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René Schenkendorf1 and Jörn C. Groos1

1 Institute of Transportation Systems, German Aerospace Center (DLR e.V.), Lilienthalplatz 7, 38108 Braunschweig, Germany
{rene.schenkendorf, joern.groos}@dlr.de

ABSTRACT

Rising demands on railroad infrastructure operator by means
of profitability and punctuality call for advanced concepts of
Prognostics and Health Management. Condition based preven-
tive maintenance aims at strengthening the rail mode of trans-
port through an optimized scheduling of maintenance actions
based on the actual and prognosticated infrastructure condi-
tion, respectively. When applying model-based algorithms
within the framework of Prognostics and Health Management
unknown model parameters have to be identified first. Which
of these parameters should be known as precisely as possi-
ble can be figured out systematically by a sensitivity analysis.
A comprehensive global sensitivity analysis, however, might
be prohibitive by means of computation load when standard
algorithms are implemented. In this study, it is shown how
global parameter sensitivities can be calculated efficiently by
combining Polynomial Chaos Expansion and Point Estimate
Method principles. The proposed framework is demonstrated
by a model inversion problem which aims to recalculate the
track quality by measurements of the vehicle acceleration, i.e.
analyzing the dynamic railway track-vehicle interaction.

1. INTRODUCTION

Railway networks are historically grown complex systems
consisting of various types of infrastructures (sub)components.
Nowadays, about 50 percent of the life cycle costs of railway
infrastructures are made up by maintenance costs (Gradinariu
et al., 2008). Here, the condition based preventive maintenance
aims at cutting costs and increasing availability by an opti-
mized scheduling of maintenance actions taking into account
the actual infrastructure condition and its expected further
degradation. Prerequisite therefore is the almost continuous
condition monitoring for thousands of kilometers of railway
tracks. One approach to account for this challenge is the
development of low-cost railway track condition monitoring
systems based on MEMS inertial sensors (accelerometers and
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gyroscopes) which can be installed on usual in-line freight
and passenger trains (e.g. (Ward et al., 2011; Molodova, Li,
& Dollevoet, 2011; Naganuma, Kobayashi, & Tsunashima,
2013b)). In this article, mathematical models are utilized for
the purpose of railway track condition monitoring by analyz-
ing the dynamic railway track - vehicle interactions. More
precisely, so-called inverse model problems are of special in-
terest. An inverse model aims to recalculate previous inputs
(irregularities) of the monitored system (rail surface) which
had caused recorded system responses (dynamic vehicle reac-
tions). These recalculated inputs are the basics of subsequent
condition monitoring analyses. As in any model-based context
uncertainties of the applied model parameters may influence
the derived inputs significantly. Thus, a parameter sensitivity
analysis might help to quantify the impact of parameter im-
perfections. In particular, it is shown how global parameter
sensitivities can be calculated efficiently by combining Polyno-
mial Chaos Expansion and Point Estimate Method principles.
In so doing, a subset of model parameters can be identified
which should be known as precisely as possibly to provide
credible model-based results.

The remainder of this paper is organized as follows. In Sec-
tion 2 an overview of rail condition monitoring concepts is
given. In Section 3 a mechanistic model of the vehicle dy-
namic is derived. The basics of model inversion strategies are
summarized in Section 4. Mathematical tools for parameter
sensitivity analysis are introduced in Section 5. Sections 6 and
7 show how to apply the Polynomial Chaos Expansion and the
Point Estimate Method for an efficient calculation of global
parameter sensitivities. A numerical example given in Section
8 illustrates the proposed framework descriptively. Finally, the
conclusion is given in Section 9

