A Multivariate Cumulative Sum Method for Continuous Damage
Monitoring with Lamb-wave Sensors

Spandan Mishra!, O. Arda Vanli2, and Chiwoo Park?

123 Department of Industrial and Manufacturing Engineering,
Florida A&M University, Florida State University,

Tallahassee, FL 32310-6046, USA
smllax@my.fsu.edu

oavanli@eng.fsu.edu
cpark5 @fsu.edu

ABSTRACT

This paper proposes a new damage monitoring method based
on a multivariate cumulative sum test statistic applied to Lamb-
wave sensing data for health monitoring in composites. The
CUSUM monitoring method applied to the features extracted
with Principal Components Analysis was studied to improve
robustness of detection and sensitivity to small damages. The
method is illustrated with measured sensor data from fatigue
loading and impact tests of carbon fiber materials and the per-
formance of the proposed CUSUM approach was compared
with existing Mahalanobis distance based monitoring tech-
niques commonly applied in the health monitoring literature.
It was shown that the CUSUM approach can significantly im-
prove the misdetection rate for monitoring gradually develop-
ing damages.

Keywords: Structural Health Monitoring, Principal Compo-
nents Analysis, Multivariate Cumulative Sum, Hotellings T2,

1. INTRODUCTION

Guided-wave structural health monitoring (SHM) is becom-
ing increasingly popular for monitoring large structures with
sparsely distributed sensors. Active sensor and actuator piezo-
electric patches permanently attached or embedded in the struc-
ture are used to actively interrogate structural integrity by im-
parting elastic waves and measuring the resulting structural
response (Raghavan & Cesnik, 2007). In contrast to metallic
materials, composite materials present additional challenges
in guided-wave health monitoring due to their anisotropic prop-
erties and complex failure characteristics. Therefore accurate
and timely damage detection methods are crucial for reliable
health monitoring of composites.
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Gradual degradation is a commonly occurring phenomena in
many engineering problems, for example due to cumulative
crack growth (Bogdanoff & Kozin, 1985) and wear and fa-
tigue (Gertsbackh & Kordonskiy, 1969). Load-carrying com-
posite structures operating under tensile, fatigue or impact
loading or corrosive environments develop damages during
service, including matrix cracks, debonding and delamina-
tion. These damages are usually invisible to surface inspec-
tion and they do not immediately result in failure. However, it
is important to continuously monitor the integrity of the struc-
ture and detect these damages early and prevent them from
exceeding critical size and resulting in catastrophic failure.
Detection of small damages is thus important to ensure that
the structure safely operates before the damages reach criti-
cal size and make repairs only when needed, a common goal
in condition-based maintenance (Wang, 2000). The objective
of this article is to develop a new statistical control chart for
detecting small changes based on readings of a guided-wave
Sensor.

The majority of the existing SHM methods utilize either uni-
variate outlier analysis or multivariate Mahalanobis distance
based approaches. Worden et al. (2000) which are very good
for detecting relatively large damages but may be ineffec-
tive for continuous monitoring of slowly developing dam-
ages. This paper proposes a new multivariate cumulative sum
(CUSUM) damage monitoring method with Lamb-wave sen-
sors that improves detection time and misdetection rates for
fatigue loading conditions. Fatigue cycles are accumulative
in nature wherein each cycle causes very small change in the
property of the structure. These changes should be accurately
tracked to prevent any catastrophic failure of the structure.
CUSUM enables us to keep track of these small changes by
continuously monitoring. A principal component analysis
(PCA) is applied to raw sensor signals to extract important
features which are then used in the monitoring scheme. The
effectiveness of the approach is illustrated on fatigue loading
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and impact damage cases with Lamb-wave sensing data. It
is shown that the multivariate CUSUM can significantly im-
prove monitoring accuracy of Hotteling’s T2 when the struc-
ture being monitored is undergoing fatigue loading.

The rest of the paper is organized as follows. Section 2 re-
views relevant literature in structural health monitoring and
damage monitoring and detection. Section 3 shows the de-
velopment of the proposed multivariate cumulative Sum for
damage monitoring. Section 4 presents application of the
method on measured Lamb-wave data and comparison to ex-
isting damage quantification approaches. Section 5 provides
the concluding remarks of the paper.

