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ABSTRACT 

Across many industries, systems are exceeding their 

intended design lives, whether they are ships, bridges or 

military aircraft. As a result failure rates can increase and 

unanticipated wear or failure conditions can arise. Health 

monitoring research and application has the potential to 

more safely lengthen the service life of a range of systems 

through utilization of sensor data and knowledge of failure 

mechanisms to predict component life remaining. A further 

benefit of health monitoring when combined across an 

entire platform is system health management. System health 

management is an enabler of condition based maintenance, 

which allows repair or replacement based on material 

condition, not a set time. Replacement of components based 

on condition can enable cost savings through fewer parts 

being used and the associated maintenance costs. The goal 

of this research is to show the management of system health 

can provide savings in maintenance and logistics cost while 

increasing vehicle availability through the approach of 

condition based maintenance. 

This work examines the impact of prediction accuracy 

uncertainty in remaining useful life prognostics for a 

squadron of 12 aircraft. The uncertainty in this research is 

introduced in the system through an uncertainty factor 

applied to the useful life prediction. An ARENA discrete 

event simulation is utilized to explore the effect of 

prediction error on availability, reliability, and maintenance 

and logistics processes. Aircraft are processed through 

preflight, flight, and post-flight operations, as well as 

maintenance and logistics activities. A baseline case with 

traditional time driven maintenance is performed for 

comparison to the condition based maintenance approach of 

this research.  

This research does not consider cost or decision making 

processes, instead focusing on utilization parameters of both 

aircraft and manpower. The occurrence and impact of false 

alarms on system performance is examined. The results 

show the potential availability, reliability, and maintenance 

benefits of a health monitoring system and explore the 

diagnostic uncertainty. 

1. BACKGROUND 

Across military and commercial fleets, aircraft are an 

example where lengthening service lives and budget 

constraints can adversely affect safety. As a result, more 

frequent inspections are required as service life increases to 

ensure safety of the users and the environment. However, 

the cost of large scale modifications or replacement in the 

case of hundreds of aircraft is a significant hurdle to 

overcome in most instances (Shoup, Donohue, & Lang, 

2011). The impact of shrinking budgets can also reduce 

inspection frequency or delay needed repairs in favor of 

only performing mission critical tasks (Roach, 2009). 

Maintenance strategies must change to meet the extended 

in-service requirements and the constraints imposed by 

shrinking government and industry budgets.  

Condition based maintenance (CBM) is an evolving 

maintenance concept with a goal of reducing maintenance 

and thus life cycle costs while increasing operational 

availability made possible, in part, by leveraging health 

monitoring techniques. Department of Defense Instruction 

(DoDI) 4151.22 defines CBM as “the application and 

integration of appropriate processes, technologies, and 

knowledge-based capabilities to achieve the target 

availability, reliability, and operation and support costs of 

DoD systems and components across their life cycle,” 

(Under Secretary of Defense (AT&L), May 2008, p. 1-1). 

Integrated system health management and its impact on 

performance, cost, supply chain as well as traditional 

maintenance inspections and practices are the focus of this 

research. With the F-35 maintenance and logistics alone 

projected to cost $1.1 trillion over the 55 year life span amid 

shrinking defense budgets, the need to reduce the life cycle 

cost (LCC) of military aircraft is paramount (Shalal-Esa, 

2013). Additionally, legacy aircraft may not be fitted with 
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the proper sensors to fully implement health assessment 

leading to costly inspections, in both time and maintenance 

dollars. This reduces operational availability (Ao) and the 

funds available for other needs.  

CBM is a demand driven maintenance process based on 

indications of stresses or impending failure of a component 

or system. When appropriately applied, CBM has the 

potential to reduce lifecycle cost and increase mission 

reliability by eliminating unnecessary maintenance actions 

(Butcher, 2000). Ellis (2008) argues that cost-effective 

systems monitoring allows repair actions based on system 

condition rather than costly time-based maintenance. 

Additionally, maintenance may be forecast for completion 

that minimizes impact on the operational mission of the 

system. Secondary failures, where one component’s failure 

causes adverse performance or accelerated degradation of 

interrelated components, may also be reduced by 

implementing CBM as a result of prompt repair or 

replacement of the primary cause of fault. 

CBM compares data collected from vehicle systems and 

their components and compares that information with a 

predetermined threshold prior to failure, or to failure for 

some non-critical components, then dictates repairs or 

replacement of parts. Additionally, interim time based 

inspections required under the baseline preventive 

maintenance (PM) approach are forgone, or significantly 

reduced in frequency, in lieu of continuous analysis of the 

aircraft via the integrated systems health management 

(ISHM) system. 

CBM requires sensor or inspection data to accurately 

diagnose the condition of a component. Manual inspections 

can prove costly in terms of time to perform if the part 

requires disassembly or removal of other components to 

observe its condition. Technology exists for some, and is 

under development for other components, to determine wear 

or impending failure conditions in lieu of manual 

inspections (Glaser, Li, Wang, Ou, & Lynch, 2007; 

Speckmann, 2007). The data from these health monitoring 

sensors may then be compiled to predict remaining useful 

life. Certainty is not 100%, be it in the interpretation of data 

collected on component condition or in prediction of 

remaining life based on that sensor data. This uncertainty 

has the potential to lead to poor estimation of component 

condition, which can result in false conclusions about safety 

of flight decisions and ultimately to critical failures. 