2. RAIL CONDITION MONITORING

Of high importance for railway operators are rail infrastructure
elements which reduce Reliability, Availability, Maintainabil-
ity and Safety, so-called RAMS-killers, as well as drive up
operating costs. A working group of the International Union
of Railways (UIC) identified switches and crossings as most
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important RAMS-killers and the track geometry as well as rail
head quality as the most important cost drivers (International
Union of Railways (UIC), 2010). The recent approach to in-
crease RAMS and to reduce costs is to establish optimized
condition-based preventive maintenance strategies in the field
of Prognostics ans Health Management (PHM). The task of a
modern railway condition monitoring is therefore to provide
a sufficient data base of reliable condition information. Once
the current infrastructure condition can be reliably monitored
and assessed, the future trend of infrastructure degradation
is of utmost interest in condition based preventive mainte-
nance. For instance, by applying suitable degradation mod-
els the remaining useful life (RUL) of technical devices (e.g.
switch engines, signals) or critical track defects (e.g. track
settlement/misalignment, rail fatigue) of rail segments under
study can be prognosticated. Subsequently, ongoing mainte-
nance actions can be re-scheduled optimally taking account of
the actual infrastructure condition. Nowadays, rail condition
monitoring is typically done in fixed time intervals by vi-
sual inspection, with manually operated measurement devices
(hand-held, trolleys) or with measurement systems mounted
on dedicated measurement trains. The recent developments to
improve rail condition monitoring are to replace visual inspec-
tion by automatic procedures and to replace manually operated
measurement systems by autonomous systems mounted on
trains. These improvements reduce significantly the costs and
track possession time for condition monitoring. At the same
time, condition monitoring systems to be installed on in-line
commercial trains are developed to further reduce costs and
to provide a nearly continuous monitoring of railway track
condition. Main foci for in-line condition monitoring systems
are the two main costs drivers: defects of the rail head / rolling
contact fatigue (e.g. head-checks, squats, corrugation (Fig.
1)) and misalignments of track geometry (vertical and lateral
track alignment, gauge). One approach is the migration of
(expensive) measurement systems from dedicated measure-
ment trains to a small number of commercial in-line trains.
This approach typically implies a significant shortening of
the maintenance intervals for the equipped in-line vehicles.
Another approach is the development of comparably low-cost
railway track condition monitoring systems based on MEMS
sensors (accelerometers, gyroscopes and microphones) which
can be installed with low maintenance effort on usual in-line
freight and passenger trains (e.g. (Ward et al., 2011; Lee,
Choi, Kim, Park, & Kim, 2012; Naganuma et al., 2013b;
Molodova, Li, Nunez, & Dollevoet, 2014; Mori, Sato, Ohno,
Tsunashima, & Saito, 2013; Bocciolone, Caprioli, Cigada, &
Collina, 2007; Weston, Ling, Roberts, et al., 2007)). These
systems are based on the idea to utilize the dynamic train-track-
interaction caused by track defects for condition monitoring
(e.g. (R. B. Lewis & Richards, 1986; R. Lewis & Richards,
1988)). The feasibility of this basic idea is proved by a number
of numerical as well as experimental studies for defects of the
rail (e.g. (Sunaga, Sano, & Ide, 1997; Mori, Tsunashima, Ko-

jima, Matsumoto, & Mizuma, 2010; Molodova et al., 2011))
as well as track geometry (e.g. (Kawasaki & Youcef-Toumi,
2002; Feldmann, Kreuzer, & Pinto, 2000; M. Kobayashi, Na-
ganuma, Nakagawa, & Okumura, 2008; Weston, Ling, Good-
man, et al., 2007; Weston, Ling, Roberts, et al., 2007)). The
different approaches differ in the applied data analysis method-
ologies. The common approaches are based on model-free
time domain, frequency domain or time-frequency analyses of
the time domain acceleration data (e.g. (Caprioli, Cigada, &
Raveglia, 2007; Molodova et al., 2014; Feldmann et al., 2000;
Naganuma, Kobayashi, & Okumura, 2010)) as well as model-
based inversion methods (e.g. (T. Kobayashi, Naganuma, &
Tsunashima, 2013; Kawasaki & Youcef-Toumi, 2002; Weston,
Ling, Goodman, et al., 2007)).

(a) Squat-type failure (b) Corrugation

Figure 1. Two snapshots of different rail surface failures.

The analyses by inversion methods are typically applied to
accelerations measured at the bogie or the car body which are
significantly influenced by the damping systems of the railway
vehicles. Especially the utilization of car body accelerations is
of high interest, as these can be measured with very low effort
even by small portable measurement systems (e.g. (Mori et al.,
2013)). Nevertheless, inversion analyses depend on a careful
selection of parameters influencing the model outcome. Thus,
a parameter sensitivity analysis should be mandatory in this
context and deserves a detailed explanation. This paper is
focused on the application of model-based analyses of the dy-
namic reactions of a rail vehicle to assess the condition of the
rail surface (e.g. corrugation, squats). In particular, it is shown
how global parameter sensitivities can be calculated efficiently
by combining Polynomial Chaos Expansion and Point Esti-
mate Method principles. Some illustrative, preliminary results
and the conclusion complete this manuscript.

3. MODELING OF THE VEHICLE DYNAMICS

The dynamic response of the vehicle dynamic might be de-
scribed by mechanical vehicle suspension systems. These
systems may include the full vehicle-body motion up to single
axis movements (Fig. 2) known as quarter-vehicle models
(Imine, 2011; Naganuma, Kobayashi, & Tsunashima, 2013a).
For instance, the governing equations for a quarter-vehicle
system are given as:
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msẍs = −ks(xs − xus)− c(ẋs − ẋus)
musẍus = ks(xs − xus) + c(ẋs − ẋus)+

kus(u(t)− xus)
(1)

ms
xs

xus

Direction of travel

mus

ks c

kus

ms

mus

ms

mus

u(t)

Figure 2. Mechanical suspension system representing the
quarter-vehicle model. By this simplified model the dynamic
railway track - vehicle interaction can be analyzed, e.g., the
vehicle response when crossing track irregularities, u(t).

