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ABSTRACT 

Industrial robots have long been used in production systems 

in order to improve productivity, quality and safety in 

automated manufacturing processes. An unforeseen robot 

stoppage due to different reasons has the potential to cause 

an interruption in the entire production line, resulting in 

economic and production losses. The majority of the 

previous research on industrial robots health monitoring is 

focused on monitoring of a limited number of faults, such as 

backlash in gears, but does not diagnose the other gear and 

bearing faults. Thus, the main aim of this research is to 

develop an intelligent condition monitoring system to 

diagnose the most common faults that could be progressed 

in the bearings of industrial robot joints, such as inner/outer 

race bearing faults, using vibration signal analysis. For 

accurate fault diagnosis, time-frequency signal analysis 

based on the discrete wavelet transform (DWT) is adopted 

to extract the most salient features related to faults, and the 

artificial neural network (ANN) is used for faults 

classification. A data acquisition system based on National 

Instruments (NI) software and hardware was developed for 

robot vibration analysis and feature extraction. An 

experimental investigation was accomplished using the 

PUMA 560 robot. Firstly, vibration signals are captured 

from the robot when it is moving one joint cyclically. Then, 

by utilising the wavelet transform, signals are decomposed 

into multi-band frequency levels starting from higher to 

lower frequencies. For each of these levels the standard 

deviation feature is computed and used to design, train and 

test the proposed neural network. The developed system has 

showed high reliability in diagnosing several seeded faults 

in the robot. 

1. INTRODUCTION 

The Robot Institute of America (RIA) has defined an 

industrial robot as a reprogrammable multifunctional 

manipulator designed to move material, parts, tools, or 

specialized devices through variable programmed motions 

for the performance of a variety of tasks (Spong et al., 

2005). However, an unforeseen robot stoppage has the 

potential to cause an interruption in the entire production 

line, resulting in economic and production losses. 

Availability and maintainability, which can be defined as 

the probability of a system operating satisfactorily in any 

time period and its capability of being repaired, are 

therefore critical for industrial robots. Thus, the automated 

supervision of the robot system is desirable, as this can 

increase robot availability and maintainability and reduce 

operator effort. Industrial robots are extremely complex 

mechanism and hence the application of condition 

monitoring for them differs from that of ‘simple’ rotating 

machinery. This is basically due to the instantaneous change 

of geometrical configuration of the robot arm. Generally, 

there are two approaches to condition monitoring, which are 

model-based and model-free. Either of these approaches or a 

combination of both could be adopted in industrial robot 

condition monitoring. Filaretov et al. (1999) used a 

nonlinear model to address problems of fault detection and 

isolation in complex systems, such as in robot manipulators. 

Algebraic functions were implemented to design the 

nonlinear diagnostic observer, which was able to dispense 

with the linearization in nonlinear models to avoid model 

errors. The robot modeling was conducted using Matlab in 

discrete time. It was shown that, despite the fact that the use 

of this model dispenses with linearization, it does not allow 

some faults to be isolated. In terms of application model-

based condition monitoring in gearboxes  Recently, Liang et 

al. (2015) have developed a dynamic model to simulate the 

vibration source signals for a planetary gearbox in the 

healthy and the cracked tooth conditions. The signals were 
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analysed using time- and frequency-domain feature 

extraction techniques. For model verification experimental 

work was accomplished and the results were deemed 

acceptable. However, because precise mathematical models 

for complex systems like a robot are difficult to obtain, 

model-free methods based on artificial intelligence (AI) or 

statistical approaches have become prevalent choices for 

robot health monitoring.  

Currently, there are few commercially available solutions 

that allow for the automated monitoring of the mechanical 

components of a robot, and therefore the ability to 

continuously monitor the status and condition of robots has 

become an important research topic in recent years and is 

now receiving considerable attention. The backlash in the 

power transmission system of a robot, which is defined as 

the clearance between the non-working flanks of the teeth of 

a gear pair when the working flanks are in contact (British-

Standard, 2007), may cause torque variations. However, the 

electric motor itself generates what is known as a back 

electromotive force (EMF) when subjected to mechanical 

load making them acting as a torque transducer (Yuan et al., 

2011). The torque variations measurements via current 

fluctuations on robotic actuators have been applied for robot 

monitoring (Abdul and Liu, 2008, Yuan et al., 2011). The 

advantage of this technique to the robots health monitoring 

is that the motor current can remotely be measured along the 

power cables utilizing standard current sensors without 

supplementary instrumentation on the robot. Some reported 

robot fault diagnostic systems are based on acoustic signals 

analysis. Such systems would have to be able to distinguish 

the correct information from the ambient noise. Case-based 

reasoning and signal processing were adopted to build an 

approach to diagnosis the faults in an industrial robot 

(Olsson et al., 2004). Wavelet analysis was applied to 

remove noise from the acoustic signals and to extract the 

most relevant features, which were then sent to the 

classification component, which uses case-based reasoning 

to identify the class of faults according to the characteristic 

of the previous fault cases. Experimental work on an 

industrial robot was used to assess the performance of this 

approach. The same principle was applied to an industrial 

robot, but on this occasion the artificial neural network 

(ANN) was used for noise analysis and classification 

(Yildirim and Eski, 2010). Noise sensors with data 

acquisition hardware and feature extraction software were 

used to prepare the training data for designing the ANN-

based noise fault detection of robot manipulator’s joints. 