1.1. Integrated Systems Health Management Enabler 

The benefits of ISHM are the abilities to reduce inspection 

length, defer maintenance and migrate to maintenance on 

demand with the end goal to increase operational 

availability through reduced maintenance time (Speckmann, 

2007). Applying ISHM enables CBM as opposed to 

preprogrammed periodic maintenance practices; that is, 

maintaining only when required instead of when prescribed 

by schedules, thus optimizing maintenance labor (Roach, 

2009). SHM technologies and resulting modified 

maintenance programs serve to reduce the total life-cycle 

cost of a system and increase availability. While this may 

drive increased acquisition cost of a weapon system or 

aircraft due to the inclusion of health monitoring systems, 

the goal is to offset the increase with reduced operations and 

maintenance costs over the life of the program. Published 

literature shows the savings potential of ISHM enabled 

condition based maintenance on aircraft life cycle cost:  

 40% for vehicle maintenance (Walls, Thomas, & 

Brady, 1999) 

 30% to 50% for fuselage panels (Pattabhiraman, 

Kim, & Haftka, 2010) 

 10% electrical components (Scanff et al., 2007) 

 50-80% for the Boeing 777 (Gorinevsky, Gordon, 

Beard, Kumar, & Chang, 2005).  

In general, an application project could choose to increase 

the detection capability, accepting a higher acquisition cost 

with the goal of lowering the overall system life cycle cost 

through more efficient operations and maintenance.  For a 

given detection system, however, increasing the detection 

capability (e.g., lowering a threshold) will come at the 

expense of a degraded false alarm rate; the two are 

competing objectives. Ultimately, the value of the 

prognostic system will depend on the achievable balance 

between detectability for safety concerns and acceptable 

false alarm rates to avoid unnecessary and expensive 

maintenance actions. Aircraft, or other vehicle, availability 

is linked to the balance of sensor reliability and detectability 

and the capability of the system to decrease maintenance 

duration (Hoyle, Mehr, Turner, & Chen, 2007). 

It is important to understand that uncertainty will exist in the 

diagnosis and prognosis of system health. Numerous points 

of entry exist for uncertainty to work its way into remaining 

useful life (RUL) prediction. Component performance data 

is dependent on sensor health and accuracy. It is also 

difficult to anticipate the exact conditions, load, 

environment, etc, that the vehicle or machine will undergo 

during operation or storage. Quantifying and compiling 

these uncertainties is a difficult task individually and made 

harder by potential amplifying effects on each other. 

Sankararaman and Goebel (2013) discuss factors of 

uncertainty in RUL prediction and lay out methods to 

quantify and interpret the sources. They also stress the need 

to accurately determine the uncertainty in the prediction for 

the prediction to be of use. The goal is that the probabilistic 

estimates of RUL based on real time monitoring allow 

increased time to accumulate on parts, thus increasing the 

MTBF for the ISHM aircraft and generating savings through 

fewer spares procurements or repair actions. 

Determining the effectiveness of system health monitoring 

approaches requires a method for comparison of techniques. 
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The remainder of this paper discusses modeling approaches, 

evaluation techniques and results of this research. 

2. MODELING APPROACHES 

Research into the effects of prognostics on integrated 

logistics, maintenance and aircraft systems frequently 

neglects the impact of uncertainty on HM model outcomes. 

Rebulanan utilizes a discrete event simulation to represent 

the F-35 autonomic logistic system (ALS) system with a 

health management system, LRUs, communication system, 

supply, and maintenance systems (Rebulanan, 2000). 

Rebulanan further evaluates performance with aircraft 

availability, mission capable and non-mission capable rates, 

and mission reliability. Rebulanan’s model shows 

sensitivity of the supply wait time to the detection lead time 

for an impending failure and the supply stock levels. This 

outcome is somewhat intuitive in that as the prognosis of an 

impending failure is detected earlier and with greater 

accuracy, the supply system can plan further in advance, 

ensuring parts are available when required. 

Rodrigues and Yoneyama (2012; 2013) explore the effect of 

prognostics on spare parts inventories for both repairable 

and non-repairable systems compared with conventional 

supply processes. Both studies, simulated over 15 years 

each, show cost savings for the ISHM enabled system over 

the conventional one. In their work on non-repairable items 

they discuss uncertainty in failures and their impact on 

supply policy, but they do not include the impact of 

prognostic uncertainty on maintenance operations for false 

alarm adjudication or aircraft operational availability. 

Similarly, while they do address prognostic error in 

repairable systems they focus on the impact of sparing to 

account for fleet availability without addressing false alarms 

and how they might drive costs. Both works provide an 

excellent analysis of the cost impact of sparing decisions 

based upon health monitoring information. Out of stock 

costs are difficult to quantify but do impact down time for 

supply, which is where the impact is captured in our 

research model. A limitation of the nor-repairable study is 

that only one item is investigated, leaving interactions of 

multiple components in question.  

Kählert, Giljohanan and Klingauf (2014) utilize a MATLAB 

discrete event simulation to analyze one Lufthansa A320 

component with 100% unscheduled replacement. They 

utilize process times, reliability, prognostic accuracy, and 

cost to evaluate PHM system performance. Additionally, the 

use of historic Lufthansa maintenance data provides added 

realism in the research. The research focus only extends for 

two weeks around a replacement, thus leaving out some 

potential for a false alarm condition to exist prematurely. 

One of their final conclusions is a realistic PHM system 

could save approximately 20% of annual fleet operation 

costs.  

3. MODEL DESCRIPTION 

In this research, an Arena discrete event simulation is 

utilized to represent a squadron of 12 aircraft and their 

associated mission, maintenance and supply processes over 

a 15 year duration. This model explores the impacts to this 

squadron in analyzing a model containing elements not 

addressed in the works of section 2. The authors add 

uncertainty not found in Rebulanan’s work with an 

interaction of multiple components missing from Rodriques 

and Yoneyama.  

3.1. Model Components and Architecture 

The initial component failure properties were randomly 

generated from a uniform(250,1000) distribution for parts 

A-T. These times are then utilized for component 

replacements in the model. Each aircraft is generated and 

assigned 20 components with a failure time randomly 

sampled from an exponential distribution, with mean time 

between failure (MTBF) given in Table 1, and with 

probability distribution function: 

1( ) ,  0
x

f x e for x





  . The exponential distribution 

is chosen as a representative reliability function for the 

components for simplicity in model calculations of the 

constant failure rate.  The model can readily accept another 

failure distribution with other components. 