Here, the differential equation system includes the sprung
mass, ms, and the unsprung mass of the vehicle, mus, which
are connected by a linear spring and damper with the stiff-
ness coefficient, ks, and the damping constant, c, respectively.
The rail surface is considered as the system input, u(t), and
is transmitted by a spring (kus) to the unsprung mass. This
kind of model, for example, might be applied to analysis vehi-
cle dynamics in simulation studies as part of vehicle design
phases. In Fig. 3 an example of the dynamic railway track
- vehicle interaction is illustrated. A simulated track irregu-
larity (Fig. 3a) causes accelerations of the sprung mass (Fig.
3b) and the unsprung mass (Fig. 3c), respectively. In this
contribution, however, the reverse is of interest. Utilizing ac-
celeration measurements to reconstruct track irregularities by
model inversion concepts.

Table 1. Applied model parameters adapted from (Sira-
Ramirez et al., 2011).

Model parameter Numerical value
ms 9875 [kg]
mus 1100 [kg]
ks 2.13× 106 [N/m]
kus 1.42× 108 [N/m]
c 1.20× 105 [N − s/m]
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(b) Acceleration of the sprung mass, ms.
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(c) Acceleration of the unsprung mass, mus.

Figure 3. Snapshot of the dynamic railway-vehicle interaction
at a vehicle speed of 10 m/s.
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Figure 4. Workflow of Model Inversion: The DLR two-way vehicle RailDriVE is affected by the track quality. The resulting
vehicle response given by acceleration data in combination with the inverse model is used to recalcualted the track quality.

4. MODEL INVERSION BY INVERSE SIMULATION

The objective of model-based inverse solutions is to recal-
culate the time history of inputs which had caused a given
model output result. These recalculated inputs might be ap-
plied to vehicles to follow a predefined trajectory (Thomson
& Bradley, 2006) or to force technical systems to desired op-
erating conditions (Graichen, Hagenmeyer, & Zeitz, 2005).
In this contribution, however, the intention is a different one.
Here, the focus is to recalculate model inputs which are as-
sociated to the rail track quality, i.e. rail surface failures (e.g.
squats and corrugations) and rail track misalignments. As rail
irregularities impact the mechanical train/vehicle suspension
system, acceleration measurements of the resulting vehicle
dynamic might be used to reconstruct the actual track quality
by a model inversion strategy.

For the special case of Linear Time Invariant (LTI) systems
the model can be represented in its state-space form:

ẋ = Ax+Bu

y = Cx+Du
(2)

where u ∈ Rnu and y ∈ Rny are the systems inputs and the
outputs, respectively. The system states are given by x ∈ Rnx .
The system matrices are known as the dynamic matrix A, the

input matrix B, the output matrix C, and the feedthrough
matrix D.

Applied to the suspension system (Eq. (1)) the corresponding
matrices assuming ẋ = [ẍs, ẍus, ẋs, ẋus]

> and y = ẍs are:

A =


− c
ms

c
ms

− ks
ms

ks
ms

c
mus

− c
mus

ks
mus

− (ks+kus)
mus

1 0 0 0
0 1 0 0



B =


0
kus
mus
0
0


C =

[
− c
ms

c
ms

− ks
ms

ks
ms

]
D = [0]

Within the inverse simulation concept the original model is
extended by a feedback control loop (Murray-Smith, 2011).
For the purpose of illustration the state-space model is trans-
fered into the transfer function first, i.e. applying Laplace
Transformation:
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G(s) = C(sI −A)−1B +D (3)

In general, the transfer function, G(s), represents the in-
put/output behavior of the system under study:

G(s) =
Y (s)

U(s)
(4)

The corresponding closed-loop system (Fig. 5) reads as:

G∗(s) =
Y (s)

U∗(s)
=

Kc

1 +Kc ·G(s)
=

Kc · U(s)

U(s) +Kc · Y (s)
(5)

Kc G(s)
UU∗ Y

−

Figure 5. Control loop: Inverse simulation by a proportional
feedback strategy.

In principle, for a large controller gain, Kc, the inverse system
can be derived according to:

lim
Kc→∞

G∗(s) =
U(s)

Y (s)
(6)

When Eq. (6) is transfered back into the state-space notation
the corresponding LTI system reads as:

ẋ† = A†x† +B†y

u = C†x† +D†y
(7)

where

A† = (A−BKcC)

B† = BKc

C† = −KcC

D† = Kc

At this point it should be stressed that the control gain has to
be chosen deliberately to ensure a stable inversion (Murray-
Smith, 2011). Hence a stability analysis should be done in
parallel when designing the control gain matrix, Kc.

In principle, alternative methods might be applied to the pur-
pose of model inversion. As summarized in APPENDIX A,
some of these methods have even been successfully applied

to track monitoring issues and related problems. In general,
to choose the best method for model inversion might be deli-
cate. However, the universal problem of imprecise parameter
estimates and their impact onto the simulation results applies
to all model-based approaches universally. To reliably assess
the contribution of parameter imperfections onto simulation
results is still challenging and an important field of uncertainty
analysis. To the best of the authors knowledge this is the first
analysis of global sensitivities for inverse simulation mod-
els extending the local sensitivity framework (Murray-Smith,
2013).

