’s tau 
correlation analysis are presented in Table 7. 
 
It was found that maintenance effectiveness, maintenance 
strategy, profitability, continuous improvement, human 
resources for maintenance, and organizational readiness are 
significantly correlated with the size of the manufacturing 
enterprise. In particular, the organizational readiness is 
highly correlated with maintenance strategy and company 
size (p<=0.01 in both Spearman’s correlation and Kendall’s 
tau correlation). It is also significantly correlated with 
human resources for maintenance and continuous 
improvement (with p<=0.05 in Spearman’s correlation). 
However, the correlations between Scheduling, Total 
Productive Maintenance (TPM) and Size are not significant. 

4.4. Correlation Analysis: PHM and Size of 
Manufacturers 

The correlation analysis indicates that a relationship exists 
between the size of the manufacturing enterprise and the 
eight key factors. A statistic test is adopted to do the 
hypothesis testing to see whether the differences between 
SMEs and large-sized manufacturers are statistically 
significant.  
 
Due to the small sample number, the Student’s t test is used 
to check whether there are significant differences in each 
factor between large manufacturers and SMEs. All eight 
factors in Table 5 are tested between SMEs and large-sized 
manufacturers. Two examples of maintenance strategy level 
and scheduling level for SMEs versus large firms is 
presented below to explain how the hypothesis test works. 
 
Example 1: Maintenance Strategy Level 
The null hypothesis on maintenance strategy level H0 is that 
the mean maintenance strategy level of SMEs equals the 
mean maintenance strategy level of large-sized 
manufacturers. The results of a Student’s t-test are shown in 
Table 8 in Appendix. 

Levene’s test is used to check whether the variances of two 
groups are equal because Levene’s test is an inferential 
statistic used to assess the equality of variances for a 
variable calculated for two or more groups. The significance 
of F-value is 0.023, which is less than 0.05, meaning that 
the variances in the two groups are not equal, i.e., equal 
variance is not assumed. According to the T table, two-
tailed t(0;05,9) is less than the absolute t-value, i.e., |t| > 

t(0.05,9). Therefore, H0 is rejected, indicating that the mean 
maintenance strategy level of large-sized manufacturers is 
significantly larger than the mean maintenance strategy 
level of SMEs. 

Example 2: Scheduling level 
H0: The mean scheduling level of SMEs equals the mean 
scheduling level of large-sized manufacturers. 
Ha: The mean scheduling levels of SMEs and large-sized 
manufacturers are different. 

The Levene’s test result, the significance of F-value, 0.362, 
which is greater than 0.05, so the variances of two groups 
are assumed to be equal; thus, |t|=-1.028 < t(0.05,11), so 
accept H0. It can be concluded that the mean scheduling 
levels of large-sized manufacturers and SMEs are equal. 
The results of Student’s t test are shown as in Table 9 in 
Appendix. 

From the hypothesis testing results for all eight factors, the 
key findings can be summarized as follows: large 
manufacturers, in contrast to SMEs, have the ability to focus 
on two distinct strategies: 1) continuous improvement on 
condition-based maintenance and/or predictive maintenance 
technology and level of sophistication, and 2) a combination 
of low-cost maintenance technology and strategy 
innovation.  

5. GAPS, FUTURE TRENDS, AND RESEARCH DIRECTIONS 

We identify some gaps, challenges and future trends for 
manufacturing PHM and maintenance strategy based on the 
observations from the case studies and statistical analysis of 
the data collected from survey respondents. The overall state 
of the art for manufacturing PHM has many current gaps, 
which can be divided into two categories: (1) maintenance 
strategy levels, and (2) diagnostics/prognostics 
technologies. 

Maintenance strategy levels are relatively low in most 
manufacturing enterprises. These levels range from reactive 
maintenance to preventive maintenance (time-based or 
cycle-based maintenance). Very few predictive or proactive 
maintenance practices were adopted by the surveyed 
manufacturing enterprises. The common barriers that inhibit 
these manufacturers to improve their maintenance strategies 
are mainly costs, workforce and level of skills, 
organizational and technology readiness, and complexity of 
system design changes. In addition, compared with SMEs, 
large manufacturing enterprises are making more efforts to 
improve their maintenance strategy because of their size-
related advantages such as R&D support, leadership 
involvement, skilled workforce and other resources. In 
addition, having a clear strategy on how to motivate and 
train plant personnel on this technology and take appropriate 
action from these diagnostic and prognostic alerts should 
not be overlooked.  
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Diagnostic and prognostic technologies implemented in 
most of the manufacturing enterprises have been limited to 
component and machine level fault detection diagnosis. 
There are very few system-level diagnostics and prognostics 
implementations that support multiple components 
interacting within a production system. Although some 
research has been looking at system-level health monitoring 
and assessment, very few successful implementations have 
been found in real applications due the complex 
interdependencies among components and subsystems 
within a manufacturing system. Some technology providers 
are making more efforts to develop system level health 
monitoring system and PHM by using large amount of data 
collected from sensors, controllers and automation systems 
in the plant floor to monitor or predict system health. In 
addition, even current component-level and machine-level 
prognostics and diagnostics techniques lack robustness and 
adaptiveness, thus limiting their successful implementation 
by manufacturers. Common issues noted by the 
manufacturers include unsatisfactory number of false 
alarms, and difficulty in setting up baseline conditions for 
fault detection and diagnosis that consider various operating 
conditions. It was also noted by the technology providers 
that the lack of failure data makes it more challenging to 
develop robust prognostic and diagnostic methods. 
Furthermore, without reference data sets that include failure 
data, validation of the technology becomes very difficult. 
Gaps and barriers for implementing advanced PHM 
technologies identified in the study are also well aligned 
with the findings of the 2015 NIST PHM workshop report 
(NIST, 2015). 