2. REVIEW OF RELEVANT LITERATURE: GUIDED-WAVE
SENSING AND STATISTICAL METHODS FOR DAMAGE
MONITORING

Lamb-waves are elastic perturbations that propagate in a solid
plate in two dimensions (Viktorov, 1967). The most com-
monly used transducers to excite Lamb-waves are embedded
or surface-bonded piezoelectric sensors (Giurgiutiu, 2005).
When operating as a transmitter they transform electrical en-
ergy into mechanical energy. Surface strains are generated
when voltage is applied to the piezoelectric patch and it ex-
pands and contracts parallel to the surface. Similarly, when
operating as a receiver they transform mechanical energy into
electrical energy. Voltage is generated on the piezoelectric
due to local stress and strain (Diamanti et al., 2004). Lamb-
wave sensors operate either in pitch-catch or pulse-echo modes.
In a pitch-catch configuration, the diagnostic signal emitted
from the actuator travels across the damaged area while the
sensor on the other side of area receives the signal. On the
other hand, in a pulse-echo configuration the actuator and
sensor are placed on the same side of the inspection area
and the sensor receives the signal echoed from the damage
(Kessler et al., 2002). A useful characteristic of a Lamb-wave
is that whenever it reaches a region of discontinuity, a portion
of the wave is reflected proportionally to the difference in the
stiffness and density of the material. Analysis of the incident
wave can therefore reveal useful information about the loca-
tion and size of damage. In this paper we use a pitch-catch
based actuator-sensor configuration (Ihn & Chang, 2004).

Feature extraction is an important data analysis step in Lamb-
wave based damage monitoring. Features of the waveforms
that are sensitive to the damages need to be identified and es-
timated from the raw sensor data. Damage detection then
consists of comparing the features of waveforms from the
damaged structure to those of the undamaged structure. Fea-
ture extraction is classified into model-based and signal-based
methods. Model-based approaches use certain pre-established
models to extract features from the signal while signal-based
approaches extract features from the signal without applying
any sort of deterministic model to the signal (Su et al., 2006).

The feature extraction process using Lamb-waves proposed in
this paper falls into the second category (signal-based meth-
ods).

Pullin et al. (2008) have applied PCA on acoustic emission
signals to differentiate fatigue crack propagation from back-
ground noise of a landing gear component. PCA is a dimen-
sionality reduction technique that is often used to transform a
high dimensional data-set into smaller-dimensional subspace.
The authors have used first and second principal components
(PC) of the sensor signal to separate fatigue source signal
from the landing gear noise. Pavlopoulou et al. (2013) used
nonlinear principal component analysis and principal curves
for damage prognosis. Cross et al. (2012) proposed a method
to filter out environmental variations in Lamb-wave sensors
by projecting the data into its minor components so that the
dimensions of the data that carry any dependence on envi-
ronment factors can be discarded. Kessler & Agrawal (2007)
applied PCs to Lamb-wave data to detect the presence, type
and severity of various types of damage. PCs of the original
sensor data vector that explain about 70% of the variability
are used in a K -th nearest neighbor algorithm to classify the
damage mode.

Statistical process control methods have been used extensively
for variation reduction in manufacturing. The Shewhart con-
trol charts are employed as the main tool to detect shifts from
an in-control statistical model and to make sure the process
continues to operate in a stable manner (Montgomery, 2007).
When multiple correlated quality characteristics are of inter-
est then multivariate control charts should be used to simul-
taneously monitor all characteristics and detect deviations.
Hotelling’s T2 is the multivariate counterpart of the Shewart
chart for monitoring the mean vector of a process (MacGre-
gor & Kourti, 1995). While the Shewhart charts can detect
large process upsets reasonably well, in order to better de-
tect small shifts cumulative sum procedures, a set of sequen-
tial procedures based on likelihood ratios, are recommended
(Woodall & Ncube, 1985). Cumulative sum utilizes the en-
tire history of the observed data, in contrast to the Hotelling’s
T? or Shewhart charts which utilize only the current data
point, and are therefore more sensitive to gradually devel-
oping small shifts in the signal mean. Multivariate cumula-
tive sum methods have been proposed by Woodall & Ncube
(1985), who used multiple univariate CUSUMs to test shifts
in the mean of a multivariate normal, and by Crosier (1988),
who used the accumulated deviations of vectors from the base-
line and produce a quadratic form to find a scalar monitoring
statistic. Pignatiello & Runger (1990) compared and outline
the benefits of various multivariate CUSUM approaches.