Part MTBF (hours) 

A 502 

B 280 

C 775 

D 750 

E 763 

F 364 

G 441 

H 829 

I 769 

J 941 

K 778 

L 363 

M 272 

N 642 

O 696 

P 268 

Q 822 

R 585 

S 996 

T 842 

Table 1: Components Failure Times 

The sampled failure times are considered “truth” in terms of 

component failure times. That is, if the line replaceable unit 

(LRU) incurs more than the associated failure time in hours 

without being repaired or preemptively replaced as a result 
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of scheduled preventive maintenance, overhaul in the 

baseline case or ISHM indicated replacement in the 

prognostic case, a failure occurs. Aircraft flow through 

preflight processing and mission preparation prior to 

actually flying an assigned mission. The ISHM system 

performs a scan to determine if the aircraft is anticipated to 

have enough useful life to complete the mission. Each 

component decreases its life only during engine running 

operations: taxi, take-off, flying, landing and parking. In this 

work, it is assumed that LRUs operate until failure. These 

processes are visually depicted in Figure 1. 

After sortie completion, diagnostics are again performed 

and in the baseline case, maintenance is performed as well. 

ISHM aircraft perform post flight scan and if acceptable are 

released for next flight. Baseline aircraft are inspected and 

checked for LRU preventive maintenance time. If PM is not 

required, routine maintenance and inspections are performed 

and the aircraft released for next mission. Aircraft are then 

either parked until their next mission or turned for another 

flight. 

In the maintenance module, the number of indicated failures 

is recorded and the maintenance clock starts. A detailed 

inspection is performed for both the ISHM and baseline 

cases, though shorter for the ISHM case. False alarms are 

recorded and in the ISHM case if a false alarm threshold 

over the lifetime of the part is reached, the ISHM system 

undergoes maintenance. The model indicates a false alarm 

condition if the predicted component RUL is less than the 

“truth” remaining time minus a safety factor and the 

anticipated sortie duration. In the baseline case supply stock 

is reduced and if not in stock the aircraft is grounded until 

the part arrives. Parts are processed by supply (occurs 

simultaneously with other aircraft operations in the ISHM 

case) and transferred from supply to maintenance. Aircraft 

are maintained and LRU(s) life characteristics are resampled 

from the failure distribution(s) in Table 1. The aircraft repair 

is checked and the vehicle is routed back into the mission 

queue. In the ISHM case, if the standby time until the next 

mission is greater than the mean time to perform any 

outstanding maintenance actions, the aircraft is routed to be 

maintained so as not to impact mission operations. In the 

baseline case, unless the part is scheduled for preventive 

maintenance the condition is not known thus the need for 

repair or replacement is unanticipated and the aircraft 

continues normal mission operations. Maintenance actions 

are performed serially on each aircraft, that is, only one 

inspection or maintenance action at a time, continuing until 

all required actions are complete. This assumption likely 

over constrains maintenance personnel actions, leading to 

slightly higher maintenance delays, but is done for model 

simplicity and has the same effect on the baseline and health 

monitoring cases. It is assumed that all component 

inspection times for indicated or actual failures are 

triangularly distributed (20, 30, 45) minutes and LRU 

replacements triangularly distributed (60, 90, 240) minutes. 

These times were chosen to represent a range of repairs and 

inspections while not portraying items which may require 

multiple days to maintain. Additionally, in this research 

required personnel for maintenance actions are always 

considered available. LRUs are always replaced when they 

are serviced. 

Supplies are input into the model at an initial stock level and 

a reorder point. In both the baseline and ISHM cases, the 

stock level and reorder points are fixed for the simulation. 

Figure 1: ISHM System Architecture 
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The levels are discussed further in section 3.2. Once reorder 

point is reached, the difference between stock level and 

reorder point is ordered. Time between order and delivery is 

log-normally distributed (2,1) days for all parts. 

Additionally, a processing time upon receipt is incurred. 

If RUL is within a 10 hour safety factor from failure the 

aircraft is routed to maintenance. If RUL is within a 

prescribed lead time window, a supply check is performed 

and if parts aren’t in stock they are ordered to meet 

predicted maintenance activities. If RUL is within a defined 

maintenance window, component service can occur if the 

parts are in stock or the aircraft can continue flying missions 

if there is sufficient RUL.  

3.2. Sensor and Prognostics Process 

The ISHM routine begins by computing the remaining 

useful life (RUL) of each component. The RUL prognosis 

has two components, the diagnosis from the HM system and 

the prediction uncertainty. In this research component 

diagnostics is taken as perfect, i.e. sensor always knows 

exact health. In new components sensor diagnostics can 

have difficulty detecting the health state, thus providing data 

that may not be useful. As failure becomes more imminent, 

sensor diagnostics can provide a more exact condition 

diagnosis. The resulting determination leads to component 

RUL being predicted as: 

                                         (1) 

Where Diagnosis is the log mean and equivalent to the true 

remaining life and, uncertainty is the log standard deviation 

defined in Eq. (2). 

Uncertainty is varied in this research to determine the 

impact of uncertain prognostics on Ao and sortie rates. 

Uncertainty is calculated as: 

                                             (2) 

Where Part RUL is the previous RUL prediction for that 

part and, uncertainty factor is a design variable. 