5. SENSITIVITY ANALYSIS

The large number of recent articles devoted to problems of un-
certainty analysis/management in the field of PHM (e.g. (Saha,
Goeble, Poll, & Christophersen, 2009; Daigle & Goebel, 2010;
Daigle, Saxena, & Goebel, 2012; Lapira, Brisset, Davari,
Siegel, & Lee, 2012; Williard, He, Osterman, & Pecht, 2013;
Sankararaman & Goebel, 2013; Sankararaman, Daigle, Sax-
ena, & Goebel, 2013; Daigle & Sankararaman, 2013; Kulka-
rni, Biswas, Celaya, & Goebel, 2013; Zhang & Pisu, 2014;
Schenkendorf, 2014)) indicates the significance of this topic.
Here, the parameter sensitivity analysis is an important as-
pect (e.g. (Sudret, 2007; Sankararaman, 2012; Chiachio et al.,
2015)) because of the following reasons. The quality of any
model-based result depends significantly on its applied model
parameters. Typically, model parameters cannot be identified
perfectly by measurements, i.e. measurement imperfections
cause imprecise parameter estimates. Hence model parameters
should be treated as random variables instead as deterministic
quantities. Naturally, those parameters have to be identified as
precisely as possible which impact the model response at most.
In any model-building process one should be aware that some
model parameters can be changed by order of magnitude with-
out any detectable model response variation. Apart from that,
slight displacements of other model parameters may have a se-
vere impact, i.e. the model response is insensitive or sensitive
to parameter variations/uncertainties. The insensitive group
can be fixed at literature values (Sobol’, Tarantola, Gatelli,
Kucherenko, & Mauntz, 2007), which may simplify the actual
identification process of the sensitive parameters additionally
as the measurement information is split to a reduced number
of quantities.

A systematic quantification and classification of parameter
impacts can be done by a sensitivity analysis. In this study
essentials for the purpose of sensitivity analysis are briefly
recapitulated. The general objective is to demonstrate how
so-called global parameter sensitivities can be derived at low
computational costs by implementing Polynomial Chaos Ex-
pansion (PCE) and Point Estimate Method (PEM) algorithms.

The dependency of model-based results to model parameters
can be described generically by the following (non)-linear
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mapping problem:
η = g(θ) (8)

In particular, the simulation result, η ∈ Rnη , may express
the vehicle dynamic (forward simulation; η := y) and the rail
quality (inverse simulation; η := u), respectively. The model
parameters (e.g. stiffness coefficients and damping constants)
are given as elements of vector θ ∈ Rnθ . Depending on the
test case, g(·) represents the classical feedforward model (e.g.
Eq. (1)) and the inverse model (e.g. Eq. (7)), respectively. The
impact of the ith model parameter onto the simulation result
can be determined by a global sensitivity analysis.

In most global sensitivity analysis (GSA) methods the uncer-
tainty of model parameters is addressed explicitly, i.e. model-
based results and parameters are considered as random vari-
ables. Most often as well as in this study, the uncertainty is
represented by general second-order random variables (ran-
dom variables of finite variance), i.e. [θ]i ∈ L2(Ω,F ,P). The
set Ω is a sample space, F is an appropriate σ-algebra on
Ω, and P is a probability measure (Grigoriu, 2002). Com-
monly, the global sensitivity is quantified by the analysis of
variance (ANOVA principle). While operating in a pure prob-
abilistic framework, the basic idea of so-called Sobol’ Indices
(SI-GSA) is to identify the variance contribution that each
parameter, [θ]i, adds to the variance of the model-based result,
η.

Sη[θ]1

Sη[θ]2

Sη[θ]3

Sη[θ]1,2

Sη[θ]1,3
Sη[θ]2,3

Sη[θ]1,2,3

Overall
Uncertainty
(Normalized
Variance
of η)

First-order
Sobol’Indices

Higher-order
Sobol’Indices

Figure 6. Sobol’ Indices illustrated by a generic 3-dimensional
parameter problem, θ ∈ R3.

To address the joint impact of uncertain parameters (Fig. 6)
higher-order Sobol’ Indices can be derived additionally. For
more details see (Saltelli, Ratto, Tarantola, & Campolongo,
2005; Sobol’, 1993) and references therein.

Obviously, SI-GSA takes the variance contribution into con-
sideration solely. Hence effects caused by variations of the

mean and higher moments (e.g. skewness or kurtosis) are
neglected. Unsurprisingly, a parameter which cause a strong
offset/bias onto the model-based result but contributes less to
the response variance might be important for the model per-
formance, too. Alternatively, so-called moment-independent
importance measures have been recently introduced in the field
of GSA (Borgonovo, 2007) analyzing the entire probability
density function instead of isolated statistical moments.

