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ABSTRACT 

This paper presents the development of diagnostic and 
prognostic capabilities for active assets in nuclear power 
plants (NPPs). The research was performed under the 
Advanced Instrumentation, Information, and Control 
Technologies Pathway of the Light Water Reactor 
Sustainability Program. Idaho National Laboratory 
researched, developed, implemented, and demonstrated 
diagnostic and prognostic models for generator step-up 
transformers (GSUs). The Fleet-Wide Prognostic and Health 
Management (FW-PHM) Suite software developed by the 
Electric Power Research Institute was used to perform 
diagnosis and prognosis. As part of the research activity, 
Idaho National Laboratory implemented 22 GSU diagnostic 
models in the Asset Fault Signature Database and two well-
established GSU prognostic models for the paper winding 
insulation in the Remaining Useful Life Database of the 
FW-PHM Suite. The implemented models along with a 
simulated fault data stream were used to evaluate the 
diagnostic and prognostic capabilities of the FW-PHM 
Suite. Knowledge of the operating condition of plant asset 
gained from diagnosis and prognosis is critical for the safe, 
productive, and economical long-term operation of the 
current fleet of NPPs. This research addresses some of the 
gaps in the current state of technology development and 
enables effective application of diagnostics and prognostics 
to nuclear plant assets. 

 

1. INTRODUCTION 

Currently in the United States there are 100 commercial 
nuclear power plant (NPP) units in operation providing 19% 
of the total electricity consumed by the nation (World, 
2015). The average age of these existing NPPs is around 
35 years. The United States Nuclear Regulatory 
Commission (USNRC) limits commercial power reactor 
licenses to an initial 40-year period with operating license 
renewals available for an additional 20 years. More than 
two-thirds of the existing commercial NPPs have received 
license extensions to 60 years, with no established cap on 
the number of 20-year renewals the NRC may provide. In 
light of the fact that the USNRC expects the first application 
for subsequent license renewal (to 80 years) to be submitted 
as early as 2017, the significant challenges associated with 
the continuous operation of NPP units beyond 60 years must 
be carefully considered. As plant structures, systems, and 
components age, their useful life—accounting for both 
structural integrity and performance—is reduced as a result 
of age- and operation- related deterioration.  

To ensure long-term operation of the nation’s current fleet 
of NPPs, the U.S. Department of Energy’s Office of Nuclear 
Energy funds the Light Water Reactor Sustainability 
(LWRS) Program to develop the scientific basis for 
extending the operation of commercial light water reactors 
beyond the current 60-year license period. The program is 
operated in collaboration with the Electric Power Research 
Institute’s (EPRI’s) research and development (R&D) 
efforts in the Long-Term Operations (LTO) Program. Both 
the LWRS and LTO programs work closely with nuclear 
utilities to conduct R&D in technologies that can be used to 
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ensure the long-term reliability, productivity, safety, and 
security of aging light water reactors. 

It is important to understand the current condition of plant 
assets and be proactive in maintenance and replacement to 
improve plant reliability and productivity, and to reduce 
operational cost. The current periodic and condition-based 
maintenance practices at NPPs result in high maintenance 
costs and increased likelihood of human error, primarily due 
to unexpected component failure and forced outages 
resulting from failure to identify developing faults. To 
enhance current maintenance practices at NPPs, there is a 
movement towards online monitoring of the performance of 
plant assets. This includes transition from periodic manual 
assessments and surveillances of physical components and 
structures to centralized online condition monitoring across 
the fleet. 

The Electric Power Research Institute has developed the 
Fleet-Wide Prognostic and Health Management (FW-PHM) 
Suite software to facilitate the implementation of 
diagnostics and prognostics throughout the power industry. 
EPRI is in the process of installing the FW-PHM Suite at 
nuclear utilities and developing a pilot application to 
demonstrate the technology. Deployment of FW-PHM in 
the nuclear industry is an important transformational step, 
enabling real-time assessment and monitoring of physical 
systems and better management of active assets 
(electromechanical components such as pumps, motors, 
emergency diesel generators, transformers, and turbines) 
based on their performance. The main contribution of this 
paper is summarizing the overall research, development, and 
implementation of fault signatures, and diagnostic and 
prognostics models for generator step-up transformers 
(GSUs) in FW-PHM. The implemented GSU models, along 
with simulated fault data, were used to evaluate the 
diagnostic and prognostic capability of the FW-PHM Suite.  

The paper is organized as follows. Section 2 summarizes 
relevant work in the fleet-wide implementation of 
diagnostics and prognostics. Section 3 describes the FW-
PHM Suite software. Development and implementation of 
GSU diagnostic models are presented in Section 4. Section 
5 describes the process of using the FW-PHM Suite to 
diagnose primary winding insulation degradation. Two 
prognostic models used to estimate the transformer winding 
insulation degradation are described in Section 6. Section 7 
presents the process of using the FW-PHM Suite to estimate 
the remaining useful life (RUL) of GSU winding insulation. 
Discussion of the significance of this key research and its 
future benefits is presented in Section 8. Conclusions and 
future research directions are summarized in Section 9.  

2. RELATED WORKS 

Fleet-wide diagnosis, prognosis, and knowledge 
management have gained significant interest across different 
industries. A myriad of fleet-wide diagnosis and prognosis 

architectures, knowledge structures, and associated issues 
are reported in literature. Some relevant works are reviewed 
below. 