Statistical process control techniques have been utilized in
structural health monitoring by many authors. Sohn et al.
(2000) used Shewart X charts to monitor coefficients of an
auto-regressive time series model fitted to the measured vi-
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bration time histories from an undamaged structure. Control
limits of the charts are determined to detect deviations of the
coefficients from the initial structures for damage detection.
For monitoring multiple features extracted from sensor sig-
nals, Worden et al. (2000) and Sohn et al. (2000) extended
the univariate control charts to multivariat charts by using a
Mahalanobis distance to quantify the distance between po-
tential outlier vector and the in control sample mean vector,
a measure similar to the Hotelling T2 statistic. Mujica et al.
(2010) used PCA in conjunction with a 7' statistic to extract
features from multi-sensory arrangement on a turbine blade
to detect the variation due to damages in the subspace of the
dominant principal components that are greater than what can
be explained by the common cause variations. Deraemaeker
et al. (2008) applied factor analysis to subdue the effects of
environmental fluctuation on data and used multivariate con-
trol charts for damage detection. Kullaa (2003) used missing
data model to eliminate environmental and operational vari-
ances and Hotelling 72 chart to monitor changes in modal
parameters and to detect the possible damage in the structure.

3. PROPOSED METHODOLOGY-MULTIVARIATE CUMU-
LATIVE SUM MONITORING WITH PRINCIPLE COM-
PONENTS

Lamb-wave sensor data is a high dimensional vector (on the
order of thousands, depending on the sampling frequency)
and some form of dimension reduction is required to practi-
cally monitor fewer variables and to achieve robust and re-
peatable detection performance. Principle component Analy-
sis (PCA) is a popular multivariate statistical analysis method
for dimension reduction in process monitoring and fault diag-
nosis applications (Jackson, 2005). The method transforms a
set of correlated variables to a smaller number of uncorre-
lated new variables. The original vector of variables x =
(x1,...,p) is projected into a vector of new variables z =
(#1,..., 2 ) called the principal components. In the new co-
ordinate system, z; is a linear combination of the original
variables 21, . . ., 2, and explains the maximum possible vari-
ance, zo, another linear combination, is orthogonal to z; and
explains most of the remaining variance, and so on. It can be
seen that if the original set of p variables are actually a lin-
ear combination of r new variables, then the first  principal
components will be sufficient to explain all the variance and
remaining p — r principal components are very small.

The monitored area of the structure is assumed to incur some
damage when the sensor data vector deviates significantly
from a baseline (no damage) condition. The baseline con-
dition is represented by collecting a set of N observations
with the sensor under the no damage condition and the data
is given in a p x N matrix X = [®1, @2, ...,z y] in which
each p x 1 column vector x; represent an observation j =
1,2, ..., N. In practice the sensor data must be scaled in some
meaningful way to account for differences in the measure-

ment units of the variables. A typical approach is scaling so
that all variables have zero mean and unit variance as x;; =
(i‘lJ - ,u,»)/ai,where (7, = 1,2, cee ,p,j = 1,2, NN .,N) and
Z;; 1s the original data, u; and o; are the sample mean and
standard deviations along the i-th dimension. The covariance
matrix of the sensor data C = 1/(n — 1)X X7 is decom-
posed, using singular value decomposition, as C' = vDvT
into an orthogonal eigenvector matrix V' = [v1 v3... 0,
and a diagonal eigenvalue matrix D = diag(A1, A2, ..., Ap),
both matrices are of size p X p and the eigenvalues are in de-
scending order A\; > Ay > --- > A,. It can be seen that the
i-th principal component is the linear combination:

T
Zi = V; T = V101 + V2,2 + ... + UpiTyp @))

in which v; is the ¢-th column of the V matrix (i = 1,...,7)
also called the i-th the principal component loading vector
or eigenvector. Principal component scores of an observation
vector are the inner products of the observation vector with
principle component loading vectors. For example for the j-
th (j = 1,...,N) sensor data x; the score for the i-th ( =
1,...,r) principal component (PC) is z;; = vjx;. In practice
the first r principal components will be sufficient to represent
most variability of the original data, thus the eigenvectors as-
sociated with the eigenvalues A1, ..., A, are discarded and
a reduced eigenvector matrix V' of size p x r is formed. The
transformation to the principal component scores is obtained
through the matrix multiplication z = V' in which @ is
the vector of raw sensor data of size p X 1 and z be the » x 1
vector of principle components in the reduced dimension.