This information is sent to the CBM module where 

maintenance predictions are performed. While no specific 

RUL prognostic technique is used, the technique above is 

utilized to represent compounded error or uncertainty built 

up in the system. Initially, RUL estimation is chiefly 

impacted by the uncertainty factor, but in section 4.2, 

additional degradation to the system is added to account for 

sensor diagnostic losses. Eqs. (1) and (2) are representative 

equations developed by the authors to portray the behavior 

of health monitoring systems. They are not intended to 

mimic the performance of a particular system, but to 

represent the functionality of a monitoring system. The 

uncertainty factor is a representation of the accumulated 

variability in the prognostics for remaining useful life. This 

work ranges the uncertainty factor from a low of 0, to 

represent perfect prognosis, to a high of 100, which 

approaches half the MTBF of some parts. Examining a 

range of variability between these end points allows system 

designers to quantify how much uncertainty is acceptable in 

a health monitoring system before selecting one for 

inclusion on an aircraft. 

The system then enters a decision node where the RUL is 

compared to a set safety factor, which would be a policy 

decision based on mission requirements. If there is RUL 

above the safety factor and the projected sortie length does 

not encroach on the safety factor, the aircraft is cleared for 

flight. If the RUL is below the safety factor, the 

component(s) are flagged and sent to maintenance. If RUL 

is sufficient, the aircraft is cleared for the next process. In 

all, the aircraft is checked prior to mission preparation 

(fuelling and cargo loading), prior to take-off, during flight, 

and upon landing. If all of these checks are satisfactory the 

aircraft continues through missions and standby time until a 

maintenance action is required. 

The CBM system preorders parts to meet demands as 

described above. If the part is not in stock, the aircraft is 

placed in a non-mission capable supply hold until the part 

arrives. Upon maintenance completion, the ISHM equipped 

aircraft bypasses additional check-outs normally performed 

to inspect work, instead relying on the ISHM system to 

perform them. The aircraft is then released for the next 

mission tasking.  

3.3. Evaluation Parameters 

Establishment of useful performance measures to evaluate 

the model is essential. To that end, metrics currently used to 

determine aircraft and system performance are preferred as 

a means of comparison. Three categories of metrics, 

although interwoven, are laid out below and are used when 

discussing the results of this research: availability; 

reliability; and maintenance. 

3.3.1. Availability 

To understand operational availability and why it is a good 

measure of system performance for this model, it is useful to 

be familiar with achieved and inherent availabilities as well.  

Inherent availability (Ai) is the availability of a system 

operating under an ideal support system. This means delays 

for logistics, administrative delays and preventive 

maintenance time are excluded, leaving only operating time 

and corrective maintenance. 

Achieved Availability (Aa) adds preventive maintenance to 

Ai in addition to corrective maintenance. Logistics, supply 

and administrative delays are ignored and those assets are 

assumed to be instantaneously available when required. 

Achieved availability is determined examining the mean 

time between maintenance, MTBM, and the mean 

maintenance time (MMT). 
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Operational availability (Ao) adds the final piece to the 

downtime portion of the equation. Ao includes logistics, 

supply and administrative delays to the PM and CM for the 

system resulting in the mean down time for the system. 

Operational availability is the system availability the user of 

a system realizes, (ReliaSoft, 2007). Mathematically, 

operational availability is: 

   
      

               
 

    

             
 (3) 

Where MLDT is the mean logistics delay time. 

Eq. (3) is not the only way to define operational availability. 

Pryor (2008) discusses methods to calculate Ao seen in Eq. 

(4) using the uptime/(uptime + downtime) definition of Eq. 

(3), but the definition is slightly different. 

   
     

                   
 (4) 

Where OT is the operational time, 

ST is the standby time, 

TPM is the total preventive maintenance time, 

TCM is the total corrective maintenance time, and  

TALDT is the total administrative and logistics delay time, 

equivalent to MLDT. 

Figure 2 shows the components of up and down times. This 

is by no means an exhaustive list and further breakdowns 

are possible, especially in the administrative and logistics 

delay blocks, but for this research these components define 

the temporal parameters. 

 

Figure 2: Components of System Usage Time (Pryor, 2008) 

A function of a system’s operational availability, average 

daily flying hours is a measurement of the ability of the 

squadron as a whole to perform the assigned missions. 

Further, the number of sorties flown per day is a function of 

the mission requirements, but also the performance of the 

aircraft as well as maintenance and logistics systems. 

3.3.2. Reliability 

In the commercial environment, up and down times can also 

be assigned costs as the systems impact revenue generation. 

Kählert, Giljohanan and Klingauf discuss dispatch 

reliability, or the “ratio of revenue departures without delay 

or cancellations compared to all flights,” (2014, p.1). They 

go on to summarize commercial aircraft cost accounting for 

delays and cancellations. Downtime has an associated cost 

beyond maintenance labor in lost revenue. Similarly, uptime 

has the potential to generate revenue, when not in a standby 

capacity. For military systems, assigning costs to up and 

downtime is problematic as there is no profit to generate and 

supporting national security is difficult to assign a value to. 

In essence, military aircraft are consumptive, always 

operating at a loss. Policy and research can, however, strive 

to reduce these consumption costs.  

False alarms diagnosed or predicted by the ISHM system 

drive unnecessary maintenance and supply actions as well 

as placing an otherwise mission capable aircraft into a NMC 

state. These maintenance and supply actions increase the 

overall cost impact of the ISHM system as they are not free. 

A key requirement for successful deployment of an ISHM 

architecture enabling CBM is a low false alarm rate with 

reliable detection (Ellis, 2008; Van Horenbeek, Van 

Ostaeyen, Duflou, & Pintelon, 2013). False alarms in the 

baseline model result from CND and RTOK discussed 

previously. Totals for each of the models will be recorded 

for comparison. Additionally, an increase in false alarms, 

above a predetermined threshold, on an aircraft with an 

ISHM system will trigger an inspection of the ISHM system 

sensors providing erroneous data and potentially of the 

ISHM system logic itself.  

The ability to tolerate false alarms is a two-fold evaluation. 