Johnson (2012, 2014) discusses the challenges associated 
with the deployment of a fleet-wide health management 
solution, advocating a systematic approach in the design and 
deployment of the system. This approach includes 
identifying assets and business needs, pinpointing critical 
components within assets, choosing sensory sources, and 
selecting prognostic methods. In the case of transformers, 
Abu-Elanien and Salama (2010) present a comprehensive 
overview of transformer asset management. They discuss 
various condition monitoring techniques used to monitor 
and assess the condition of the transformer. 

Monnin, Voisin, Leger, and Lung (2011) point towards the 
significance of managing relevant knowledge arising both 
from modeling and monitoring of the fleet. Medina-Oliva, 
Voisin, Monnin, Peysson, and Leger (2012) present a 
knowledge-structuring scheme based on ontologies that was 
developed for fleet-wide application of PHM. In the case of 
fleets with heterogeneous assets, Monnin, Abichou, Voisin, 
and Mozzati (2011) use the knowledge-structure based on 
ontologies to search for assets based on similar 
characteristics. Patrick, Smith, Byington, Vachtsevanos, 
Tom, and Ly (2010) argue that the threshold values 
indicating different fault conditions for a homogeneous fleet 
could be derived from statistical studies of fleet-wide 
behaviors of identical assets and known cases of faults. 
Wang, Yu, Siegel, and Lee (2008) present a similarity-based 
approach for estimating remaining useful life using data 
from a fleet composed of similar assets. 

Umiliacchi, Lane, and Romano (2011) demonstrate the 
importance of having a standard format, especially for a 
fleet composed of similar asset types. Standardization of the 
diagnostic data is necessary to facilitate understanding 
across several subsystems and trains within a railway fleet. 
Zhang and Gockenbach (2008) present a methodology to 
use data acquisition derived from condition monitoring and 
standard diagnosis for asset management of transformers. 
They stress that standardization is required to develop 
multiple diagnostic models that combine results from tests 
and give an overall assessment of reliability and 
maintenance of transformers. 

Based on review of fleet-wide diagnosis and prognosis 
architecture, the FW-PHM Suite definitely advances the 
state-of-the-art in fleet-wide prognostics and health 
management. The main contribution of this research is 
highlighted in following section. 

3. FLEET-WIDE PROGNOSTIC AND HEALTH 
MANAGEMENT SUITE SOFTWARE 

The FW-PHM Suite software is an integrated suite of web-
based diagnostic and prognostic tools and databases, 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

3 

developed for EPRI by Expert Microsystems, specifically 
designed for use in the commercial power industry (for both 
nuclear and fossil fuel generating plants). The FW-PHM 
Suite serves as an integrated health management framework, 
managing the functionality needed for a complete 
implementation of diagnostics and prognostics (EPRI, 
2012). The schematic in Figure 1 shows the four primary 
modules in the FW-PHM Suite: the Diagnostic Advisor, the 
Asset Fault Signature Database, the Remaining Life 
Advisor, and the RUL Database. The FW-PHM Suite has 
the capability to perform diagnosis and prognosis at 
different hierarchical levels, from the component level to the 
plant level, across a fleet of power units. 

 
Figure 1. Data flow in the EPRI FW-PHM Suite 

(EPRI, 2012) 

The current fleet-wide monitoring framework in the nuclear 
industry is based on feeding sensory data from a fleet asset 
into an advanced pattern recognition toolbox for anomaly 
detection. A pattern of anomalies is reviewed by an expert 
for recommendation. The FW-PHM Suite builds on the 
existing framework by automating the process of learning 
the pattern of anomalies (referred in this paper as fault 
signatures). The process of learning improves over time as 
new asset fault conditions and operating life information are 
discovered and cataloged by the Suite’s users. The Advisor 
modules (discussed in this section) perform this learning 
automatically. These Advisors can acquire and process 
information from plant data historians, advanced pattern 
recognition, and other online monitoring tools. In addition, 
the Database modules, discussed in Sections 3.1 and 3.3, 
include information structures useful for nuclear generating 
station system technicians and component engineers. These 
structures contain information such as Institute of Nuclear 
Power Operations AP-913 process classifications; 
Maintenance Rule (10 CFR 50.65) designations, 
Performance Monitoring, and Corrective Action plan 
criteria; Maintenance Preventable Fault classifications; and 
Maintenance Preventable Functional Failure classifications.  
Cross references to other industry databases, such as the 
Generating Availability Data System and Equipment 
Performance and Information Exchange databases, are also 
provided.  With these enhancements, the research presented 
in this paper advances the state-of-the-art in the area of 

fleet-wide prognostics and health management for the power 
industry. 

3.1. Asset Fault Signature Database 

The Asset Fault Signature (AFS) Database organizes fault 
signatures collected from the many EPRI member utilities. 
At the most basic level, fault signatures are comprised of an 
asset type, a fault type, and a set of one or more fault 
features (symptoms) that are indicative of the specified 
fault. Installation of the software at a plant or fleet 
monitoring center includes the master copies of the AFS and 
RUL databases, which are maintained and distributed by 
EPRI. A user at a plant or fleet monitoring center can 
develop additional fault signatures and RUL models in the 
AFS and RUL databases, respectively, thereby creating a 
local database based on user experience. The local databases 
can be exported and sent to EPRI periodically for evaluation 
and possible inclusion in the master database that is shared 
amongst EPRI members as shown in Figure 2. The process 
of developing fault signatures to populate the AFS Database 
is described in Agarwal, Lybeck, Matacia, and Pham 
(2013). 