Vibration signal respond immediately to manifest itself if 

any change has appeared in the monitored machine (Anil 

Kumar et al., 2015). Vibration analysis approach is often 

used and represents the vast majority of utilized technique 

for industrial robot health monitoring, as it provides an easy 

and cost-effective sensing technique to detect faults in 

machines and for this reason it will also be used in this 

research. Pan et al. used vibration signals during normal 

operation to diagnose joint-backlash on a PUMA 762 

industrial robot (Pan et al., 1998). Time-domain and 

frequency-domain analyses were employed to identify 

features such as probability and density. ANNs were then 

used for pattern recognition. One accelerometer was fixed to 

the robot end effector to measure vibration responses. 

Additionally, different levels of backlash were artificially 

contrived in the robot’s joints to validate this method. 

Another research study used wavelet multi-resolution 

analysis (WMRA) coupled with a neural network-based 

approach in order to diagnosis faults in an industrial robot 

manipulator (Datta et al., 2007). A Matlab-Simulink 

environment was used to monitor the neural network 

classifier for a robot used in semi-conductor fabrication. It 

was concluded that the WMRA is excellent for data 

reduction and capturing the important properties of signals. 

On the other hand, two neural networks have been used to 

propose an algorithm for the online monitoring of two-link 

manipulators (Van et al., 2011). This approach focuses on 

identifying changes in robot dynamics due to faults. It was 

noted that this technique was able to provide estimates of 

fault characteristics. Recent work has been conducted to 

detect backlash in the PUMA 560 robot (Jaber and Bicker, 

2014, Jaber and Bicker, 2015). A fault detection system 

using wavelet analysis was successfully designed based on 

National Instruments (NI) software and hardware. The 

wavelet transform was adopted for feature extraction and 

the extracted features showed high sensitivity to changes in 

joint backlash.  

Generally, in the literature concerning industrial robot fault 

diagnosis it was established that the majority of them are 

focusing on gear backlash faults diagnosis, implying there 

are essential  shortcomings in the diagnosis of other types of 

transmission faults, such as gear tooth wear and breakage 

and inner and outer race bearing faults. Thus, in this 

research it was decided to fill part of this gap by developing 

a condition monitoring system based on the combination of 

the discrete wavelet transform (DWT), for feature 

extraction, and ANN, for feature classification, to detect and 

diagnose the most common faults that could be progressed 

in the bearing of industrial robot joints. The detection and 

diagnosis of other robot joint’s faults, such as gear teeth and 

backlash faults, on the same robot were presented in (Jaber 

and Bicker, 2016, Abdulhady Jaber and Bicker, 2016). 

However, the main goal behind this work is to build a 

condition monitoring system that can be able to detect and 

diagnosis different mechanical and electrical faults in the 

robot. 

2. DISCRETE WAVELET TRANSFORM (DWT) 

Robot arms exhibit very complex dynamic behavior, and 

different defects can affect this behavior. Also, their motion 

is completely different from that of rotating machines (or 

other continuously moving machines), for which the 

majority of present CM systems have been designed. 

However, in order for the robot to complete any assigned 
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scenario, each joint in the robot body will move at different 

angular speeds (and accelerations), needing different 

torques, and rotating at different angles. When this motion is 

compared with that of rotating machines, it can be noticed 

that the latter move at continuous and fixed speed, while the 

former’s movement is discrete and varying over time. 

Continuously rotating machines emit continuous signals 

during their operation. Therefore, the CM system will be 

relatively easy to implement as long as there is a continuous 

signal during any time period. On the other hand, the signals 

emitted from the robot’s mechanical or electrical parts will 

be transitory and last for a very short time. The signals from 

faulty parts have a non-stationary nature. However, if the 

frequency component of the non-stationary signals is 

calculated using the Fourier transform, the results will 

represent the frequency composition averaged over the 

duration of the signal (Sawicki et al., 2009). Consequently, 

the characteristics of the transient signal cannot be described 

adequately using the Fourier transform, however, time-

frequency analysis has been investigated and applied for the 

fault diagnosis of machinery because of its capability of 

signal representation in both the frequency and time 

domains (Sawicki et al., 2009, Al-Badour et al., 2011). This 

unique feature of time-frequency analysis techniques means 

that it is suitable for non-stationary signals. Moreover, time-

frequency methods can give interesting information with 

regard to energy distribution over frequency bands. A 

number of techniques of time-frequency analysis, such as 

the short time Fourier transform and discrete wavelet 

transforms (DWT), have previously been used for fault 

detection and diagnosis. DWT is superior to short time 

Fourier transform, as the former has varying window 

lengths, and represents the signal as a sum of wavelets at 

different scales; therefore, it was used here.  