To detect a damage with a given confidence level, the PCA
method is followed by a decision making procedure based
on Hotelling’s T2, a statistic for testing differences between
mean values of two data groups (MacGregor & Kourti, 1995).
The sensor data collected from the baseline (undamaged) struc-
ture is used to establish an upper control limit (UCL) for the
T? statistic under the 100(1 — )% confidence level, which
enables one to control the false alarm probability (the proba-
bility that an alarm is generated when in fact there is no dam-
age) to . It is assumed that under the baseline (no damage)
condition the raw sensor data x follows a p-dimensional vec-
tor Normal distribution with mean vector p, and covariance
matrix C. To determine when the sensor data indicates dam-
age, deviations from baseline is monitored by calculating the
Hotelling T2 statistic, defined as:
> T 1 ~ (v/@)®
T° = (x— py) C (w*NO):Z

i=1

in which, the term after the first equality sign represents the
test statistic in terms of the original sensor vector  and the
term after the second equality sign is the representation based
on the r principal components (MacGregor & Kourti, 1995).
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Under the hypothesis of no damage, the T statistic follows
an F distribution and to control the false alarm rate at « the
upper control limit (UCL) of the monitoring statistic is set at

(N-=1)(N+1)r

L =
UCLr N(N —7)

Fo(ry,N —r) 3)

where N is the sample size, F, (r, N —r) is the upper 100a%
point of the F' distribution with  and N — r degrees of free-
dom. If both r and N are large, then the estimation errors
of the parameters are assumed negligible and a x? distribu-
tion can be used for the hypothesis of no change. The UCL
is estimated as upper 100a% point of a y? distribution with
degrees of freedom (Montgomery, 2007, p. 371),

UCL,> = x*(a, 7). 4)

As soon as the test statistic exceeds the control limit, i.e.,
T? > UCL, an alarm is given indicating a damage has ini-
tiated. Otherwise, i.e., 72 < UCL, it is assumed that the
structure still operates in the baseline no damage condition.

Many authors who have studied Hotelling’s 7' control charts
have concluded that the chart is quite effective for detecting
large and sustained shifts (three standard deviations or larger
from baseline) however, it may take a long time to signal an
alarm for relatively small or gradually developing shifts (on
the order of one or two standard deviations (Lowry & Mont-
gomery, 1995). This presents a limitation for structural health
monitoring applications, where it is important to be able to
detect cracks or delaminations early on, from the onset, to be
able to continuously monitor as they grow and react on time
by scheduling repair or replacement, if the growth becomes
rapid.

In this paper we propose a new multivariate cumulative sum
(CUSUM) approach for detecting and monitoring small dam-
ages with Lamb-wave sensors. In order to detect small shifts a
commonly used approach is to use a cumulative sum statistic
which utilizes not only the most recent sensor measurement
but also the past observations as well in order to more quickly

expose slowly accumulating changes (Woodall & Ncube, 1985).

A principal component analysis is conducted on the raw sen-
sor data to find the feature vector on which the CUSUM chart
operates. We follow the formulation studied by Pignatiello
& Runger (1990) in which a cumulative multivariate differ-
ence vector between the observed PC score vector z and the
expected (under baseline) scores at time ¢ is defined as:

t

Y. (2 - k) 5)

i=t—ns+1

St =

where p,, = O for baseline PC scores. The cumulative sum
(CUSUM) statistic to be monitored is

MC; = max{0,||st|| — kn:} (6)
in which the norm of s; is found as ||s;|| = (s?Dilst)l/2
with D being the matrix of eigenvalues and the summation

is found using ny, the number of measurements since the last
renewal (zero value) of the CUSUM, defined as:

N, — { ng1+1 for MCy_1 >0 7

t 1 otherwise .
The CUSUM statistic accumulates differences that are larger
than &, which is a chart parameter that needs to be specified
by the user, usually taken as one half of the desired change
in the mean vector we want to make the chart sensitive for.
If the CUSUM statistic exceeds the upper threshold 7 of the
chart, that is, if M C;_, > h, then an out of control alarm
is signaled. There is no closed form expression to the refer-
ence distribution for the statistic, therefore the threshold to
achieve a desired false alarm rate under the hypothesis of no
damage is found by simulation (Pignatiello & Runger, 1990).
In our study, we conduct Monte Carlo simulation, to gener-
ate replicated realizations of the in control process (under the
hypothesis of no damage) with increasing threshold h values
to find the value that gives an average run length (the aver-
age time to signal an alarm) of 200 samples (Lowry & Mont-
gomery, 1995). This value, which corresponds to the false
alarm probability of oz = 0.005, is a commonly used value to
tune control charts (Montgomery, 2007).