 
Figure 2. EPRI master database and user local database 

aggregation and periodic master database update  
(EPRI, 2012) 

3.2. Diagnostic Advisor 

The Diagnostic Advisor identifies possible faults by 
comparing asset fault signatures with operating data using a 
rule-based approach. The Diagnostic Advisor is expected to 
be used on a daily or other periodic basis by technicians 
who are monitoring the health of a specific asset in the 
plant. Using either online data sources or information that is 
input manually (or a combination of online and offline 
data), the Diagnostic Advisor presents the most likely faults 
(if any) based on the available information, and, when 
appropriate, recommends additional information that might 
be used to discriminate amongst the possible faults. The 
Diagnostic Advisor is expected to streamline the diagnosis 
process by helping the technician focus his/her efforts on the 
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most likely faults and possible causes based on the 
operating behavior of the system. 

3.3. Remaining Life Advisor 

Once a fault is indicated by the Diagnostic Advisor, plant 
personnel may wish to estimate the RUL of the asset. The 
Remaining Life Advisor calculates the RUL for an asset 
based on the model type, model parameters, input process 
parameters, and diagnostic information from the Diagnostic 
Advisor. The Remaining Life Advisor is expected to be 
used on a periodic basis by technicians who are monitoring 
the health of a specific asset in the plant. 

Note that it is up to the user to decide which RUL model(s) 
are most appropriate for the circumstances. FW-PHM 
displays the results of all RUL estimates for the asset, but 
does not combine estimates from different models. The 
ability to implement user-defined models creates a flexible 
framework which could allow the development of 
specialized capabilities.  

3.4. Remaining Useful Life Database 

The RUL Database organizes asset RUL signatures (i.e., 
prognostic models) collected from across the industry. At 
the most basic level, a RUL signature is comprised of an 
asset type, a model type (e.g., reliability-based models, 
stressor-based models, or degradation-based models), and 
model calibration parameters.  Type I: Reliability-based 
models include Weibull, exponential, and Gaussian 
distributions. Type II: Stressor-based models include 
Markov Chain and Proportional Hazard models. Type III: 
Degradation-based models include General Path models 
with Bayesian updating techniques. For more details on 
each model type, refer to Coble (2010). A RUL Signature 
also defines limiting conditions that characterize the end of 
life. The model type definition includes specification of the 
input variables needed to run the model. Subject matter 
experts from the power industry, EPRI, and EPRI’s 
partners/subcontractors will most likely develop RUL 
signatures. 

4. DIAGNOSTIC MODELS (A.K.A. FAULT SIGNATURES) 

Both the AFS Database and the Diagnostic Advisor are 
required to first detect and then verify the occurrence of a 
specific type of fault. A fault is a particular mode of 
degradation that can be detected by analyzing plant 
information before the asset fails to meet its service 
requirement. Implied is an assumption that the fault is 
detectable by analysis of plant information and that the 
analysis can be performed in time to prevent or otherwise 
remedy the fault condition before it becomes a failure. 

A methodical approach is adopted to develop content (i.e., 
fault signatures) for the AFS Database. Fault signatures are 
developed for application to a specific type of asset and are 

therefore organized with reference to that type of asset. 
However, it is desirable to specify fault signatures as 
broadly as possible to be used in the entire industry. The 
fault signatures defined in this research can be applied to 
comparable assets used in similar service environments (for 
example, assets like GSU, motors, pumps, found in power 
industries).  

Some important terminologies associated with the AFS 
Database and fault signatures are explained with examples 
in following sections. 

4.1. AFS Database Terminologies 

The AFS Database contains tables that organize and store 
reference information for various power plant assets. This 
information can be represented using an asset subtype and a 
reference asset type hierarchy as shown in Figure 3. Asset 
types represent a more specific definition of an asset 
subtype, including information related to its use in service 
within a particular kind of plant or plant application.  One 
example of an asset type is a bushing within the main 
transformer, shown in a screen shot from FW-PHM in 
Figure 3. Asset subtypes represent a generalized definition 
of an asset, without specifying contextual information such 
as the nature of its use in service within a particular kind of 
plant or the plant application. The draw-lead and fixed-
conductor bushings shown in Figure 4 are examples of asset 
subtypes at the component level. 

Asset subtypes and asset types are organized into five 
discrete levels within the Signature Database: plant, unit, 
system, equipment, and component. Asset types are 
additionally organized within a set of reference asset 
hierarchies for various kinds of power generating plants. 
The collection of reference asset hierarchies is called the 
reference asset taxonomy. For details, refer to Agarwal, 
Lybeck, Bickford, and Rusaw (2014). 

Fault types represent a specific definition of a fault, 
including contextual information such as its location and the 
nature of its use within a particular kind of power plant 
application. Fault information tables are used to organize 
and store information for the different fault types associated 
with plant assets. Paper insulation degradation in a 
transformer winding is an example of a fault type. Attributes 
associated with fault types can be used to tailor how the 
fault applies. Fault attributes and their values also provide a 
way to discriminate specific fault causes (e.g., arcing and 
cellulose degradation are two of the fault attributes 
associated with paper insulation degradation). 

Technology examination tables organize and store 
information about technology examinations performed for 
various plant assets. Here, the term technology examination 
is not limited to instrumentation and measurement 
(vibration, temperature, oil, etc.) analysis, but is broadened 
to mean any form of examination of plant information, 
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including operator examinations such as inspections, and 
even maintenance actions that can influence a fault 
diagnosis. An example would be an oil analysis that counts 
the number of particles found in a sampled volume of oil. 