The moment-independent global sensitivity analysis (MI-GSA)
aims to identify the impact of a parameter, [θ]i, onto the model-
based result and its probability density distribution (PDF),
respectively (Fig. 7). Explicitly, the difference between the un-
conditional PDF, pdf(η), and a conditional PDF, pdf(η|[θ]i),
is determined according to:

s([θ]i) =

∫
Ω

|pdf(η)− pdf(η|[θ]i)|dη (9)

To address the uncertainty of [θ]i the expected value of s([θ]i)
has to be analyzed:

E [s([θ]i)] =

∫
Ω

pdf([θ]i)s([θ]i)d[θ]i (10)

Finally, the normalized importance measure of MI-GSA (Borgonovo,
2007) is given by:

δi =
1

2
E [s([θ]i)] (11)

Similar to the Sobol’ Indices, an insensitive factor has an
importance measure close to zero and the overall sum holds
the inequality:

nθ∑
i=1

δi ≤ 1 (12)

To sum up MI-GSA is an appropriate concept for the pur-
pose of sensitivity analysis, its numerical calculation, however,
might be a challenge. In most cases, the required probability
density functions cannot be calculated analytically and have to
be derived numerically, e.g. by Kernel density approximations.
This is achieved by a large number of model runs representing
the variation of the uncertain parameters. In case of cpu-
intensive model evaluations this might be prohibitive due to
limited cpu-power and time, respectively. A remedy might be
to evaluate handy surrogate functions, ĝ(·), instead. Here, the
Polynomial Chaos Expansion comes into play and is applied
to bypass potential cpu-intensive processes as indicated in Fig.
8. The basics of PCE and its efficient parameterization by the
Point Estimate Method are described in the sequel.
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Figure 7. Difference, s([θ]i), between the unconditional PDF,
pdf(η), and the conditional PDF, pdf(η|[θ]i), is highlighted.

6. POLYNOMIAL CHAOS EXPANSION

To ensure a computationally tractable calculation, Polynomial
Chaos Expansion (PCE) is used to propagate the probabilistic
parameter uncertainties onto the model-based results. In detail,
PCE aims to represent the model response by a weighted super-
position of deliberately chosen basis functions, i.e. orthogonal
polynomials (Maitre & Knio, 2010), Ψi(·), according to:

η = g(ξ) =

∞∑
i=0

aiΨi(ξ) (13)

where [ξ]i ∼ N (0, 1), i.e. the elements of ξ follow a standard
Gaussian distribution and are uncorrelated to each other.

For practical applications the expansion is implemented in
truncated form (lpce <<∞) as:

η ≈ η̂ :=

lpce∑
i=0

aiΨi(ξ) = a>Λ(ξ) (14)

where a :=
[
a0, . . . , alpce

]>
and Λ :=

[
Ψ0, . . . ,Ψlpce

]>
.

The model response is characterized by the PCE coefficients,
ai, and can be derived via:

ai =

∫
Ω
g(ξ) Ψi pdf(ξ) dξ∫

Ω
Ψi(ξ)2 pdf(ξ) dξ

(15)

The denominator may be solved analytically (Maitre & Knio,
2010), the numerator of Eq. (15), however, has to be calcu-
lated numerically. To keep the computational load tractable the
integrals have to be evaluated by efficient sampling strategies.
Commonly, standard Monte Carlo simulations and Quadra-
ture methods involve an infeasible sample number, i.e. their

Start

Acceleration
Data

Model Inversion
e.g. Inverse Simulation

(Eq. (7))

PCE Model
(Eq. (14))

Track
Quality

Stop

Default Processing

Bypass Processing

Figure 8. The cpu-intensive process of model inversion (dark
gray) is bypassed by a fast to evaluate PCE surrogate model
(light gray).

application is prohibitive in most cases. In this study, the
Point Estimate Method (PEM) is implement as a practicable
alternative. As explained in Sec. 7, by combining PCE with
PEM the overall required sample number scales polynomially
(quadratic or cubic) with the dimension of ξ (the number of
random elements / parameters). Obviously, this corresponds
to a significant reduction in comparison to standard numerical
integration methods, e.g. Gaussian Quadrature (exponential
growth) or Monte Carlo simulations (educated guess: sample
number ≥ 10,000; and challenging to quantify in general)
(Maitre & Knio, 2010). Once parameterized (Eq. (15)), the
surrogate model response, η̂, can be derived at relative low
computational costs as the cpu-intensive process of model
inversion is bypassed by PCE (Fig. 8). Only now, Monte
Carlo simulations propagating the uncertain parameters onto
the model response become feasible. Subsequently, associated
PDFs can be derived from these accelerated Monte Carlo sim-
ulations by applying a Gaussian Kernel density approximation
(Bishop, 2008) as:

pdf(η) =
1

Nh

N∑
i=1

K

(
η − η̂i
h

)
(16)

with the bandwidth parameter h, the sample number N , and
the Gaussian Kernel function:

K

(
η − η̂i
h

)
= K(z) :=

1√
2π
e−

1
2 z

2

(17)

So far, only standard Gaussian random variables, [ξ]i, have
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been assumed. A way to incorporate general Gaussian random
variables, which may describe problem dependent parameter
uncertainties ([θ]i ∼ N (µi, σi)), reads as:

[θ]i := qi([ξ]i) = µi + σi[ξ]i (18)

Similar transformation functions, qi(·), can be derived for
different types of parametric PDFs, too, as summarized in Tab.
2.