4. APPLICATION OF THE PROPOSED APPROACH

In this section we illustrate the application of the proposed
damage monitoring method under two different damage con-
ditions. Both cases involve Lamb-wave condition data. The
first data set, available from public domain, corresponds to
fatigue loading and contains sensor data under cycled load-
ing until failure for multiple specimens. The second data set
corresponds to impact tests that we have conducted for one
specimen.

4.1. Fatigue tests:

The fatigue data set provided by the Prognostic Center of
Excellence of NASA Ames Research Center (Saxena et al.,
2015) is used in this study. The data corresponds to Lamb-

wave sensor measurements from carbon fiber composite coupons

during tension-tension fatigue tests. Two sets of six piezo-
electric sensors were attached on both ends of a dogbone
shaped coupon of size 152.4 mm by 254 mm. A notch (of size
5.08 mm by 19.05 mm) is introduced to induce stress concen-
tration and accelerate delamination growth at this site. Differ-
ent layup configurations were presented in the dataset: Layup
1: [02/904], Layup 2: [0/902/45/ — 45/90], and Layup 3:
[902/45/ — 45]2. We used the data for the first layup config-
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uration. X-ray images taken from the samples show that after
about 10 to 100 cycles delamination damage starts to develop
in the specimens. Data from three such coupons for the first
layup (labelled as L1S11, L1S12 and L1S19 in the data set)
were used to illustrate our monitoring methods. Two X-ray
images for the first coupon are shown in Figure 1.

(b)

Figure 1. (a) X-ray image of the first coupon (L1S11) un-
der baseline condition. (b) X-ray image of the first coupon
(L1S11)after 100K cycles of fatigue loading, delamination
can be seen as light gray colored region centered around the
notch (Saxena et al., 2015). The sensors at the top are num-
bered 1 to 6 from right to left and the sensors at the bottom
are numbered 7 to 12 from left to right.

Lamb-wave data are collected both before the test has started
and after fatigue loading was applied. We considered the path
between actuator 1 and sensor 7 and the interrogation fre-
quency of 200 kHz. We considered this path in this study
because it is the diagonal path, covering the largest area, be-
tween the two sensor patches among all possible pairs of ac-
tuators and sensors and we assumed that it represents a worst
case scenario. Figure 2 shows the Lamb-wave signals mea-
sured at baseline and fatigue loading conditions from the first

coupon. A sampling rate of 1.2 MHz is used to acquire sensor
signals for 1667 microseconds long time series. This resulted
in 2000 data points for each sensor measurement, thus, x is
a p = 2000 dimensional vector. Baseline state corresponds
to from O to 5 cycles and the fatigue damage corresponds to
from 10 cycles to 10 million cycles. Under the baseline, there
are 14 measurement points for coupon 1, 13 measurement
points for coupon 2 and 10 measurement points for coupon 3.
Under the fatigue loading, there are 24 measurement points
for coupons 1 and 2, and 26 measurement points for coupon 3.
Figure 1 corresponds to the measurement of the first coupon
at baseline (top) and after 100K cycles (bottom).

Baseline - Lamb wave data (path 1-7)
3000 T T .

2000+ 1

X
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—y
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Figure 2. Lamb-wave sensor data for fatigue tests for the first
coupon (a) Data before loading has been applied. 14 sensor
trajectories are shown. (b) Data after fatigue loading has been
applied. 24 sensor trajectories were collected.