Technology subtypes represent the various technologies 
available to observe degradation indications. Examples of 
technology subtypes include vibration, oil analysis, and 
temperature. Exam subtypes represent the various exams 
associated with technology subtypes that can be performed 
to measure or observe the degradation indicators. Acid 
number is an exam subtype associated with oil analysis. 

Result types define the possible set of outcomes for a 
technology examination. Each technology examination is 
associated with a single result type. The term exam result 
refers to the outcome of a technology examination. Exam 
results can be represented as categorical values or non-
categorical values. Non-categorical values can include 
numeric values, a time series of numeric values, or a vector 
of numeric values. 

 
Figure 3. An example of asset types 

 
Figure 4. An example of asset subtypes at the component 

level 

4.2. Asset Fault Signatures 

Asset fault signature tables, the backbone of the AFS 
Database, are used to organize diagnostic fault signature 
information. At a minimum, a fault signature is comprised 
of an asset type, a fault type and a set of one or more 
observable features that may indicate the presence of the 
associated fault. Optionally, the fault signature can specify 
one or more fault types that can either cause or be caused by 
the specified fault. Corrective actions or a list of possible 
remedies can also be included in a fault signature. 

Fault feature tables organize and store information for the 
fault features associated with various fault signatures. A 
fault feature definition includes a technology examination 
type, the location for the technology examination, and the 
fault values. Fault values are the categorical classifications 
of examination results, such as those output by an advanced 
pattern recognition system, that indicate the possible 
presence of the specified fault. Additionally, a fault feature 
describes the effectiveness of the associated technology 
examination. Effectiveness is used in ranking possible 
diagnosis of the Diagnostic Advisor, especially in a 
situation where the same technical examination is used to 
diagnose different fault types.  

For example, a high-temperature measurement is a highly 
effective fault feature for a bearing damage fault in a pump. 
Figure 5 shows the fault signature representing insulating oil 
degradation due to contamination, including associated fault 
features, implemented in the AFS Database of the FW-PHM 
Suite. The complete list of fault signatures associated with 
the insulating oil degradation is seen in the upper-left corner 
of Figure 5. The fault values listed include change, 
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Figure 5. Insulating oil degradation due to contamination and associated fault features 

indicating an identifiable change from the baseline state (in 
this case, a change in color); abnormal, indicating the 
examination result is outside the expected range; and  
marginal, which is the middle fault value in a graduated 
assessment (normal, watch list, marginal, unacceptable).  

4.3. Gathering Fault Signatures Information 

A step-by-step procedure for developing a fault signature 
includes the following four steps (EPRI, 2012): 

• Specify the asset type for which the fault signature(s) is 
to be developed. For the specified asset type, gather 
information on its normal operating range, mechanisms 
of degradation, and observable features that can be used 
to detect degrading conditions. This information can be 
gathered from multiple sources such as EPRI’s 
Preventive Maintenance Basis Database, the Fossil 
Maintenance Application Center and the Nuclear 
Maintenance Application Center, and from other 
sources (e.g., textbooks, equipment guide, and 
publications). Specify the fault type and any narrowing 
attributes that can be used to make the fault more 
specific. For instance, the most common fault type 
associated with transformer winding is paper insulation 
degradation. Fault attributes such as arcing, cellulose 
decomposition, high oil acidity, high oil moisture level, 
and partial discharge are commonly used to identify the 
root cause of paper insulation degradation in a 
transformer winding. 

• For each fault type, specify one or more fault features 
comprised of information on (1) location where the 
plant data are collected; (2) technology or technologies 
used to identify the fault (e.g., oil analysis in 

transformers); (3) examination (e.g., particle content, 
dissolved gas analysis or moisture content) and 
outcome of examination (i.e., the result, whether 
normal, abnormal, high marginal, or unacceptable); and 
(4) the effectiveness (e.g., low, medium, high, or very 
high) of the fault feature in detecting the fault 
condition. A specific fault type can be associated with 
one or more fault signatures based on one or more fault 
features.  

• Provide a description of the fault condition, possible 
causes, remedies, and effects on the asset (if left 
uncorrected). 

Several fault signatures have been developed and 
implemented in the AFS Database as part of a knowledge 
transfer exercise with utility partners for GSUs (Agarwal, 
Lybeck, Pham, Rusaw, and Bickford [2013] and Lybeck, 
Agarwal, Pham, Medema, and Fitzgerald [2012]) and for 
emergency diesel generators (Pham et al. [2012] and 
Agarwal et al. [2013]). Twenty-two fault signatures have 
been implemented in the AFS Database for GSUs. The list 
of implemented fault signatures for GSUs is summarized in 
Appendix B of Agarwal, Lybeck, and Pham (2014). 
Independent subject matter experts from EPRI validated all 
the fault signatures for GSUs.  

Based on the implemented fault signatures for GSUs in the 
AFS Database, a diagnostic exercise was performed to 
evaluate the diagnostic capability of the FW-PHM Suite 
using simulated fault data. 

5. DIAGNOSIS PROCESS 

The ability of the Diagnostic Advisor to diagnose possible 
faults was evaluated by comparing known asset fault 
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signatures with operating data. For evaluation purposes, 
dissolved gas analysis (DGA) data with simulated faults 
were utilized. In this paper, a synopsis of the diagnostic 
exercise based on DGA of transformer insulation oil is 
presented. A detailed diagnostic exercise is documented in a 
report by Agarwal, et al. (2013) and in a YouTube video 
(2013). 