Table 2. Probability density function transformation formulas
adapted from (Isukapalli, 1999). Here, the term erf means the
error function.

Type of PDF Transformation: qi([ξ]i) :=
Normal(µ, σ) µ+ σ[ξ]i
Uniform(a, b) a+ (b− a)

(
1
2 + 1

2 erf([ξ]i
√

2)
)

Log-normal(µ, σ) exp(µ+ σ[ξ]i)

Gamma(a, b) ab
(

[ξ]i

√
1
9a + 1− 1

9a

)3

Exponential(λ) − 1
λ log

(
1
2 + 1

2 erf
(

[ξ]i√
2

))

Such an isoprobabilisitic transform (Sudret, 2007) can also
be applied to incorporate non-parametric empirical PDFs
(Schöniger, Nowak, & Franssen, 2012) as well. Thus an effi-
cient sampling strategy for (standard) Gaussian distributions is
of utmost significance within the proposed framework of sen-
sitivity analysis. For this purpose the Point Estimate Method
is tailor-made and explained in the sequel.

7. POINT ESTIMATE METHOD

In the last two decades the so-called Unscented Transforma-
tion (UT) introduced by Julier and Uhlmann in 1994 (Julier &
Uhlmann, 1994) has become the gold standard in non-linear
filtering. The roots of UT, however, date back more than 60
years in time (Tyler, 1953). In detail, Point Estimate Meth-
ods (PEM) had been introduced to solve multi-dimensional
integration problems over symmetrical regions, e.g. symmet-
ric probability density functions (Evans, 1967, 1974). Due
to this symmetry, numerical integration techniques can be
derived which scale polynomially (quadratic or cubic) to n-
dimensional integration problems (e.g. Eq. (15)). Essentials of
PEM are briefly reviewed in the sequel following annotations
given in (Tyler, 1953; Lerner, 2002).

The main idea of PEM as a sampling approach is to generate
sample points, ξk, by permuting at most one element of ξ ∈
Rnξ at once as:

[ξk]i := [ξ0]i ± ϑ (19)

Due to combinatorics 2nξ sample points can be derived addi-
tionally to the original random vector, ξ0 = E[ξ]. To deter-
mine the permutation constant, ϑ, and the associated sampling
weights, wi, the first raw statistical moments of ξ are utilized
(Lerner, 2002) and read as:

w0 = 1− nξ
ϑ2

w1 =
1

2ϑ2

ϑ =
√

3

−4 −2 0 2 4
−4

−2

0

2

4

[ξ]1

[ξ
] 2

Contour Plot

Figure 9. Bivariate standard Gaussian distribution: Contour
plot superimposed by sample points generated by PEM3( , )
and PEM5( , , ), respectively.

Now, an nξ-dimensional integration problem can be solved
approximatively by a weighted superposition of function eval-
uations at these deliberately chosen sample points according
to: ∫

Ω

g(ξ)pdfξdξ ≈ w0g(ξ0) + w1

2nξ∑
k=1

g(ξk) (20)

As only a finite number of raw moments of the input random
variable, ξ, is considered, a non-linear function, g(·), is approx-
imated by monomials of finite degree (Evans, 1967; Lerner,
2002). For the proposed sampling strategy (Eqs. (19)-(20))
monomials up to order three are approximated correctly and
consequently labeled as PEM3 in what follows.

Moreover, the general precision of the PEM approach can
be increased gradually by incorporating an increased sample
number and considering higher order raw moments of ξ, re-
spectively. Hence an approximation scheme can be applied
which represents monomials of g(·) correctly up to the preci-
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sion of 5 via: ∫
Ω

g(ξ)pdfξdξ ≈ w0g(ξ0)+

w1

2nξ∑
k=1

g(ξk) + w2

2nξ(nξ−1)∑
f=1

g(ξf )

(21)

The approximation scheme given in Eq. (21) is labeled as
PEM5 subsequently. In this case, the number of generated
sample points correlates to 2n2

ξ + 1 for a nξ-dimensional
integration problem. For the purpose of parametrization of wi
and ϑ an equation system can be derived taking into account
monomials of degree 5 or less (Lerner, 2002).

The four unknowns can be uniquely determined as:

ϑ =
√

3

w0 = 1 +
n2
ξ − 7nξ

18

w1 =
4− nξ

18

w2 =
1

36

Resulting sample points, for example, are illustrated in Fig.
(9) for a bivariate standard Gaussian distribution.

In summary, the proposed PEM5 framework provides a trade-
off between accuracy and computational demands and is ap-
plied in subsequent considerations for this very reason. The
deliberately chosen sample points can be applied to determine
the PCE coefficients (Eq. (15)) efficiently. In so doing, Sobol’
Indices might be derived immediately by the PCE coefficients
(Sudret, 2007; Alexanderian, 2013) at a total cost of 2n2

ξ + 1
function evaluations. As conditional probabilities have to be
incorporated in case of MI-GSA explicitly, the overall sample
number scales cubically (while eliminating redundant identical
samples):

Sample Number(PEM5) = 2n3
ξ − 6n2

ξ + 10nξ − 3 (22)

Thus, the added value of MI-GSA has to be paid for by an
increased (but manageable) computational demand. An effort
which is worth to take into consideration in many practical
studies of sensitivity analysis. The numerical results given
in Sec. 8 confirm the usefulness of the proposed concept
convincingly.