The concept of the DWT is that filters with different cut-off 

frequencies are utilized to analyze the signal at different 

scales (Boukabache et al., 2013). Firstly, the signal is passed 

through a high-pass filter to analyze high frequencies, and 

then it is passed through a low-pass filter to analyze low 

frequencies. Generally, by using the DWT, a multi-

resolution analysis can be performed at different frequency 

bands with different resolutions by decomposing the time 

domain signal (Sawicki et al., 2009, Debdas et al., 2011). 

Two sets of functions are employed in the DWT. These are 

called the wavelet function and the scaling function, which 

are associated with the high-pass (HP) and low-pass (LP) 

filters respectively. At the first level, the original signal 

𝒙[𝒏]  is decomposed by passing it through both of these 

filters and emerges as two signals, each one having the same 

number of samples as the original signal, and are termed as 

coefficients. In order to keep the total number of 

coefficients in the produced filtered signals equal to the 

original signal samples they are then down-sampled by a 

factor of 2, by keeping only one sample out of two 

successive samples. Thus, the extracted signal coefficients 

from the HP filter and after down sampling are called the 

detail coefficients of the first level (𝒄𝑫𝟏) . These 

coefficients contain the high frequency information of the 

original signal, whilst, the coefficients that are extracted 

from the LP filter and after the down sampling process are 

called the approximation coefficients of the first level 

(𝒄𝑨𝟏) . The low frequency information of the signal is 

hidden in these coefficients. This can be expressed 

mathematically as (Vivas et al., 2013): 
 

 𝑦ℎ𝑖𝑔ℎ[𝑘] = ∑ 𝑥[𝑛] ∗ 𝑔[2𝑘 − 𝑛]
𝑛

  (1) 

 𝑦𝑙𝑜𝑤[𝑘] = ∑ 𝑥[𝑛] ∗ ℎ[2𝑘 − 𝑛]

𝑛

 (2) 

where 𝑦ℎ𝑖𝑔ℎ[𝑘] and 𝑦𝑙𝑜𝑤[𝑘] are the outputs of the high-pass 

and low-pass filters respectively, after down-sampling by 2. 

After obtaining the first level of decomposition, the above 

procedure can be repeated again to decompose 𝑐𝐴1  into 

another approximation and detail coefficients. This 

procedure can be continued successively until a pre-defined 

certain level up to which the decomposition is required to be 

found. At each decomposition level, the corresponding 

detail and approximation coefficients have specific 

frequency bandwidths given by [0 −
𝐹𝑠

2𝑙+1⁄ ]  for the 

approximation coefficients (𝑐𝐴𝑙)  and [
𝐹𝑠

2𝑙+1⁄ −
𝐹𝑠

2𝑙⁄ ]  for 

the detailed one (𝑐𝐷𝑙) where 𝐹𝑠  is the sampling frequency 

(Sawicki et al., 2009, Vivas et al., 2013). However, at every 

level, the filtering and down-sampling will result in half the 

number of samples (half the time resolution) and half the 

frequency band (double the frequency resolution). Also, due 

to the consecutive down sampling by 2, the total number of 

samples in the analyzed signal must be a power of 2 (Ghods 

and Lee, 2014). By concatenating all coefficients starting 

from the last level of decomposition, the DWT of the 

original signal is then produced, and it will have the same 

number of samples as the original signal. A schematic 

diagram illustrates how the multi-level decomposition is 

performed shown in Figure 1. The number of decomposition 

levels is identified by the lowest frequency band needed to 

be traced, and a higher number of decomposition levels are 

required if very low frequency band is investigated. 

However, the highest decomposition level that can be 

achieved is up to that the individual details consist of a 

single sample (Misiti et al., 1997). 

 

Figure 1. Signal decomposition using discrete wavelet 

transform 
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Once the approximation and detail coefficients are 

computed to different levels of decomposition, it becomes 

possible to reconstruct the approximation and detail signals 

at each level, in order to extract features, such as standard 

deviation, related to the frequency bands in each level. Each 

signal, however, will have the same number of samples as 

the original signal but with a definite frequency band. This 

can be achieved by up-sampling the approximation (or 

details) coefficients by two, since they were produced 

previously by down sampling by 2, and then passing them 

through high- and low-pass synthesis filters. In this work 

and based on a preliminary robot vibration analysis was 

established that eight decomposition levels are sufficient for 

analysing the robot vibration signals, as explained later. 

3. ARTIFICIAL NEURAL NETWORK (ANN) 

The ANN is computational structure inspired by the data 

processing and learning ability of biological neurons in the 

nervous system. It has a summation type of structure that 

consists of several layers of artificial neurons, which 

integrate the functionality of both memory and computation, 

designed to emulate the biological neurons. Each input 

signal flows through a gain or weight, called a synaptic 

weight or connection strength and can be positive or 

negative, integer or non-integer. Figure 2 illustrates a typical 

representation of an artificial neuron, with connection 

weights. 