First, the cost associated with each false alarm shrinks any 

cost benefit of the ISHM system over the baseline system. 

Second, too many false alarms can trigger a “cry wolf” 

attitude towards the system or result in wasted time 

maintaining, or checking the system thus decreasing the 

operational availability of the aircraft and the reliability of 

the ISHM system. For an ISHM architecture to be effective 

it cannot trigger excessive false alarms which, in turn, 

trigger maintenance actions on the system. 

3.3.3. Maintenance and Logistics 

Inspection intervals are time driven processes under the 

baseline aircraft case and are prescribed to monitor systems 

for indications of damage. They are generally based on 

historic or predicted failure data and are conducted to ensure 

early indications of failure are discovered before they 

catastrophically fail the system or adjacent components. An 

assumption for this research is that all systems of interest on 

the aircraft are monitored in the ISHM model. If that were 

not the case time based, but informed through ISHM 

inferences, inspections would still be required. In this 

Time 

Active Time 

Uptime 

Standby 
Time 

Mission 
Time 

Operating 
Time 

Pre/Post Op 
Checks 

Maintenance 
Time 

Pre/Post 
flight 

processing 

Downtime 

Maintenance 
Time 

Corrective 
Maintenance 

Preventive 
Maintenance 

Inspection 

Administrative 
Delay Time 

Logistics 
Delay Time 

Inactive 
Time 
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research, the ISHM case only requires inspection upon 

indication of failure or impending failure by the system. 

Therefore, the inspection intervals should be further apart 

and of shorter duration for ISHM than for time based 

methods. The preprogrammed PM inspections of the 

baseline are defined based on operating hours. 

Accounting for the required time to repair and inspect 

aircraft is critical in determining the impacts of system 

changes to downtime and manpower costs. In addition to the 

repair of malfunctioning components, inspections based 

upon fault indications, either in performance or indicated by 

the ISHM system, drive mission unavailability and decrease 

system performance metrics. A common metric is to 

measure the required maintenance man hours per aircraft 

flight hour or MMH/FH. This factor can then be utilized in 

forecasting manpower requirements and required downtime 

based on mission requirements. Similarly, mean down time 

(MDT), the average amount of time it takes to return an 

aircraft to flying status once a fault is indicated, is a 

commonly used maintenance performance metric. 

Supply delay is the time between actual part need and when 

the supply system delivers the part to maintenance and will 

impact both the baseline and ISHM/CBM cases. Non-

mission capable supply (NMCS) is the common measure of 

this supply delay. The prognostic CBM case will anticipate 

failure and sparing requirements further out from 

maintenance demand and allow for advanced ordering if 

stock levels are inadequate. The current baseline process 

relies on anticipating failures and providing stock levels at 

individual bases or in some cases a central location that can 

be tasked to deliver spares when required. This process 

increases the logistic footprint by requiring storage facilities 

for materiel that may not be needed for upwards of a year. 

Managing these spares and the facility requires additional 

resources, manpower and money. “Logistics response time, 

a measure of supportability and an indirect measure of 

readiness,” (Deputy Under Secretary of Defense for 

Logistics and Materiel Readiness, May, 2008, p.  6-4), 

drives shorter maintenance times and as such impacts 

supply and maintenance downtime. 

While maintenance policy and cost decisions impact LRU 

replacement decisions, the prognostics capability plays an 

important role in determining when to repair or exchange 

components. Confidence in the performance of the 

diagnostics and prognostics systems could lead to a 

decreasing safety factor as to when maintenance occurs. 

This resulting increase in useable time of each part saves 

money through extended service life for the components and 

reduces the amount of supplies consumed. Capturing the 

amount of useful life lost for the components can quantify 

the gains that may be achievable. 

3.4. Model Variables 

This research explores the impact of RUL prediction 

uncertainty on the availability, reliability, and maintenance 

and logistics categories above. Evaluation of the model is 

accomplished through simulation of 15 years of aircraft 

utilization. Further, two design cases are initially utilized in 

the simulations. The remaining useful life uncertainty factor 

is varied at 14 levels with two false alarm limits at 0 and 

10000 and the model assessed at each increment. The levels 

for the FA limit is meant to indicate that at 0, the ISHM 

system is always maintained after a false alarm and at 

10000, policy allows nearly unlimited false alarms by the 

ISHM system before requiring repair. These levels are 

found in . At each uncertainty factor 100 simulations are run 

to establish confidence in the results, and the means of these 

data are presented. Sensitivity to values of FA limit greater 

than 0 is presented later in this paper once sensor and 

prognostics degradation are considered. Additionally, two 

simulations of the baseline case with no prognostics are run 

where component stock levels are varied. 

Stock levels for the ISHM case are held to 1 nominally and 

ordered as predicted by the system. In the baseline case, two 

comparisons are examined, one where the stock levels are 

kept the same as the ISHM case. The other stock level case 

holds 4 parts in stock and reorders when the level drops to 

2. This variance of stock level for the baseline case makes 

the process comparable to minimal levels as in the ISHM 

case and robust levels when failure is somewhat uncertain.  

4. RESULTS 

4.1. No ISHM Degradation Results 

Daily flying hour averages for all simulation runs are 

located in . It is noted in these data that a decrease of 19.04 

flying hours per day occurs over the range of uncertainty 

factors for a FA limit of 0. This decrease is smaller when the 

FA limit is 10000, reaching 3.45 hours. This reduction 

corresponds to 6949 and 1261 hours respectively in lost 

flying each year, the equivalent of removing more than 1 

aircraft’s missions from the flight taskings in the unlimited 

case and over 5 aircraft in the 0 FA limit case. The last two 

rows in  contain performance results of the baseline model 

where the numbers in parentheses represent the stock level 

and reorder point respectively. For the baseline model, the 

(1,0) supply case yields only 18.36 daily flying hours while 

the (4,2) case achieves 27.94 hours. The chief cause of this 

difference is attributed to the (1,0) case waiting for supplies 

to be delivered as they are only ordered as needed and only 

1 item is held in stock. The ISHM cases all benefit from the 

prognostic capability of the ISHM system in ordering 

supplies to meet requirements. 