5.1. Simulated DGA Data 

DGA is a commonly used technical examination that is 
performed to diagnose thermal or electrical faults occurring 
inside an operating transformer. Thermal or electrical faults 
decompose hydrocarbon bonds, resulting in generation of 
gases within the transformer. One of the most important 
aspects of oil analysis is to measure the concentration of key 
dissolved gases. The key gases include hydrogen (H2), 
methane (CH4), acetylene (C2H2), ethylene (C2H4), and 
ethane (C2H6). In addition to the key gases, carbon 
monoxide (CO), carbon dioxide (CO2), oxygen (O2), and 
nitrogen (N2) are also generated, even under normal 
operating conditions. The gas ratios such as O2/N2, CO2/CO, 
C2H2/H2, Doernenberg Ratios (IEEE, 2008), Duval triangle 
(Duval, 2002), and Rogers Ratios (IEEE, 2008) indicate 
different types of degradation inside transformers. 

A dissolved gas concentration data set collected between 
April 2012 and April 2013 from a NPP was used to evaluate 
the FW-PHM’s diagnostic capability. The data also includes 
top insulating oil temperature, water concentration level in 

insulating oil, and fan and motor amperage for the 
transformer cooling system. A positive drift was introduced 
in both the C2H2 and CO concentration levels to simulate 
primary winding insulation degradation, a common failure 
mode in GSU. As a result of the increase in the CO 
concentration level, a decrease in the CO2/CO ratio is 
observed. The introduction of the drift in the actual data was 
performed using commercially available advanced pattern 
recognition software. 

The gas concentration data with drift reflect 3 out of 4 
classification criteria (Condition 1 through Condition 3) 
developed by the Institute of Electrical and Electronics 
Engineers (IEEE) to classify risk to transformers. Table 1 
lists the dissolved gas concentrations for the individual 
gases for Condition 1 through Condition 4. Table 1 is used 
to make an initial assessment of a gassing condition on a 
new or recently repaired transformer if there are no previous 
tests on the transformer for dissolved gases or if there is no 
recent history available. For details on Condition 1 through 
Condition 4, refer to IEEE (2008). Condition 1, 
Condition  2, and Condition 3 in Table 1 for individual gas 
concentrations are mapped to Normal, Watch List, and 
Marginal, respectively, in the FW-PHM Suite. Condition 4 
is mapped to Unacceptable in the FW-PHM Suite. For 
details on how mapping is performed, refer to Agarwal et al. 
(2013). 

 

 
Dissolved key gas concentration limits [𝝁𝑳/𝑳    (𝒑𝒑𝒎)] 

Status 
Hydrogen 
(𝑯𝟐) 

Methane 
(𝑪𝑯𝟐) 

Acetylene 
(𝑪𝟐𝑯𝟐) 

Ethylene 
(𝑪𝟐𝑯𝟒) 

Ethane 
(𝑪𝟐𝑯𝟔) 

Carbon 
monoxide  
(𝑪𝑶) 

Carbon 
dioxide 
(𝑪𝑶𝟐) 𝑻𝑫𝑪𝑮 

Condition 1 100 120 1 50 65 350 2500 720 
Condition 2 101–700 121–400 2–9 50–100 66–100 351–570 2500–4000 721–1920 

Condition 3 701–1800 401–
1000 10–35 101–200 101–150 571–1400 4001–10000 1921–4630 

Condition 4 >1800 >1000 >35 >200 >150 >1400 >10000 >4630 
Note: TDCG stands for total dissolved combustible gas volume. 
Condition 1: TDCG below this level indicates the transformer is operating satisfactorily. Any individual combustible gas 
exceeding specified levels should prompt additional investigation 
Condition 2: TDCG within this range indicates greater than normal combustible gas levels. Any individual combustible 
gas exceeding the specified level should prompt additional investigation. 
Condition 3: TDCG within this range indicates a high level of decomposition. Any individual combustible gas exceeding 
the specified level should prompt additional investigation. 
Condition 4: TDCG exceeding this value indicates excessive decomposition. Continued operation could result in failure of 
the transformer.  

Table 1. Dissolved gas concentrations (IEEE, 2008) 
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5.2. Information Communication Pathway 

The commercially available advanced pattern recognition 
software used in this research writes the simulation output 
to an Oracle 11g Database. The Diagnostic Advisor in the 
FW-PHM Suite is configured to read information from the 
database, thereby creating a communication pathway. The 
Diagnostic Advisor of the FW-PHM Suite utilizes the 
communication pathway to periodically update its online 
data query and perform diagnoses. The update interval is 
user-defined and can range from every minute to every 
month. If the updated information identifies any potential 
fault, the Diagnostic Advisor generates a new diagnosis 
result and sends an e-mail notification to the designated 
person. 

5.3. Diagnostic Advisor Diagnosis  

The Diagnostic Advisor of the FW-PHM Suite takes 
advantage of the communication pathway to diagnose 
primary winding insulation degradation based on simulated 
primary winding fault data. For performance evaluation, gas 
concentration levels and gas ratios are played back at an 
accelerated pace and monitored continuously. In practice, 
changes in gas concentration and gas ratios are slow and 
might take several months to reach the Warning stage. The 
scenario presented in this paper was developed specifically 
to demonstrate the diagnostic capability of the FW-PHM 
Suite and should not be misconstrued as a real-world 
situation. 