We find the principle component loading vectors v, ..., v,
of the 14 x 2000 baseline data matrix X. Figure 3a shows
the proportion of variance explained by additional principal
components, indicating that » = 5 principle components is
sufficient to explain about 97% of the variation and is selected
as the reduced dimension representation of the sensor data.
Figure 3b gives the histogram of the 7 values found from
the scores of the 5 principle components of the baseline data
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using Equation 2. The superimposed curve corresponds to
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Figure 3. (a) Cumulative variance explained by additional
principal components. (b) Histogram of the T values found

from the PC scores of baseline data and the expected x? dis-
tribution under no damage is superimposed.

the F' distribution that the test statistic is expected to follow,
which shows a reasonable fit to the data. The UC'L for the
T2 control chart is found as the 99.5% percent point (vertical
red line) of the distribution which results in 0.005 false alarm
rate (the area under the curve to the right of the UCL).

Figure 4 shows the principle component scores of the five
principal components computed both from the baseline and
fatigue loading conditions for the first coupon. Figures 5, 6
and 7 show the T2 and the multivariate CUSUM statistics
computed using the PC scores for all three coupons.

All charts are obtained by applying the principal component
analysis (also 5 PC’s are used) on the Lamb-wave data from
the tests. The vertical line delineates the results determined
from the baseline and fatigue loading conditions. For the T2
charts, the horizontal red line is the upper control limit esti-
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50l
-100+
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Figure 4. The first 5 Principal component scores of the raw
signal. (a) Principal components of baseline signal. (b) Prin-
cipal components of signal under fatigue loadings.

mated using the F'-distribution and the horizontal black line
is the upper control limit estimated using the y2-distribution.
The control limits are: UCLy = 57.81 found using Equa-
tion 3 and F' distribution with N = 14 and »r = 5 and
UCL,> = 16.75 using Equation 4 and x? distribution with
a = 0.005 and r = 5. As it can be seen, to maintain the false
alarm rate while accounting for parameter estimation errors,
the chart calls for widening of the control limits. The T2
statistic is obtained from Equation 2. For the CUSUM chart
the difference vector s; was found from Equation 5 and the
cumulative sum statistic M C} is found by applying Equation
6, in which the subscript ¢ denotes the sample or measurement
number. The upper control limit (horizontal red line) is found
as h = 6.64 by running 1000 Monte Carlo simulations. For
the CUSUM chart we set &k = 0.5 to make the chart sensitive
to one half of one standard deviation shifts.

It can be seen that for all three coupons, the charts do not
signal any false alarms under the no damage condition: none
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T2 chart, Baseline and Fatigue Loading
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Figure 5. Control charts plotted from the principal component
scores (coupon 1). (a) Hotelling T2 chart obtained from the
principal component scores, horizontal red line represents up-
per control limit (UCL) estimated using F-distribution. Hor-

izontal black line represents UCL esimated using x? distri-
bution. Vertical black line seperates the results for baseline
and fatigue loading conditions. (b) Multivariate CUSUM, the
horizontal red line represents upper control limit obtained for
average runlength of 200.

of the test statistics plotted in Figures 5, 6 and 7 to the left
of the vertical line crosses the horizontal red line and black
line. For the first coupon (Figure 5a) the T2 chart estimated
using the F'-distribution correctly detects the fatigue damage
only at the sample 21. It misses all the damage states from
sample 15 to 20. Furthermore, after correctly detecting dam-
age at sample 21, it misses 4 consecutive damage conditions
namely, samples 22, 23, 24 and 25. The T’ 2 chart estimated
using x? distribution has slightly better performance: it sig-
nals the alarm correctly at sample 15, however misses 2 con-
ditions later on for samples 16 and 25. On the other hand,
the CUSUM statistic plotted in Figure 5b signals the alarm
correctly right after sample 15, and from that point onward it

T2 chart, Baseline and Fatigue Loading
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Figure 6. Control charts plotted from the principal component
scores (coupon 2). (a) Hotelling 72 chart obtained from the
principal component scores, horizontal red line represents up-
per control limit (UCL) estimated using F-distribution. Hor-

izontal black line represents UCL esimated using x? distri-
bution. Vertical black line seperates the results for baseline
and impact loading conditions. (b) Multivariate CUSUM, the
horizontal red line represents upper control limit obtained for
average runlength of 200.