A typical measure when examining the maintenance 

demand of an aircraft is maintenance man hours per flying 

hour. Figure 3 examines MMH/FH for the case where all 
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false alarms trigger ISHM system maintenance and the case 

where FAs in the system do not incur ISHM maintenance, 

merely downtime to adjudicate the alarm does not require 

maintenance. As shown in Figure 3, the 0 FA limit case 

MMH/FH increases linearly as the uncertainty factor 

increases. This growth results from the number of 

maintenance actions on the ISHM system as every FA 

triggers ISHM maintenance. Maintaining the ISHM system 

takes more time than merely adjudicating a false alarm by 

the ISHM system thus the increase in maintenance hours. In 

the case where FAs do not trigger ISHM repair, the 

MMH/FH grow slowly reaching a maximum of 0.268 vs. 

4.198 for the 0 FA case. Inspection and maintenance times 

drive the maintenance hours and if inspection times were to 

increase significantly, the number of false alarms shown in 

Figure 4 could change the behavior of Figure 3. 

Additionally, as the uncertainty factor increases more false 

alarms occur as shown in Figure 4 as does the resulting 

downtime associated with the false alarms observed in 

Figure 5. For comparison, the baseline cases have MMH/FH 

ratios of 0.546 and 0.549 for the (1,0) and (4,2) cases 

respectively. In the baseline case, time based preventive 

maintenance occurs at set intervals versus the condition 

based method employed by CBM driving extra maintenance 

hours. 
 

 
 

ISHM False Alarm Limit 
 0 10000 

 
Uncertainty 

Factor 
Mean Daily Flying Hours 

 0 35.98 35.98 

 2 35.25 35.26 

 5 34.90 35.00 

 7 34.36 34.92 

 10 33.53 34.86 

 20 30.14 34.37 

 30 27.32 34.10 

 40 24.88 33.85 

 50 22.96 33.55 

 60 21.38 33.25 

 70 19.93 33.15 

 80 18.92 32.92 

 90 17.80 32.62 

 100 16.94 32.52 

Baseline (1,0) 18.36 

Baseline (4,2) 27.94 

Table 2: Average Daily Flying Hours 

While the MMH/FH numbers are low for an entire aircraft, 

for a system of subcomponents when scaled up it is feasible. 

For example, the U.S. Air Force C-17 fleet operates around 

6 MMH/FH (Nelms, 2008). 

 

Figure 3: Maintenance Man Hours per Flight Hour 

Figure 4 illustrates the average false alarms per aircraft per 

year. The quantity increases from 0 for the 0 uncertainty 

factor, perfect prognosis, case to 101.52 and 196.65 for the 

0 and unlimited FA cases respectively at the 100 uncertainty 

factor case. As observed in the figure, since the amount of 

time spent in maintenance repairing the ISHM system for 

every FA in the 0 limit case increases as the uncertainty 

factor increases the number of false alarms is lower. It 

should be noted that this is not a reduction in the FA rate, as 

the prognosis accuracy is not degrading over time for this 

initial investigation. This mostly results from the 

maintenance time taking away time when the aircraft could 

be flying and, as noted in , the mean daily flying hours are 

nearly double for the unlimited FA case.  

 

 Figure 4: False Alarms per Aircraft per Year 

While the number of false alarms per aircraft per year is 

nearly doubled in the 0 limit case versus the no limit case, 

FA downtime increases at a considerably higher rate. As 

shown in Figure 5, the average downtime each aircraft 

experiences per year due to FA increases from 0 for the 

perfect prognosis case to 111.31 hours for the unlimited FA 

Baseline (1,0): 0.546 

Baseline (4,2): 0.549 
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case and over 2000 hours for the FA limit 0 case. The 

increase is attributed to the additional maintenance required 

to maintain the ISHM system at the lower FA trigger. 

 

Figure 5: False Alarm Downtime per Aircraft per Year 

Compiling all components of downtime and the number of 

times the aircraft is down for maintenance leads to the mean 

down time for an occurrence. As shown in Figure 6, mean 

down time decreases from 3.24 hours when the uncertainty 

prognosis is perfect to a low 1.09 hours when the 

uncertainty factor is 100 and FA limit is unlimited. This 

decrease is attributed to the fact that while the aircraft is 

being removed from service more often to adjudicate false 

alarms as the uncertainty factor increases, the inspections do 

not take as long as the aircraft is quickly returned to 

operation. MDT for the 0 FA limit case grows as the 

uncertainty factor rises, mostly due to all components 

requiring inspection and sensor repair for each time down. 

As uncertainty rises, the aircraft is brought down more 

frequently, but more often for a false alarm than 

maintenance actions. Adjudicating a false alarm through 

inspection takes less time than a repair, thus the down time 

is smaller. For the baseline (1,0) case, MDT is 171.82 hours, 

and for the (4,2) case 17.47 hours. The MDT for the (1,0) 

case is high mainly due to NMCS as there is only a stock 

level of 1 LRU and parts are ordered on demand, not 

schedule. The other major driver for the baseline MDT is 

the PM process. 

 

Figure 6: Mean Down Time 

At the low end of the uncertainty factor range, the fixed 10 

hour safety factor imposed on each part accounts for a 

majority of the lost life each LRU, with the remainder 

mostly coming from the component not being able to safely 

cover the projected sortie duration. As the uncertainty factor 

increases, the mean life lost per component increases as well 

due to the uncertainty in the RUL prediction necessitating 

replacement before LRU failure. Additionally, the between 

mission maintenance window check forwards aircraft for 

LRU replacement or repair if the RUL prediction is within 

the designated maintenance window and parts are in stock. 