Paper insulation degradation due to electrical discharge 
leads to either the occurrence of a partial discharge 
phenomenon or an arcing phenomenon. A steep increase in 
the H2 concentration level compared to other dissolved 
gases in the transformer insulating oil is an indication of 
partial discharge. Similarly, an increase in the combined H2 
and C2H2 concentration levels compared to other dissolved 
gases is an indication of arcing. Electrical discharge can 
create localized hotspots, causing an increase in the top 
insulating oil temperature.  

Paper insulation degradation due to thermal phenomena can 
be diagnosed when a steep increase in the CO concentration 
level is observed. The rate of increase of CO and CO2 are 
different, so a decrease in the CO2/CO ratio also indicates 
thermal degradation of primary winding paper insulation. 

In the example presented in this paper, the diagnosis process 
begins with monitoring C2H2 and CO concentration levels, 
as well as the CO2/CO ratio. As long as the monitored gases 
are within normal range, no new diagnoses are observed in 

the FW-PHM Suite. As the monitoring continues, the C2H2 
concentration level indicator reaches the warning level, 
equivalent to IEEE Condition 2 (Watch List in FW-PHM). 

This information is continuously logged into the Oracle 
Database. The Diagnostic Advisor of the FW-PHM Suite, 
via the information communication pathway, reads the 
updated information from the Oracle Database. At this 
point, the Diagnostic Advisor immediately recognizes the 
change in the C2H2 concentration level and creates a new 
diagnosis, as seen in Figure 6. 

The Diagnosis Result Page has several different information 
sections. The Possible Diagnosis section displays the latest 
diagnosis results with information on Fault Location, 
Possible Diagnosis, Pattern Score, Likelihood Score, 
Details, Status, Broad Search Used, AP-913 Condition 
Code, and Exact Match. Fault Location communicates the 
location of the fault; in this case, it says Primary Winding 
Insulation (as expected). Possible diagnosis identifies the 
most likely fault based on the current available information. 

In this case, Paper Insulation Degradation: Electrical is 
identified as the most likely diagnosis based on the current 
C2H2 concentration level (as expected). The pattern score is 
a percentage indicating the relative likelihood of the fault 
based on the current information. The pattern scores always 
sum to 100%. Note that the Exact Match column denotes 
how many fault features in the signature are exactly 
matched; partial matches (e.g., a watch list result when the 
fault value is defined to be marginal) are given less weight 
in the Pattern Score, and are  not counted as exact matches. 

The Result History section lists all the diagnoses performed 
by the Diagnostic Advisor. The Query Values section lists 
query values for the mapped technology. In this case, 
observe that the query values for all the exams are normal 
except for C2H2, which reads Watch List. The 
Troubleshooting Advice section lists other fault features that 
could be mapped to the Oracle Database or could be entered 
manually, to further refine the diagnosis result. In this case, 
the suggested troubleshooting advice is to analyze the Acid 
Number of the insulating oil. 

As monitoring continues, the C2H2 concentration level 
continues to increase and is allowed to reach IEEE 
Condition 4 (i.e., Unacceptable). After a short time interval 
of monitoring, the CO concentration level indicator reached 
IEEE Condition 2 (i.e., Watch List). The new information is 
updated in the Oracle Database. The Diagnostic Advisor 
reads the updated information, updates the previous 
diagnoses result based on new information, and sends a new 
e-mail notification. 
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Figure 6. New diagnosis result summary page created by the Diagnostic Advisor when C2H2 level reaches Watch List 

As monitoring continues, the FW-PHM’s Diagnostic 
Advisor polls the Oracle Database at regular intervals to 
generate a series of diagnoses as shown in Figure 7. For the 
example presented in this paper, the Diagnostic Advisor 
polled the Oracle Database every minute. Observe that the 
updated Diagnosis Result Page presents the diagnosis 
update history and updated possible diagnosis with current 
query values. With time, Possible Diagnosis has been 
updated and now Paper Insulation Degradation: Thermal is 
identified as the most likely diagnosis based on the current 
C2H2, CO, and CO2/CO ratio. Also, observe that the 
Diagnostic Advisor has updated the Troubleshooting 
Advice, suggesting the inclusion of top insulating oil 
temperature information if possible (i.e., Time at Excess 
Temperature) to further refine the diagnosis. 

 

This exercise demonstrated the Diagnostic Advisor’s ability 
to 

1. Capture the changes in the mapped fault features on an 
automated basis and update the corresponding diagnosis 

2. Maintain diagnosis history 
3. Provide troubleshooting advice that, if used, could 

assist the person in charge to differentiate between 
different possible diagnoses. 

The exercise leverages the capability to connect the FW-
PHM Suite to a plant monitoring system, poll the data every 
minute, and perform an automated diagnosis based on 
current information. 

A similar exercise was performed for emergency diesel 
generators, and the diagnostic outcome was consistent. 
Additional details are available in Agarwal et al. (2013). 
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Figure 7. Updated new diagnosis result page indicating paper insulation degradation: thermal as the most likely fault 

6. PROGNOSTIC MODELS 

In addition to diagnosis, providing a risk-informed RUL 
estimate would enable a plant maintenance engineer to 
prioritize maintenance activities. Here risk-informed RUL 
estimation refers to the prioritization of the failure modes 
according to their consequence to the asset. A user can enter 
both probability of failure and the consequence index for 
each failure mode into the FW-PHM suite based on history 
of failure or experience. This would allow the user to 
optimize the maintenance strategy to reduce the risk. This 
capability would fill the gap between the need for timely, 
accurate performance analysis and the availability of plant 

engineering resources. The engineering focus could be 
shifted from identifying potential problems, diagnosing 
asset failures, and providing maintenance guidance to 
actually solving the problem. Valuable operating assets 
could avoid premature or untimely failure, or avoid life-
limiting modes of operation. 