Based on these findings and current gaps, future research 
needs and directions should focus on the development of 
new technologies and infrastructure to support PHM system 
implementation for smart manufacturing. One important 
step for industry, to move from a fail-and-fix paradigm to a 
predictive-and-proactive paradigm, is to create incentives 
and evolve the culture, so they can change from passive to 
proactive maintenance and operations. Interdepartmental 
collaboration, R&D support and leadership will also be 
primary to the success of the paradigm shift. Other future 
PHM research and technology development would include 
more system-level diagnostics and predictive analytics by 
fully utilizing both engineering knowledge and industrial 
big data, as well as automated decision-making for 
maintenance scheduling and operations planning. 

6. CONCLUSIONS AND FUTURE WORK 

This paper conducted a comprehensive study to investigate 
the best practices that the United States manufacturing 
enterprises are currently using to achieve their performance 
goals by incorporating both diagnostic and prognostic 
technologies and maintenance strategies. With that notion in 
mind, data was collected by phone interviews and on-site 
facility visits from various manufacturing enterprises, 

including a total of fifteen manufacturing enterprises and 
eight technology/consulting companies. NIST also provided 
additional case studies of SMEs to complement the survey-
based study during site visits and factory tours of several 
manufacturing and technology integration facilities. While 
the UC/UM team analyzed the detailed survey data, both 
teams (UC/UM and NIST) assessed the information from 
the conversational case studies. This team-based approach 
allowed UC/UM and NIST to jointly formulate what they 
see as the future directions in PHM given the identified gaps 
and issues.  

One of the interesting findings during this study was that the 
maintenance effectiveness, maintenance strategy, and 
human resources for maintenance were significantly 
correlated with the size of the manufacturing enterprise. 
There was an obvious difference in maintenance technology 
and strategy when comparing large and small/medium 
manufacturing enterprises. Even for the larger 
manufacturing enterprises, it was noted that the 
effectiveness of their intelligent maintenance programs 
varied between the different organizations. Many 
organizations had mixed success with respect to their past 
diagnostic and prognostic projects. Despite this mixed level 
of success, many of the manufacturing organizations 
surveyed had active diagnostic and prognostic projects and 
had an overwhelming positive and optimistic viewpoint 
when considering the future outlook for manufacturing 
PHM.  

The results from this study illustrate many future research 
directions to address the gaps identified in this study. The 
literature review highlighted a sparse set of technical work 
on system-level PHM for factory applications, in 
comparison to the machine-level and component-level PHM 
work for robotics, machine tools, and other manufacturing 
equipment; thus the need to develop technical approaches 
for system-level PHM for factory applications is one 
potential future research direction. In addition, some 
manufacturers were unsatisfactory in the threshold setting 
and overall robustness in the PHM machine-level models; 
this reiterates that there is a still a need to improve the 
current state of the art with respect to PHM for 
manufacturing components and machines. Lastly, there is a 
significant gap between SME and large manufacturing 
organizations, in which the SME would benefit from at least 
learning from the large manufacturers and their early trials 
and success with PHM and maintenance technology. With 
this notion, it would be beneficial to make a concerted effort 
to disseminate the PHM manufacturing case studies, with 
the aim that SMEs would eventually consider adopting these 
maintenance technologies with a good fit. 

Besides the gaps and issues being identified in this study, 
many other challenges and barriers that prevent 
manufacturers from adopting advanced PHM technologies 
will be further explored and discussed in the future work, 
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such as the need for using digital technologies for data 
collection and handling and interpreting “industrial big 
data,” the need to develop protocols and tools to 
communicate data, information and metrics across the 
component, machine and system levels for diagnostics and 
prognostics in manufacturing, and the need to enhance 
operations and maintenance intelligent by predictive and 
preventive control and management.  
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APPENDIX 

 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 
  Size Effect. Strategy Sched. Profitability Impr. HR TPM Readiness 
F1 Size 1.000 .663* .758** .298 .660* .670* .660* .463 .755** 
F2 Effectiveness .663* 1.000 .199 .224 .870** .728** .762** .491 .370 
F3 Strategy .758** .199 1.000 .237 .341 .544 .436 .259 .902** 
F4 Scheduling .298 .224 .237 1.000 .085 -.053 -.085 .033 .190 
F5 Profitability .660* .870** .341 .085 1.000 .719** .905** .256 .499 

Factors 
Level 3 (100%) 
Advanced  
(predictive & proactive) 

Level 2 (66.7%) 
Intermediate (preventive) 

Level 1 (33.3%) 
Beginning 
(reactive) 

Maintenance 
Effectiveness 

Maintenance performance is very 
satisfactory where no 
improvement is warranted. 