 

Figure 2. Artificial neuron with connection weights 

Where  𝑥1,  𝑥2, 𝑥3, … … … 𝑥𝑛  represent the input vector to 

the neuron with associated weights 𝑤1, 𝑤2, 𝑤3, … … … 𝑤𝑛 . 

The bias, 𝑏, (sometimes called threshold) is often connected 

to the neuron and it introduces an offset to the transfer 

function so that even if the input were zero the neurons 

would still have an output (Lim., 2009). Typically, the bias 

is set to a value of 1. However, the input to the neuron, 

which is called net, will be the summation of the multiplied 

inputs with their corresponding weights, and can be written 

as: 

 

 𝑛𝑒𝑡 = ∑ 𝑤𝑖𝑥𝑖=

𝑛

𝑖=1

𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ … . . +𝑤𝑛𝑥𝑛 + 𝑏 
           

(3) 

 

where 𝑛 is the number of inputs to the neuron. The resultant 

net is then passed through an activation function (𝑓(𝑛𝑒𝑡)), 

sometimes called the transfer function that can be linear or 

nonlinear, to produce the output which can be represented 

as: 

 

 𝑌 = 𝑓(𝑛𝑒𝑡) = 𝑓(∑ wixi)

n

i=1

 
             

(4) 

 

Neural networks come in many forms and the structure of 

the connections between neurons and the computation it 

performs vary between the different neural models. ANNs 

are generally classified as feed-forward, e.g. the multilayer 

perceptron neural network (MLPN), and feed-back (or 

recurrent) types, such as Hopfield network. In the feed-

forward class, the signals travel only in the direction from 

the input to the output, whereas in recurrent neural network 

(RNN), the signals can flow in the forward as well as 

backward or lateral direction. However, the main 

characteristic of a neural network is that, when the training 

process is performed well, the mapping formed by the 

network can show its capability for generalization beyond 

the training data and not to memorise the training data. The 

majority of fault diagnosis applications utilizing ANNs 

utilize a feed-forward architecture, with the MLPN being 

most popular and thus it adopted for use in this research. 

4. THE EXPERIMENTAL SET-UP 

The experimental work has been performed using the 

PUMA 560 robot, which is a PC-controlled serial 

manipulator with six revolute joints/degrees of freedom 

(DOF). It is an old (>25 years), but functional, multi-joint 

robot and was used in this project, due to the availability of 

the spare parts that are required for simulation of the 

different faults. Three single axis, analogue outputs, 70g, 

MEMS accelerometers type ADXL001 from Analog Device 

have been used for signal capture. These accelerometers 

have been put together in a configuration that allows the 

vibration signals in the X, Y, and Z directions to be 

measured using a specially designed adapter, as shown in 

Figure 3. 

 

Figure 3. Designed 3 axis accelerometer adapter 
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It may be assumed that, to detect the abnormalities in a 

machine, the sensors should be located near expected 

damage locations. However, there are cases where the 

damage is more recognizable at other locations on the 

machine. So, prior to acquiring the data for fault detection, it 

is crucial to locate the sensitive positions on the robot. A 

preliminary analysis was performed and it was found that 

the best position to fix the accelerometer on the robot is near 

to the wrist joint, as shown in Figure 4. The signals from the 

accelerometers are fed to a 14-bit NI data acquisition card 

(DAQ) type USB-6009. However, the utilized 

accelerometers were calibrated against a conventional 

piezoelectric accelerometer before they are being used for 

robot monitoring. 

 

Figure 4. The experimental set-up 

In terms of data acquisition software, many functions have 

been provided by LabVIEW, such as the interface with 

Matlab and C language, which make graphical 

programming in LabVIEW more flexible. Furthermore, 

Matlab software has many specialized, efficient, and easy-

to-learn toolboxes, and so some of commends in the wavelet 

analysis toolbox are used here. This toolbox offers many 

options in helping to accomplish wavelet analysis, such as 

specifying the number of decomposition levels and selecting 

a suitable wavelet family. Therefore, combining the 

capabilities of Matlab in data processing and the advantages 

of LabVIEW graphical programming, the virtual instrument 

produced will have more capabilities and greater flexibility. 

In order to achieve the LabVIEW and Matlab interface, 

LabVIEW offers a Matlab script node to call a programme 

written in the Matlab language, which was used in this 

work. A sample from the prepared LabVIEW code is shown 

in the Figure 5. The LabVIEW block diagram begins with a 

for loop. However, many parameters in the code have to be 

tuned properly for accurate wavelet analysis, such as which 

wavelet family, number of decomposition levels, and this 

was achieved using (wavedec). Researchers who want to 

accomplish feature extraction using wavelet are advised to 

read in detail the (wavelet toolbox user guide) (Misiti et al., 

2001).  