8. NUMERICAL RESULTS

First, the general applicability of acceleration data to track ir-
regularity detection is assessed. When comparing the dynamic

vehicle response (Eq. (3)) by means of the frequency response,
Bode Diagram (Fig. 10), it can be seen that: i) Excluding sta-
tionary changes (very low frequencies) both sensor setups, i.e.
acceleration data of the unsprung mass and the sprung mass,
respectively, are feasible configurations. ii) Track irregularities
impact the unsprung mass at most, i.e. associated acceleration
data are more informative. Thus data of the unsprung mass
might be preferable in theory.

In this study, however, the focus is on acceleration data of the
sprung mass for the simple reason that the sensor hardware can
be installed inside of the vehicle body and maintained easily -
a basic requirement for the intended purpose of a continuously
operating rail condition monitoring system on a large number
of commercial in-line trains.
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Figure 10. Bode Diagram of the proposed quarter-vehicle
model assuming the acceleration of the sprung mass (Gs) and
the unsprung mass (Gus) as the system output, respectively.

8.1. Scenario 1: Inverse Simulation

In this scenario simulated acceleration data of the sprung mass
ms are utilized to recalculate the rail track quality. To do so,
the quarter-vehicle model (Eq. (1)) has to be inverted. As the
input (rail surface) is indirectly linked to the sprung mass, an
analytical inversion (Sec. 4) fails. When measuring the sprung
mass acceleration, the system output, ysim(t) = d2xs/dt

2,
is not a flat output (yf (t) 6= ysim(t)). In consequence, also
the flatness approach (Sec. A.2) is not directly applicable. As
measurement imperfections are neglected, the Inverse Simula-
tion (Sec. 4) is favored over Kalman filtering (Sec. A.3) for
simplicity and implemented for subsequent analysis.

Assuming a perfect model (model imperfections will be ex-

9



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

plicitly addressed in ongoing work) as well as perfect model
parameters rail irregularities can be reconstructed perfectly by
the inverse simulations approach (Fig. 11). Here, a control
gain of Kc = 1000 is applied.
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Figure 11. Benchmark of the original and the recalculated
track irregularity: Almost no differences can be seen.

To be more realistic, it is assumed that the stiffness constants
and the damping constant are only vaguely known, i.e. these 3
model parameters are described by random variables (Tab. 3).

Table 3. Assumed parameter uncertainties following a Gaus-
sian distribution, [θ]i ∼ N (µi, σi).

Mean Value Standard Deviation
µks = ks σks = 1/3ks
µkus = kus σkus = 1/3kus
µc = c σc = 1/3c

In this case, the uncertainty of the model parameters is trans-
fered onto the model-based results. For instance, in Fig. 12 a
histogram of the recalculated track quality is illustrated at the
time point of maximum displacement (t = 7s) shown in Fig.
11. This histogram is based on 100.000 accelerated Monte
Carlo simulations, i.e. a truncated third-order PCE model
(Eq. (14)) is evaluated instead of the inverse model (Eq. (7)).
Here, the parameterization of the PCE model was done by 9
(2n2

ξ + 1; nξ = 3) evaluations of the original inverse model
which means a significant reduction in computational costs
(i.e. 100.000 runs of the cpu-intensive inverse model). In prin-
ciple, advanced sampling methods like Importance Sampling
and MCMC can be applied to the surrogate model as well to
improve the overall computational time additionally.
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Figure 12. Histogram of the recalculated track irregularity (t =
7s) representing the uncertainty induced by model parameter
imperfections.

In a similar way, the associated model parameter sensitivities
(MI-GSA) are derived at a total cost of 27 (Eq. (22)) cpu-
intensive inverse simulations (Eq. (7)). Any subsequent cal-
culation is based on easily to evaluate PCE model surrogates
(Eq. (14)). For instance, parameter sensitivities associated to
the recalculated track quality are illustrated in Fig. 13 for time
point t = 7s.

Obviously, the stiffness constant ks has the strongest impact
onto the recalculated track quality at t = 7s. Minor contribu-
tions of the parameters kus, c, and parameter combinations
{ks, kus, c} can also be detected. In consequence, the model
parameter ks has to be known as precisely as possible to ensure
a reliable recalculation of track irregularity maximum.