has no misdetections. For the second coupon (Figure 6) both
the 72 and CUSUM charts detect the shift on time at sam-
ple 14. However, T? estimated using F-distribution has 10
misdetections later on at samples 15, 18, 21, 22, 23, 24, 27,
28, 30 and 31, T? estimated using x? distribution performs
slightly better and has 1 misdetection later on at sample 30.
The CUSUM statistic consistently increases with no misde-
tections. The third coupon (Figure 7) was more challenging
for all methods. We see that the 7% from F-distribution is
not able to detect the damage (sample 11) at all (Figure 7a,
horizontal red line). T2 estimated using 2 distribution (hori-
zontal black line) sounds the first alarm at sample 17 (it takes
7 samples to detect the damage) and only samples 17, 19 and
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T2 chart, Baseline and Fatigue Loading
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Figure 7. Control charts plotted from the principal component
scores (coupon 3). (a) Hotelling T2 chart obtained from the
principal component scores, horizontal red line represents up-
per control limit (UCL) estimated using F-distribution. Hor-

izontal black line represents UCL esimated using x? distri-
bution. Vertical black line seperates the results for baseline
and fatigue loading conditions. (b) Multivariate CUSUM, the
horizontal red line represents upper control limit obtained for
average runlength of 200.

31 out of the 26 damage samples were detected. By contrast,
the CUSUM chart (Figure 7b) signals the first alarm at sample
13 (it takes only 3 samples to detect the damage) and it cor-
rectly classifies all subsequent 23 samples as damaged. We
summarized these detection results in Table 1. Overall, the

Table 1. Misdetection rates for the CUSUM and 72 charts
from fatigue loading tests

Cpn CUSUM T2 (Use F) T2 (Use x?2)
I Tof 24 (42%) | 14 of 24 (58.3%) 2 of 24 (8.3%)
2 0 of 24 (0.0%) | 10 of 24 (41.67%) T of 24 (4.2%)
3 30f26(7.7%) | 26 of 26 (100%) | 23 of 26 (88.5%)

CUSUM chart signals alarms much faster (which results in a
lower misdetection rate) than the traditional 72 charts under
small fatigue damages. No false alarms have been observed
with either of the charts. The summary of misdetection rates
(smaller the better), given in Table 1, shows that T2 chart with
X2 control limits perform better than the F' distribution, how-
ever, the CUSUM chart consistently outperforms the the 772
charts. We note that the coupons have identical layups and are
expected to have similar damage propagation behavior, how-
ever, there are some differences in the detection performance,
especially for the 7% chart. We note that the T chart esti-
mated using x? distribution tightens the control limits found
by the F' distribution as it neglects the parameter estimation
errors. In the three coupon cases we considered, this did not
result in any false alarms (signaling a damage condition when
in fact there is no damage) and improved the detection rate.
However, in practice one has to be cautious about using to too
tight control limits as it may result in excessive false alarms.

4.2. Impact tests:

In this section we present an experimental study to monitor
impact damage with the proposed method. A three-ply car-
bon fiber polymer composite panel of size 68.58 cm x 25.4
cm x 0.0889 cm is used for the experiments. Two Lamb-
wave sensors are surface mounted on the panel 66.04 cm
apart in the length direction of the panel and mid-way from
the width direction. A 12.90 cm? teflon sheet is inserted be-
tween first and second layer of carbon-fibre sheet halfway
between the two sensors at the time of curing. The compos-
ite was cured with the teflon sheet in-between the fibers so
that adhesion of layers is prevented and to concentrate impact
stress. The teflon sheet helps to control the location and size
of damage. Impact loading is generated by dropping a 2.99
kg weight on the same laminate from increasing heights. Ev-
ery impact of the weight exerts higher force on the composite
panel. The heights of the weight are 1 m, 1.49 m, 1.71 m,
1.89 m, and 2.01 m. In order to verify the delamination dam-
age, we inspected the panel before and after the impact tests
using ultrasound C-scan. Figure 8 shows the C-scan image
of the panel after the last tests and the Lamb-wave measure-
ments from the tests (baseline and impacts).

We collected N = 11 measurements from the pristine panel
before generating any impacts to represent the baseline (no
damage) condition. The piezoelectric excitation frequency of
400 KHz was determined from a preliminary experiment (in
which the specimen is scanned by frequencies ranging from
50 KHz to 500 KHz) to minimize the amount of dispersion in
the actuator signal group velocities. The sampling rate of the
12 MHz is used to acquire the signals for 500 microseconds
long time series, which resulted in 6000 data points for each
sensor measurement, that is, x is a 6000 x 1 vector.