Figure 7 depicts the simulation outcome described above, 

growing from 15.63 hours to 35.40 hours for the uncertainty 

factor 100 case for each FA limit. Taken over the 15 years, 

the total life lost ranges from a low of 144506 hours for the 

perfect prognostics condition to 321236 hours for the case 

where uncertainty factor is 100 and FA limit is unlimited. 

This translates to 36.67 years of part life lost for the latter 

case. The mean life lost for each FA limit case is 

approximately equal at each point, thus they are collocated 

in the figure. This results from the fact that while the ISHM 

system may require more maintenance, the LRU 

components are only replaced as required. Of note is the 

max total life lost for the 0 FA limit case is 207901, 

occurring at an uncertainty factor of 20. The total life lost 

then continues to drop off as the uncertainty factor rises. 

This is due to the number of hours being flown by the 

aircraft declining as the uncertainty factor increases, thus 

not requiring LRU replacement as frequently. The lost 

utilization and cost implications of this figure could provide 

justification for system implementation. Component life lost 

in the baseline case is driven by the time based preventive 

maintenance (PM) cycle. In this research, the PM cycle is 

set at 400 hours whereby all components with less than 400 

hours remaining, by time accounting, are replaced, yielding 

a mean life lost of 376.49 and 377.06 hours for the (1,0) and 

(4,2) cases respectively. 

Baseline (1,0): 171.82 

Baseline (4,2): 17.47 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

10 

 

Figure 7: Mean Life Lost per Component 

False alarms and maintenance hours are important when 

determining cost, support requirements, and system 

confidence, but users, whether they are military or 

commercial, want to know how often their aircraft are 

available and when tasked if they can complete the mission. 

Utilizing Eq. (6) to calculate Ao, Figure 8 shows the impact 

of uncertainty factor and FA limit. Operational availability 

drops from 0.983 for both FA limit levels at an uncertainty 

factor of 0 to 0.754 for the uncertainty factor 100, FA limit 

0 case and 0.969 for the unlimited FA case. The increase in 

downtime to repair the ISHM system in the 0 FA limit case 

is the driving factor in the decrease in Ao over the 

uncertainty levels. In the baseline cases, Ao is 0.618 and 

0.941 for the (1,0) and (4,2) cases respectively. Ao is low in 

the (1,0) case again for the NMCS condition. 

 

Figure 8: Operational Availability 

4.2. Sensor and Prognostic Degradation Results 

A further examination of the impact of a degrading 

prognostics capability is examined as well. The Eq. (2) 

becomes: 

                                            

                     
(5) 

This degradation factor places an additional uncertainty on 

the RUL prediction given as: 

                       
               

             
     (6) 

Where growth factor is either 50 or 200 to provide different 

rates of degradation. Referring to Table 1, it is shown that 

component MTBF is bounded between 250 and 1000 hours. 

Therefore, the impact on RUL uncertainty could grow to 

nearly the component life in the case of part P if left 

unchecked. The Part ISHM timer is the accumulated life on 

the ISHM components associated with a specific 

component. The timer is reset upon component replacement 

or when a false alarm limit is reached thereby initiating 

maintenance on the ISHM system. Degradation factor 

increases as a function of the accumulated time on the Part 

ISHM timer. Thus, the longer the ISHM system is in 

operation, the higher the degradation factor becomes adding 

to the uncertainty in the system. As with Eqs. (1) and (2), 

Eqs. (5) and (6) are representative equations developed by 

the authors to portray the behavior of health monitoring 

systems.  

Including the degradation factor in the model as in Eq. (5) 

shows a false alarm limit may be useful in actual aircraft 

operation. Fixing the error factor at 20, towards the lower 

end of the range, an exploration of the impact of false alarm 

limits is made. The growth factors of 50 and 200, utilized in 

Eq. (6), are hereafter referred to as high and low 

respectively. These factors correspond to a growth rate of 20 

and 5 per hundred hours of accumulated time on the ISHM 

system respectively. The degradation factor adds additional 

uncertainty to the RUL prediction to examine the effect of 

degrading sensor or prognostics capability through use of 

the aircraft. In the analysis of degradation factor, FA limit is 

the variable of change and is varied from 0 to 100. 

Examining the impact of FA limit on mean daily flying 

hours for the squadron shows that the 0 FA limit case, for 

which every false alarm triggers ISHM maintenance, 

dramatically reduces the flying hours. This results from the 

amount of maintenance required on the ISHM system 

depleting available hours to fly missions. These results are 

shown in Figure 9 and indicate that the low degradation 

growth rate reduces the flying hours from 32.67 at a FA 

limit of 2 to 31.15 at 100. In contrast, the high growth rate 

drops the daily hours from 32.16 at FA limit 2 to 27.49 at 

FA limit 100. The difference in the magnitude of the 

declines lies in the fact that the high degradation rate 

Baseline (1,0): 376.49 
Baseline (4,2): 377.06 

Baseline (1,0): 0.618 
Baseline (4,2): 0.941 
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increases uncertainty in the RUL prediction, thus driving 

false alarm occurrence up. That is, when the FA limit is 0 

and there is a false alarm, the ISHM system is always 

repaired. When the FA limit increases to 2, this allows 

flights to continue until 2 false alarms are incurred, thus 

allowing increased flying hours for the aircraft. The 

degradation factor, slow deterioration of prognostics system, 

accounts for the remaining decline in daily flying hours. 

This results from compounded error in the system 

increasing as the time between service lengthens due to the 

FA limit being raised. 