In the experimental process and since the faults are 

simulated in joint 3, as discussed in the following section, 

the robot was programmed to oscillate over its full range of 

movement (270 degree), as some of the robot faults may 

exhibit direction-dependent symptoms (Datta et al., 2007). 

This is also in order to relate the produced vibration to the 

moving joint’s transmission components such as gears and 

bearings. Vibration signals from the three axes of 

measurements are captured at a sampling frequency of 1031 

Hz with sample size equal to 4096. This frequency is about 

ten times higher than the 11th natural frequency of the 

robot, based on a conducted preliminary robot modal 

(frequency response function) analysis, which fulfils the 

sampling theory that requests the sampling frequency to be 

at least two times higher than the highest system frequency 

(Mohanty, 2015). Thus, eight wavelet decomposition levels 

are found to be sufficient for analysing the robot vibration 

signal. Statistical features are computed from each detail 

signal produced after the DWT analysis; these features are 

utilized for designing a neural network for fault diagnosis. 

 

Figure 5. Part from the prepared LabVIEW code 

5. ROBOT’S MECHANICAL CONSTRUCTION AND FAULTS  

Joints in industrial robots are commonly actuated by 

electrical motors. Permanent magnet servomotors are a 

popular choice to produce the driving force to move robot 

joints because of their easy operation, high power density 

and performance (Halme, 2006). In general, servomotors are 

electromechanical components in which faults can originate 

for electrical, mechanical and other external reasons. In 

order to transform motor power to the robot joints, 

mechanical reduction gears in the transmission system are 

normally used. The power is then transmitted from the input 

to the output shaft through the gear contacts and mesh. 
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However, this paper concentrates on fault detection in the 

elbow joint (joint 3) of the robot, which is shown in Figure 

3 above. The mechanical construction of this joint is 

illustrated in Figure 6; it consists of a two-stage gear train 

system housed in the end of the upper arm and connected to 

a DC motor by a drive shaft. There is a bevel pinion on the 

input shaft meshed with a bevel wheel on one end of an 

idler shaft. Also, a spur pinion at the other end of the idler 

shaft engages with a spur wheel fixed to the forearm, and 

therefore rotates the forearm around the elbow axis. A 

number of deep groove ball bearings are used to carry the 

input and idler shafts. 

The main fault mechanisms that may appear in the joint 

gearbox are basically the same as those arising in other 

types of gearboxes, such as gear and bearing faults. The 

most common types of gear tooth failure are scuffing, 

cracking, macro- and micro-pitting, wear, bending fatigue, 

and fracture due to overload as well as backlash between 

mating teeth. Moreover, since gears are normally supported 

on rolling element bearings, faults in these bearings such as 

wear in the inner or outer races represent another typical 

type of fault in the robot’s transmission system. However, 

the focus of this paper is limited for diagnosing only the 

bearing faults. 

 

Figure 6. Schematic diagram of joint 3 (elbow joint) 

5.1. Bearing Fault Simulation 

It is accepted that the best way to introduce a fault in the 

robot is by operating the robot to execute a specific task for 

a considerable amount of time until a fault is developed. 

This method, however, has not been followed in this work 

primarily because it may resulting other joints of the robot 

failing. The faults that will be introduced here are not truly 

representational of real faults in the robot, since in a 

practical situation the majority of faults in gears and 

bearings are progressive. However, this methodology has 

important advantages such as different types of fault can be 

produced in different components of the joint 3 gearbox and 

the degree of fault severity can be controlled.  

In Figure 6 above, it can be observed that the input shaft is 

supported on two bearings of the same type. The one located 

on the right, adjacent to the bevel pinion, is used for the 

bearing faults simulation. From the figure it may also be 

concluded that the applied load on these two bearings is not 

equally distributed; so, for future studies researchers can 

investigate the influence of the faulty bearing location on 

fault detectability. Fortunately, after dismantling the robot 

joint it was found that identical bearings are still available 

and a number of NSK bearings type N609 were purchased 

and utilized for faults seeding. Two fault types are created in 

the bearing, inner and outer races faults, using an electrical 

discharge machining (EDM) technique. However, due to the 

small size of the bearing, it was not possible to dismantle 

the bearing, in order to introduce a ball fault, without 

damaging it, which affects the fault size controllability of 

the inner race. The seeded inner race fault has 1 mm width, 

extending along the bearing width and as deep as the 

thickness of the inner race. Faults of two degrees of severity 

are introduced on the outer race of the bearing. Both of them 

are circular in shape, extended along the outer race 

thickness and have 1 mm and 2 mm diameters, respectively. 

The purpose of this variation in the outer race fault size is to 

test the proposed system in distinguishing the severity of 

different bearing faults. Figure 7 shows the healthy and the 

three faulty bearings. 