From the 11 x 6000 baseline data matrix X we found that 6
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Figure 8. (a) C-scan image of the impacted laminate. The red
highlighted region shows delaminated area (b) Lamb-wave
data from impact tests and the average of the data from base-
line condition. The impact test data are individual sensor
readings from 5 tests. The baseline data is the average of
11 sensor readings.

principal components explain about 85.27% of the variabil-
ity and used as the reduced dimensional representation of the
original data. The loading vectors for the baseline data and
the data for the 5 impacts are shown in Figure 9. The magni-
tudes of all principal components are smaller under the base-
line condition than those after impacts, illustrating the devi-
ation that occurs from the baseline in multiple dimensions
under the impact damage.

Figure 10 shows the control charts found from the principle
component scores. The UCL for the T2 control chart esti-
mated using the F' and y? distributions for the significance
level of 0.5% as 189.99 and 18.57, respectively.

For the multivariate cusum chart we used k¥ = 0.5 and h
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Figure 9. The first 6 Principle component scores for the im-
pact tests. These principal components are used to find the
test statistic values in the 72 and CUSUM charts (a) Princi-
pal components from 11 baseline conditions and (b) Principal
components from 5 impact tests.

was found to be 7.45 from 1000 Monte Carlo simulations
for r = 6 dimensions. It can be seen in Figure 10 that
the T? chart using the F-distribution (horizontal red line)
is not able to detect any damages while the T2 chart from
the 2 distribution that does not account for estimation errors
(horizontal black line) is able to detect all damaged samples
11, 12, 13, 14, and 15, correctly. By contrast, the proposed
CUSUM approach is able to detect all but first damage sam-
ple. The fact that a CUSUM chart is relatively slow to the
impact change compared to the T2 chart is in agreement with
the well known property that 72 charts are more sensitive to
isolated and large changes while CUSUM charts aremore sen-
sitive to small and gradual changes (Montgomery, 2007). The
change in mechanical properties are more abrupt and large
in impact loading conditions than fatigue loading conditions
which produce gradual changes. We can see that the T2 chart
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Figure 10. Control charts plotted from the principal com-
ponent scores (impact sample). (a) Hotelling 72 chart ob-
tained from the principal component scores, horizontal red
line represents upper control limit (UCL) estimated using F-
distribution. Horizontal black line represents UCL esimated
using x? distribution. Vertical black line seperates the results
for baseline and fatigue loading conditions. (b) Multivari-
ate CUSUM, the horizontal red line represents upper control
limit obtained for average runlength of 200.

with x? distribution that did not account for estimation errors
performed somewhat better in detecting larger changes than
CUSUM in the impact tests (7' chart with F-distribution was
not able to detect any impact damages). By contrast, when the
change is more gradual, as in the fatigue tests, CUSUM has a
much higher detection accuracy that T2 charts.

5. CONCLUSION

Guided-wave sensing based health monitoring has received
increased interest in recent years due to the low cost imple-
mentation of these sensing systems and the ability of guided
waves to monitor large structures. However, challenges re-

main in processing high dimensional sensor data and there is
a need for accurate and reliable damage detection and mon-
itoring methods especially for composite materials with an-
isotropic properties and multiple failure modes. In this paper
we studied a new multivariate damage monitoring method for
Lamb-wave sensing data. A multivariate cumulative sum test
statistic was applied to the features extracted with principal
components analysis in order to improve the robustness of
detection and sensitivity to small damages.

Two case studies were presented using measured sensor data
from fatigue loading and impact tests of carbon fiber mate-
rials. The monitoring performance of the proposed CUSUM
approach was compared with existing Mahalanobis distance
based monitoring techniques applied in the health monitoring
literature. The results followed our expectation that the exist-
ing monitoring methods work reasonably well for relatively
large changes in the structural condition, however, supple-
menting them with a statistic that accumulates information
over time can make the monitoring much more sensitive to
gradually developing damages. This can enhance the ability
to continuously monitor growing damages and react to them
by scheduling repair or replacement actions before they reach
critical size and result in failure. Fatigue loading data from
multiple specimens showed that CUSUM approach can have
significantly lower misdetection rates. Possible extensions of
this research would include, accommodating for environmen-
tal fluctuations in the monitoring method (Cross et al., 2012)
and modeling the degradation path as a stochastic process (Lu
& Meeker, 1993) in order to make inferences about remaining
useful life.
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