Maintenance program is 
effective but could still be 
improved. 

Maintenance has significant 
room for improvement, or 
Preventive maintenance 
program is lacking / reactive 
maintenance 

Maintenance 
Strategy 

Employ predictive maintenance 
(PdM) strategy for sustainable 
improvement. All problems are 
analyzed and permanently solved. 
Reactive maintenance is 
minimized. 

Use preventive maintenance 
(PM) as a main approach, 
usually age-based or cycle-
based. Some reactive 
maintenance is required. 

Rely heavily on reactive 
maintenance (RM), no 
equipment health information 
involved   

Task Planning 
and Scheduling 

More than 90 % of work that is 
planned is accomplished. Low 
overtime for maintenance 
activities (<15 %) 

More than 50 % work planned 
accomplished. Relatively high 
overtime ( >15 %) 

Less than 50 % work planned 
accomplished. High overtime 
( >30 %) 

Profitability Significant cost savings due to 
failure reduction and life extension 

Cost-effectiveness is satisfactory Not cost-effective 

Continuous 
improvement 

Proactive maintenance. CBM or 
PHM applied, performance 
measurements are in place and 
effectively used 

Have preventive maintenance in 
place with management involved 
in policy settings and reviews 

Have no CBM or PHM. Low 
involvement of management. 
Reactive maintenance is very 
common 

Maintenance 
Training 
(Human 
factors) 

Educational plans are designed for 
each maintenance worker. A 
global R&D Team is in place that 
is responsible for developing and 
implementing prognostic and 
diagnostic techniques 

Skilled staff normally qualified 
on a few machines. A small 
team is in place that is 
responsible for developing and 
implementing prognostic and 
diagnostic techniques 

No training on how to use 
maintenance strategies. Lack of 
system to collect maintenance 
knowledge. No team that is 
responsible for developing and 
implementing prognostic and 
diagnostic techniques 

Total 
productive 
performance 
(TPM) 

Overall Equipment Effectiveness 
(OEE) is greater than 80 % 

Overall Equipment Effectiveness 
(OEE) is between 50% and 80% 

Overall Equipment 
Effectiveness (OEE) is less than 
50% 

Organizational 
Readiness 

Leadership Involvement and 
strong R&D support 

Lack of sufficient R&D support 
& leadership involvement  

“Fire Fighting” approach 

Table 5. Key factors versus maintenance performance at various levels 
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F6 Improvement .670* .728** .544 -.053 .719** 1.000 .864** .401 .732** 
F7 HR .660* .762** .436 -.085 .905** .864** 1.000 .256 .593* 
F8 TPM .463 .491 .259 .033 .256 .401 .256 1.000 .279 
F9 Readiness .755** .370 .902** .190 .499 .732** .593* .279 1.000 
* The correlation is significant at the level of 0.05 (two-sided) 
** The correlation is significant at the level of 0.01 (two-sided) 
Table 6. The Spearman correlation of different maintenance factors  

 
  
 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 
 Size Effect. Strategy Sched. Profitability Impr. HR TPM Readiness 

F1 Size 1.000 .608* .696* .290 .603* .613* .603* .452 .685** 
F2 Effectiveness .608* 1.000 .130 .204 .829** .678** .699** .453 .320 
F3 Strategy .696** .130 1.000 .202 .258 .443 .339 .225 .857** 
F4 Scheduling .290 .204 .202 1.000 .090 -.046 -.090 .031 .155 
F5 Profitability .603* .829** .258 .090 1.000 .656** .871** .225 .413 
F6 Improvement .613* .678** .443 -.046 .656** 1.000 .820** .365 .613* 
F7 HR .603* .699** .339 -.090 .871** .820** 1.000 .225 .492* 
F8 TPM .452 .453 .225 .031 .225 .365 .225 1.000 .243 
F9 Readiness .685** .320 .857** .155 .413 .613* .492* .243 1.000 
* The correlation is significant at the level of 0.05 (two-sided) 
** The correlation is significant at the level of 0.01 (two-sided)  
Table 7 The Kendall’s tau correlation of different maintenance factors 

 
 Levene’s test for equality of 

variances 
t-test for equality of means 

F Significance t df Significance (2-tailed) 
Equal variance assumed 6.913 0.023 -5.961 11 0.000094 
Equal variance not assumed -11.225 9 0.000001 
Table 8. Student’s t-test for maintenance strategy comparison between large enterprises and SMEs 

 

 
 
 

Levene’s test for equality of 
variances 

t-test for equality of means 

F Significance t df Significance (2-tailed) 
Equal variance assumed 0.906 0.362 -1.028 11 0.326 
Equal variance not assumed -0.913 2.855 0.432 
Table 9. Student’s t-test for scheduling level comparison between large enterprises and SMEs 
 