The prognostic models discussed in this paper are used to 
estimate the RUL of power transformer conductor windings. 
High-voltage power transformer conductor windings are 
insulated by a combination of cellulose paper and an 
insulating mineral oil, and are expected to operate reliably 
for up to 40 years. Cellulose is a natural polymer of glucose 
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that degrades slowly as the polymer chains break down 
during service, releasing chemical by-products that dissolve 
in the insulating oil. The factors and mechanisms that 
contribute to transformer winding insulation paper 
degradation are well studied in the literature, including 
cellulose reaction (Cheim, Platts, Prevost, and Xu, 2012), 
degradation due to hydrolysis (Hohlein and Kachler, 2005), 
and thermolysis (Lundgaard, Hansen, and Ingebrigtsen, 
2008). Transformer winding paper insulation degradation 
rate is critical in determining the operational life span of a 
transformer. The actual state of the insulation in the 
transformer can only be determined by a tear-down 
inspection. However, the state of the insulation can be 
inferred from knowledge of parameters or stressors 
correlated with insulation degradation.  

Therefore, this paper presents two prognostic models for 
transformer paper winding insulation degradation that were 
researched and implemented in the FW-PHM Suite. The 
Chendong (1991) model estimates degree of polymerization 
(DP) of the transformer winding insulation based on the 
concentration level of 2 Furaldehyde (2FAL), measured by 
offline oil analysis. The IEEE thermal life consumption 
model (IEEE, 2012) estimates the hot spot temperature in 
the insulation at a given transformer load and ambient 
temperature.  

Both of the models were implemented in the RUL Database 
of the FW-PHM Suite. The Remaining Life Advisor evokes 
the implemented prognostic models to estimate the RUL of 
transformer paper winding insulation based on the DP or 
history of hot spot temperature. 

6.1. Chendong Model 

DP has traditionally been used as the primary indicator of 
the condition of insulation paper in transformers. The paper 
insulation deteriorates with age due to stresses generated by 
thermal, mechanical, and electrical transients. A lowering of 
the DP corresponds to scission of cellulose chains, a 
chemical breakdown reaction reducing the mechanical 
strength of the paper. When the DP falls below 
approximately 250, the paper is weak and brittle (fresh 
paper has a DP of 1100–1200). Although examples of paper 
insulation with DP values as low as 150 have been found in 
operating transformers (Emsley and Stevens, 1994), DP 
values around 250 are generally considered to indicate 
imminent failure. Experimental studies suggest that the DP 
value varies along the length of the transformer winding. 
Therefore, it is important to consider an average DP value 
over the length of the transformer winding (Emsley and 
Stevens, 1994). 

Use of DP for accurate life prediction requires that the rate 
of degradation be properly calibrated, accounting for type of 
paper, operating temperature (the rate of degradation 
increases with temperature), and moisture. In addition, a 
nonlinear functional relationship exists between tensile 

strength and DP. Despite these limiting factors, DP is 
commonly used to estimate insulation age. DP of 
transformer insulation can be inferred by non-intrusively 
measuring the concentration of dissolved by-products such 
as furanic compounds in the insulating oil.  2FAL is the 
most predominant of the five furanic compounds that are 
generated due to cellulose paper aging (Emsley, Xiao, 
Heywood, and Ali, 2000). The relationship between 2FAL 
and DP is seen in Figure 8. Observe in Figure 8 that initially 
the DP value decreases as 2FAL concentration increases. 
Around 3000 hours, the concentration of 2FAL starts to 
decrease. This illustrates that the relationship between DP 
and 2FAL is not monotonic. In addition if the transformer 
insulation oil is reclaimed it would impact the 2FAL 
concentration but would not affect the DP value, which is as 
expected. For further discussion on furanic compounds and 
other oil-soluble decomposition products, refer to Agarwal 
et al. (2014). 

 
Figure 8. A functional relationship between 2FAL 

concentration in oil (dashed) and degree of polymerization 
(solid) over time 

Several mathematical models have been developed based on 
the observed relationship between DP value and the 2FAL 
concentration. One of the most widely used models is the 
Chendong model (1991) given in Eq. (1), which is based on 
a series of data collected from transformers with normal 
Kraft insulation paper and a free-breathing conservator. 

The Chendong model exploits the release of furanic 
compound, estimating DP based on 2FAL, and then 
predicting remaining useful life. To establish the 
relationship between 2FAL content and DP, Chendong 
performed a regression analysis on the collected data as 
follows: 

log 2𝐹𝐴𝐿 = 1.51 − 0.0035𝐷𝑃 (1) 

The data support a linear dependence between the DP value 
and the logarithm of the 2FAL concentration level. The DP 
of insulating paper directly reflects the transformer 
insulation condition, as shown in Table 2. Although the 
measurement of 2FAL concentration level from an oil 
sample is relatively simple, the differentiation of aging 
mechanisms affecting the formation of 2FAL compounds in 
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the oil is complex. Nevertheless, Eq. (1) can be applied to 
approximate the average DP of insulating paper and 
estimate the aging level for the transformer insulation 
winding. 