 

Figure 7. Healthy bearing and three faulty bearings with 

different fault types 

6. ROBOT VIBRATION ANALYSIS  

Selected results of the multi-resolution signal analysis using 

DWT extracted from the LabVIEW code are shown in 

Figures 8. This figure represents the analyzed signal from 

the X-axis accelerometer when the severest fault category, a 

2 mm hole in the bearing outer race, is introduced in the 

robot. There are 10 sub-figures for each measurement axis, 

as in Figure 8; the first sub-figure is the original signal 

before the DWT is applied, while the rest are the eight 

constructed sub-signals from the detail coefficients (D1, D2, 

D3, D4, D5, D6, D7, and D8), and one from the 

approximation coefficient (A8), where each one contains a 

specific frequency band presented in the upper left corner of 

each sub-figure. These bands were computed based on the 

formulas that were presented in Section 2. Generally, 

accelerometers provide mixed information about vibration 

and movement acceleration in the robot (Rodriguez-Donate 

et al., 2010). The vibration signal is made up of high 
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frequencies, whereas movement acceleration signals are 

associated with low frequencies (Rodriguez-Donate et al., 

2010). After conducting the DWT on the original signals 

and by investigating the produced sub-signals it was 

concluded that the approximation signals (A8) in the three 

axes are mostly related to the robot movement and not to its 

vibration components. Consequently, the approximation 

signals do not carry any useful information regarding robot 

faults and are not considered important in the present work. 

However, extracting the robot movement acceleration using 

DWT could be employed in future work to estimate the 

kinematics of the industrial robots (Rodriguez-Donate et al., 

2010).  

The sub-signals from the DWT analysis could be directly 

used as inputs to the classifier, which will be the ANN. 

However, feeding huge amounts of data, represented by 

4096 samples from each sub-signal, into the classifier will 

make the classification process more complex and 

computationally intensive. To overcome this, a post 

processing stage is needed to take out significant parameters 

from the sub-signals, called the feature extraction stage, and 

will significantly reduce the data set size required to be 

passed to the classifier for correct fault diagnosis. Based on 

this, several statistical functions, e.g. the root mean square 

(RMS), standard deviation (STD), and kurtosis, are applied 

to the detail signals from the three axes of measurement, 

since approximation signals are neglected, as discussed 

earlier. These features are extracted in real-time after the 

data is captured and DWT analysis is applied using the 

designed LabVIEW code. However, if all computed features 

are used for fault classification, this will also involve 

significant amount of data for the classifier. Thus, only the 

most sensitive feature was utilized. The STD feature, which 

is normally used as a measure of extent of variation of the 

processed data and has the same units as the data, was found 

to be the most faults sensitive; and hence it was selected for 

comparison among fault severities. Therefore, 8 STD 

features from each axis signal are obtained, and by joining 

all features from the three axis signals together the input 

vector to the classifier will be constituted from 24 features. 

Figures 9 shows the computed SDTs from the eight detail 

signals from accelerometer axes X, Y, and Z when the three 

bearing faults are simulated. In this figure can be seen that 

STD vectors in Y-axis are squeezed except at higher 

frequency bands (D1 to D3) they are a bit diverged. 

However, the Y-axis results will not be ignored and will be 

included in the input vectors to the classifier, as sure the 

STDs in Y-axis will give a clear indication about a fault if it 

is developed, for example, in other joints or parts. The STD 

values in X- and Z-axis are increased as the fault severity 

increased and they are well separated except at the lower 

frequency bands from D6 to D8, this could be attributed to 

that their frequency ranges are not affect by the simulated 

faults. Generally speaking, if the STD vectors are very well 

isolated, the problem of fault classification will be easier 

when ANN is used, the false diagnosis rate is reduced, and 

also the designed ANN will be of small size helping in 

lowering the required processing power.    

 

Figure 8. DWT analysis of the X-axis vibration signal from 

the robot when outer race 2mm hole fault simulated 
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Figure 9. Standard deviation (STD) in all 8 detail signals 

when bearing faults simulated 

7. DESIGN OF MULTILAYER PERCEPTRON NEURAL 

NETWORK (MLPN) FOR FAULT DIAGNOSIS 

To model the nonlinear characteristics of the robot fault 

conditions, as in the work here, there are some issues 

regarding the number of hidden layers, number of neurons 

in each layer, and also the activation functions in the hidden 

and output layers need to be considered. However, the 

number of input neurons depends on the number of 

measurements or the number of features extracted from each 

sensor signal. In this work, as mentioned early, the input 

features to the network are the standard deviation values of 

the detail signals of the wavelet analysis (D1 to D8), since 

the last level of approximation coefficient (A8) was found 

does not give useful information regarding robot fault. 