8.2. Scenario 2: Classical Simulation

The proposed concept of an efficient global parameter sensitiv-
ity analysis can also be applied to classical simulations, e.g. to
simulate the vehicle response (Eq. (1)) for given artificial track
quality configurations. Here, the same parameter uncertainties
as in the previous study and the same track profile as shown
in Fig. 11 are assumed. In Fig. 14 parameter sensitivities are
shown of the simulated sprung mass acceleration at time point
t = 7s. Compared to the sensitivities derived for the inverse
simulation, a different range of parameter sensitivities can be
seen. Here, the stiffness parameter ks determines the simu-
lation result almost exclusively. In principle, it may happen
that a sensitive model parameter for the classical simulation is
insensitive for the inverse simulation and vice versa. Thus in-
dividual sensitivity analysis studies for the inverse simulation

10
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Figure 13. Sensitivity Analysis applied to the inverse simula-
tion.

have to be performed.

9. CONCLUSION

In this study it was shown how global parameter sensitivities
can be derived efficiently by combining Polynomial Chaos
Expansion and Point Estimate Method principles. Considera-
tions which are relevant for any model-based analyses, thus
for model-based concepts in PHM, too. In this regard, the
general idea of a model-based rail condition monitoring setup
was introduced. A model inversion strategy enabled the re-
calculation of the track quality by incorporating acceleration
data of the vehicle dynamic. Which model parameters have to
be determined as precisely as possible to ensure meaningful
calculations could be identified efficiently by the proposed ap-
proximation and sampling scheme. It is common knowledge
that a comprehensive sensitivity analysis contributes to model
calibration and refinement. Improved models in PHM ensure
more credible model-based prognostic results in consequence.
In future, sensitivity studies of more complex inverse models,
e.g. full-vehicle models, will be analyzed.
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A. APPENDIX

Alternative mathematical tools which can be applied to model
inversion are shortly summarized below following notations
given in (Buchholz & v. Grünhagen, 2007; Murray-Smith,
2011).

A.1. Analytical Inversion

Assuming a regular D matrix the input can be determined by
given outputs as:

u = D−1(y − Cx) = −D−1Cx+D−1y

Inserted in Eq. (2) the corresponding LTI reads as:

ẋ∗ = A∗x∗ +B∗y

u = C∗x∗ +D∗y

where

A∗ = (A−BD−1C)

B∗ = BD−1

C∗ = −D−1C

D∗ = D−1

In the common case of non-regular D matrices, however, al-
ternative methods (e.g. inverse simulation) have to be applied.

A.2. Flatness Approach

The concept of differential flatness (Fliess, Lévine, Martin, &
Rouchon, 1992, 1995) is applicable for linear as well as non-
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linear systems and aims to represent the system states and the
inputs by so-called flat outputs, yf (t), and derivatives thereof.
The determination of these flat outputs might be challenging.
In most cases, flat outputs do not agree with originally given
output configurations, yf (t) 6= ysim(t), but have to be defined
appropriately. If a flat output exists the states and inputs can
be expressed as:

x(t) = Ψx(yf (t),Dyf (t), . . . ,Dn−1yf (t))

u(t) = Ψu(yf (t),Dyf (t), . . . ,Dnyf (t)),

where Di represents the operator notation of the ith derivative,
di/dti.

Recently, the flatness approach has been applied to an active
regulation concept of a railway vehicle suspension system
(Sira-Ramirez et al., 2011). In general, however, a successful
application depends on the relative degree of the system under
study. In case of single input single output LTI systems this
corresponds to the difference of the numerator and denomina-
tor polynomials of the associated transfer function. A system
is called flat when this difference is equal to the number of the
system states, i.e. a flat output exists in principle.

In case of noisy measurements and model imperfections the
Kalman Filter is a reasonable alternative.

A.3. Kalman Filtering

The underlying idea is to extend the system states, x, by the
system inputs, u, according to:

x‡ = [x, u]
>

In the field of unknown input reconstruction (Witczak, 2014),
the inputs are frequently treated as Gaussian random variables,
i.e. [u]i ∼ N ([u]i, σ

2
u). The time-discrete version of the

corresponding state-space system is given by:

x‡k = A‡x‡k−1 + wk−1

yk = C‡x‡k + vk

where A‡ and B‡ are the adapted dynamic matrix and output
matrix. Moreover, wk and vk represent the process noise and
the measurement noise (Gelb, 1974), respectively. Within
the Kalman Filter framework recent measurements, yDk+1, are

utilized to reconstruct the extended state vector, x‡,(+)
k+1 , based

on a preliminary model-based prediction, x‡,(−)
k+1 , as:

x
‡,(+)
k+1 = x

‡,(−)
k+1 +Kk+1

(
yDk+1 − C‡x

‡,(−)
k+1

)
Details about the Kalman gain, Kk+1, can be found among
others in (Stengel, 1994). In consequence, the unknown sys-
tem inputs, u, are estimated in parallel with the system states,
x, and can be evaluated subsequently for the purpose of PHM.
Recently, the Kalman Filter has been successfully applied to es-

timate the track geometry (Naganuma et al., 2013a). Different
types of (non)-linear observer strategies might be applicable
in a similar way, too. For instance, a Sliding Mode Observer
framework has been proposed reconstructing the road profile
by sensors mounted on a heavy vehicle (Imine & Fridman,
2008).
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