 

Figure 9: Daily Hours Flown 

Figure 3 shows that for a static uncertainty factor of 20 the 

MMH/FH was 0.165 and 0.743 for the FA limit 10000 and 

0 cases respectively. Figure 10 below shows that the high 

degradation rate reaches 0.74 at a FA limit of 100 and the 

low rate 0.378. The graph does not show the FA limit 0 

MMH/FH data of 2.361 for the low and 2.468 for the high 

to allow better visualization of the remaining data. It is 

observed in Figure 11 that the impact of the high growth 

rate greatly increases the number of false alarms, thus 

increasing the maintenance hours required per aircraft flight 

hour shown in Figure 10. 

 

Figure 10: Maintenance Man Hours per Flight Hour 

As previously mentioned, Figure 11 is perhaps the best 

indicator of the impact of degradation growth rates on 

aircraft operations. The high growth rate proves true to its 

name as the rate of increase in false alarms per aircraft per 

year remains higher than the low growth rate over the range 

of FA limits. The number of false alarms increases as a 

result of the degradation factor continually increasing as the 

ISHM system is not being maintained at the shorter 

intervals a lower FA limit brings.  

 

Figure 11: False Alarms per Aircraft per Year 

The impact of the increase in false alarms, and thus 

downtime, is a decrease in operational availability, Ao, as 

the FA limit increases. Shown in Figure 12, the Ao trend 

follows that of the daily flying hours and inversely the 

trends of false alarms and MMH/FH. Operational 

availability peaks at a FA limit of 4 for both the high and 

low growth rates. The low growth rate levels off around 

0.96 at FA limit 60 while the high rate continues a decline 

to 0.93 at FA limit 100 without leveling off. 

Baseline (1,0): 0.546 

Baseline (4,2): 0.549 

Baseline (1,0): 18.36 
Baseline (4,2): 27.94 
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Figure 12: Operational Availability 

While Figure 11 shows the increased growth in number of 

false alarms, the true utility of the model is in determining 

the “sweet spot” across the performance curves. This is the 

location where a peak or trough in the curves indicates 

performance drops off on either side and thus this set of 

factors should be considered for system design. In this 

paper, examining Figure 10 and Figure 12 show a 

performance drop off at a FA limit of 4.  shows that mission 

reliability declines across all FA limits, indicating that 

keeping the FA limit as low as possible is desirable. These 

results are specific to the set of inputs used in the model. If 

the time for inspection of a failure condition or to repair the 

ISHM system were changed, the potential for a different 

outcome in FA limits exists. Therein lies the utility of the 

model in being able to change input characteristics and 

policies to determine system level performance metrics. 

In comparing the sensor degradation case in Figure 9 with 

the baseline case, daily flying hours remain higher than the 

baseline case across the FA limit range. The MMH/FH for 

the degradation case with low growth rate remains below 

that of the baseline cases, while the high growth rate case is 

higher than the baseline cases for FA limits above 40. As 

previously discussed, the FA limit “sweet spot” in this 

model is 4 thus MMH/FH would be approximately 0.3 and 

less than the baseline cases. Comparing Ao between the 

baseline and degradation models shows that around the 4 

FA limit results, the degradation cases are above 0.96 while 

the baseline cases are 0.618 and 0.941 for the (1,0) and (4,2) 

cases respectively. This again shows the ISHM system to 

provide higher performance. Finally, the mission reliability 

for the baseline cases of 84.85% is higher than the ISHM 

cases, which are below 70% at the 4 FA limit case. Across 

the model metrics the ISHM case with degradation tends 

towards higher performance than the baseline. Depending 

on the desired performance levels desired for the aircraft 

program managers are left to weigh the performance 

metrics. 

In the model case where degradation is present, for the 

uncertainty factor chosen it is generally best to set the false 

alarm limit low. Programmatic policy of cost, availability 

and reliability will drive towards the selection of a proper 

limit. Additionally, changes to degradation factor, i.e. ISHM 

sensor and prognostic characteristics, and RUL uncertainty, 

prediction algorithm accuracy, can change model outcomes. 

Cost to implement a certain health monitoring technology 

on the aircraft may outweigh the benefit of its inclusion if it 

drives too many false alarms or too much repair time. 

Absent the cost impacts of manpower and component 

replacement, the decision as to how much uncertainty in 

prognostics is an easier proposition. It is shown in the model 

with no degradation that as the RUL uncertainty increases, 

most performance characteristics are adversely impacted. 

The comparison of baseline to ISHM cases shows the 

potential advantages implementation of health monitoring 

and condition based maintenance. The test for program 

managers then becomes selecting the appropriate system 

characteristics to meet overall aircraft fleet performance and 

cost metrics. 

5. CONCLUSION 

This research shows employment of an ISHM system 

supporting CBM can produce system performance greater 

than baseline systems. The main contribution of this effort is 

as a simulation tool to compare sensing options and 

examine their impact on desired performance factors. The 

ability to input ISHM system and aircraft characteristics and 

investigate alternative approaches to monitoring and 

maintenance makes this tool useful in program decisions on 

whether or not to implement monitoring techniques. While 

determining causes of system uncertainty is outside the 

scope of this research, quantifying the impact of the 

uncertainty is demonstrated. As a system designer it is 

important to note, as this research shows, the amount of 

uncertainty in your system, particularly in the prognostics. 

This uncertainty could be mitigated with better sensors, 

techniques or processing algorithms. Further, the designer 

should seek to minimize either the number or false alarms 

the prognostic system produces or set an appropriate limit 

on false alarms to minimize the impact of additional 

inspection time to adjudicate system condition. 

As cost is not included in this work making a true 

comparison among options is difficult. A program manager 

must weigh the technology costs to achieve the performance 

observed in the model and compare those with system 

objectives. This task becomes easier if these variables can 

be explored across a range of scenarios as this research 

provides.  

Future work in this research will explore the impact of cost, 

supply factors and manpower requirements. 

 

Baseline (1,0): 0.618 

Baseline (4,2): 0.941 
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