Therefore, the number of features will be 8 from each sensor 

(axis) signal with a total of 24 values (from the three axes) 

input to the network. The number of the robot health 

conditions to be classified identifies the required number of 

neurons in the output layer, which are four conditions in this 

work. Consequently, the number of MLPN input and output 

neurons are fixed (24 and 4 respectively). For any nonlinear 

system identification problem, at least one hidden layer is 

required (Negnevitsky, 2005). Additionally, a nonlinear, 

differentiable activation function for the hidden layer is 

needed (Mazumdar, 2006). For this purpose, the sigmoidal 

activation function has been utilized, since it is suitable for 

applications whose desired output is between 0 and 1, which 

is the case in this research (Pandya et al., 2012). Also, a 

linear function, which is normally used in the input and 

output layers, was used in the output layer. The only 

variable then remaining is the number of neurons in the 

hidden layer.  
 
The appropriate selection of the number of hidden neurons 

is based on a balance between output accuracy and network 

size. Generally, there is no explicit mathematical or 

theoretical foundation to determine the best number of 

neurons in each hidden layer without training several 

networks and estimating the error of each network. There 

are several books and articles that offer a “rule of thumb” to 

select the optimal number of neurons in the hidden layer to 

be a starting point (Heaton, 2008) (S.N.Sivanandam. et al., 

2006). Another possibility is by starting with a small 

number of neurons and gradually increasing them until little 

or no improvement is observed in the network performance. 

Therefore, after many trials it was found the optimum 

number of neurons that gives a compromise solution for the 

robot fault diagnosis problem is 17. 
 
Matlab's neural network toolbox was utilized to design and 

test the network, based on the supervised, back-propagation 

learning technique. Many functions are provided by the 

toolbox for designing, training, visualizing and simulating 

the proposed neural networks, and numerous built-in 

functions for common neural network applications such as 

pattern recognition and clustering are included. 

Furthermore, the code for these functions can easily be 

modified to suit specific requirements. The block diagram in 

Figure 10 shows the main design steps for the ANN. Some 

of these steps are adjusted manually before running the 

prepared Matlab code, such as identifying the network 
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structure, activation functions and number of epoch, 

whereas others are performed automatically based on the 

code sequence, i.e. data loading and normalization, and 

weights and biases initialization. 

Determine the network structure

Start

Determine the activation functions, training algorithm, 

learning rate, gradient, MSE and number of epoch

Load the input and output data

Normalize the input and output data

Initialize the weights and biases matrixes

Separate the data sets to training and testing sets

Train the network with training data Test the network with testing data

Trained Network

Stop

 

Figure 10. Block diagram of ANN design steps 

The neural network input feature vectors consisting of one 

group representing the healthy state as well as three groups 

for different fault types. These groups are related to the 

bearing faults: inner race and 1 mm and 2 mm holes in the 

outer race. The data sets sizes of 100 samples for each 

health condition are used to train the network. After setting 

the network structure and loading the data, the weights and 

biases of the network are initialized depending on Matlab's 

random number generation function. The function 

dividerand was used to divide the data into three subsets; 

training, validation and testing sets with ratios of 70%, 15% 

and 15%, respectively. The parameters used for the network 

are shown in Table 1. The used data for training the ANN 

normally comes in a different range; therefore normalisation 

of the data is needed to avoid high values from being too 

dominant and to suppress the influence of the smaller ones 

(Subbaraj and Kannapiran, 2014, Pandya et al., 2012), this 

also will prevent weights from becoming too large which 

can lead numerical overflow. So, if all of the input data is 

normalized to be between 0 and 1 or -1 and 1, then the ANN 

will give equal priority to all inputs. In this work the data 

are normalized between 0 and 1 using the following 

equation: 

 

 𝑥𝑛 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (5) 

where, 𝑥𝑛  is the normalized value, and 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  are 

the minimum and maximum values among all values of the 

data. Additionally, the training can stop according to any 

one of the criteria of mean square error (MSE), the number 

of epochs of training or minimum performance gradient 

reaches certain value set as shown in Table 1. The MSE is 

calculated using Equation (6) below, where 𝑙  is the total 

number of output neurons, 𝑡𝑘 is the target output and 𝑦𝑘 is 

the network output. After the training is completed and new 

input data sets have to be evaluated, which have to be 

normalised too as the network has been trained in this way. 

Also, the output results from the network need to be 

denormalised using the inverse of the normalization 

function.  

 𝑀𝑆𝐸 =  
1

𝑙
 ∑(𝑡𝑘 −  𝑦𝑘)2

𝑙

𝑘=1

 
             

(6) 

 

Number of input layer neurons 24 

Number of hidden layer neurons 17 

Number of output layer neurons 11 

Number of hidden layers 1 

Hidden layer activation function Sigmoid 

Output layer activation function Linear 

Training algorithm To be identified 

Learning rate 0.05 

MSE stopping criteria 10e-4 

Minimum performance gradient 10e-5 

Maximum number of epoch 50000 
 

Table 1. The used parameters for designing the neural 

network 

The ANN learning process and the performance plot is 

depicted in Figure 11, which shows that the training with 

487 epochs met the MSE stopping criteria (MSE less than 

10E-4). Furthermore, it was established that the correlation 

coefficient (R) between the actual and desired (target) 

outputs has a value above 0.99 for the training, testing and 

validation data sets, which is indicative of a strong 

relationship between the outputs and targets of ANN. Thus, 

this network will be implemented for robot fault diagnosis. 
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Figure 11. The ANN training process and performance plot 

8. PERFORMANCE TESTING OF THE DESIGNED SYSTEM  

With the ANN’s design satisfying the requirements and the 

training completed, its performance needs to be tested using 

sets of data not previously presented to the network, and 

however, the well-trained network must be able to show its 

capability in classifying the unseen data samples. The ANN 

has been trained in a way that produced results from the first 

neuron in the output layer of the ANN representing the 

healthy operating condition of the robot, while the 

remaining three neurons are mapped to represent the three 

simulated faults on the robot, and thus a value of 1 for each 

output neuron is considered the target value. For instance, 

for the healthy case, the only output neuron that would have 

a value of 1 is the first one; therefore, it will be [1, 0, 0, 0]. 

The second neuron would take a value of 1 if the first fault 

type (inner race fault) is presented and thus the outputs will 

be [0, 1, 0, 0], and so on with the other fault types, as 

illustrated in Figure 12. To test the network, a total of 80 

unseen data samples were used. The first 20 samples 

represent the healthy condition of the robot while the 

remainder of the samples are divided into three groups of 20 

samples each, corresponding to simulated robot faults. It is 

worthy to mention here that due to difficulty of dismantling 

and assembling the robot again each fault type was 

simulated in the robot one time only, but many data sets 

were captured, to compensate this limitation.  

The test results are presented in Figure 13. The tests showed 

that the network efficiency in term of its capability in 

classifying the five different types of the robot health 

situation is 100 per cent, and the ANN design can 

differentiate the different faults of the robot with very good 

accuracy when confronted with unseen data. The proposed 

condition monitoring approach was developed to monitor a 

rather old, but operational, PUMA 560 robot, and thus it 

follows that more experimental work is needed to further 

evaluate its reliability in fault detection and diagnosis with 

the robot executing a variety of different tasks. Also, it 

should be tested on another PUMA 560 robot in order to 

verify that it can confidently be utilized with this model of 

robots. Of course it would be much more appropriate if the 

designed system is generalized for any industrial robot 

model; however, a considerable effort and time are needed 

to investigate the required scientific analysis methods, and 

the appropriate approaches for hardware and software 

development. 

Output 

layer

Hidden  

layer

Input 

layer

Healthy robot

Inner race fault

1mm hole in the 

outer race fault

2mm hole in the 

outer race fault

24 standard deviation 

values of the detail signals 

of the DWT analysis (D1 to 

D8) for the X, Y and Z 

vibration signals 

 

Figure 12. Schematic diagram of the designed MLPN 
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a) Robot healthy condition 

 

b) Inner race bearing fault 

Figure 13a. The designed ANN network performance 

testing with unseen healthy and faulty data 

 

 

c) 1mm hole in the outer race  

 

d) 2mm hole in the outer race 

Figure 13b. The designed ANN network performance 

testing with unseen healthy and faulty data 

9. CONCLUSION  

The development of the intelligent fault diagnosis system 

has been presented in this paper. Literature concerning 

industrial robot fault detection using different techniques 

was first reviewed. Joint three of the PUMA 560 robot was 

selected to simulate different bearing faults. The mechanical 

construction of this joint was comprehensively assessed to 

establish its assembly/disassembly. A discussion about 

different types of faults that may appear in the joint’s gears 

and bearings is also included, and the physical simulation of 

several faults, with different severities, in one of bearings of 

the selected joint were presented. However, to design a 

reliable monitoring system, appropriate signal analysis 

techniques have to be employed, since these have a 

significant impact on the sensitivity of the features extracted 

from the signals captured. Wavelet analysis represents an 

efficient method for non-stationary signal analysis and 

therefore was used here. In the experimental work three 

single axis, MEMS type accelerometers were utilized to 

measure the robot vibration in three axes (X, Y and Z). The 

optimum location that can be used to affix the 

accelerometers on the robot was justified and found to be 

close to the robot wrist. Hybrid programming combining 

LabVIEW graphical programming with Matlab textural 

programming has been shown to be an effective method to 

build a signal monitoring and feature extraction system. To 

design an appropriate ANN and then evaluate its 

performance for the fault diagnosis, code was developed 

based on Matlab neural network toolbox. The ANN was 

trained to distinguish among different types of faults in the 

robot. A significant level of accuracy in fault diagnosis the 

ANN has been obtained and the percentage of correct 

classification was approximately 100%. The logical 

direction to further extend the capabilities of the designed 

system is to develop it to diagnosis other categories of faults 

that are related to joint motor and gears. Also, the examined 

faults scenarios were simple, as only one fault is seeded at a 

time; however complex scenarios could be studied by 

combining multiple fault types at the same time. 
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