2FAL 
(ppm) DP Value Significance 
0–0.1 1200–700 Healthy insulation 
0.1–1.0 700–450 Moderate deterioration 
1–10 450–250 Extensive deterioration 
>10 <250 End-of-life criteria 

Table 2. DP and 2FAL correlation (Aba-Siada, 2011) 

A functional relationship between operating time and 2FAL 
concentration was established based on varying operating 
conditions of 77 step-up generator transformers (Chendong, 
1991), along with confidence bounds. The confidence 
intervals are a function of operating time (𝑇 ) and are 
expressed as: 

log 2𝐹𝐴𝐿! = −1.29 + 0.058𝑇 (2) 
 

log 2𝐹𝐴𝐿! = −2.37 + 0.058𝑇 (3) 

Given the DP estimate from Eq. (1), the empirical 
formulation in Eq. (4) can be used to calculate the elapsed 
insulation life of a transformer: 

Elapsed  life   in  years = 20.5 ∙
𝐷𝑃!
𝐷𝑃!

 
(4) 

where 𝐷𝑃!  is the degree of polymerization of a new 
(un-aged) transformer and 𝐷𝑃!  is the degree of 
polymerization of the transformer at time 𝑡. In Eq. (4), the 
value 20.5 is the required minimum normal insulation life 
expectancy of 180,000 hours (~20.55 years) as per IEEE 
(2012). 

6.2. IEEE Thermal Life Consumption Model 

The IEEE thermal life consumption model presented here 
has been developed for mineral-oil-immersed transformers 
and step-voltage regulators with insulation systems rated for 
a 65°C average winding temperature rise at rated load. A 
transformer’s life span is determined mainly by the solid 
insulation system’s mechanical resistance to withstand a 
short circuit. As a result, the transformer life is usually 
defined as the total time between the initial state with new 
insulation and the final state for which dielectric stress, 
short circuit stress, or mechanical movement could cause an 
electrical failure (likely a short circuit) for a given 
temperature of the transformer insulation. 

The IEEE thermal life consumption model estimates the hot 
spot temperature in the insulation at a given transformer 
load and ambient temperature, which in turn is used to 
estimate the transformer insulation life spent (or equivalent 
RUL). 

IEEE (2012) presents two different models for calculation 
of hot spot temperatures. The model implemented here is a 
simplified model that calculates oil and winding 
temperatures for changes in load relative to the rated load. 
The alternate method is more exact, but requires an iterative 
solution of equations. If load, ambient temperature, and tap 
position can be determined accurately, the alternate method 
should provide more accurate results. Details can be found 
in (IEEE, 2012). 

The hot spot temperature (𝑇!) is given by: 

𝑇! = 𝑇! + ∆𝑇!" + ∆𝑇!/!"                                                    ( (5) 

where 𝑇!  is the ambient temperature,	
  ∆𝑇!"  is the top oil 
temperature rise over ambient, and ∆𝑇!/!" is the hot spot 
temperature rise over top oil. Given the ambient temperature 
and load, the two remaining terms of the hot-spot 
temperature are calculated per the procedure and equations 
described in IEEE (2012). 

The transformer insulation RUL can be calculated as: 

𝑅𝑈𝐿 = 𝑁𝑜𝑟𝑚𝑎𝑙  𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛  𝑙𝑖𝑓𝑒 − 𝐹!"#×𝑡 (6) 

where 

𝐹!"# =
𝐹𝐴𝐴,𝑛∆𝑡𝑛𝑁

𝑛=1

∆𝑡𝑛𝑁
𝑛=1

 

is the equivalent aging factor at the reference hot-spot 
temperature in a given time period with varying load profile. 
Here 𝐹!! is the aging acceleration factor for a given load 
resulting in corresponding hot spot temperature. The 
expression for 𝐹!! is 

F!! =   𝑒
!"###
!"!   !   !"###!!!!"#  

(7) 

By substituting the 𝑇!  in Eq. (5) into Eq. (7), the 
transformer insulation RUL can be calculated using Eq. (6). 

7. PROGNOSTIC PROCESS 

In this section, the implementation of two Type II 
prognostic models in the Remaining Life Database and 
prognostic capability of the FW-PHM Suite using the RUL 
Advisor to estimate the GSU winding insulation lifetime are 
presented. 

7.1. Implementation of Prognostic Models in the FW-
PHM Suite 

The procedure for implementing new prognostic models in 
FW-PHM is detailed in EPRI (2012). The implementation 
of each model in FW-PHM includes the following steps: 
programming the model and publishing it as a service; 
adding the model type to FW-PHM; defining the technical 
examinations required as model inputs; and creating a 
RUL signature for the asset in question, including parameter 
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values. The RUL Advisor can then be used to estimate 
RUL. 

The RUL signature associated with the Chendong model 
was implemented at a component level for the main 
transformer primary winding insulation. The model uses 
two calibration parameters, one for the minimum life 
expectancy of transformer winding insulation (in years) and 
the second for the initial DP when the transformer was 
placed in service. The single input to the model is the 
measured 2FAL concentration in ppm (parts-per-million).  

The RUL signature associated with the IEEE Life 
Consumption model was also implemented at a component 
level for the main transformer primary winding insulation. 
The model uses nine calibration parameters, and requires 
one single input value and two time-series input values for 
load and ambient temperature. 

For details on the implementation of the Chendong and 
IEEE thermal models in the FW-PHM Suite, refer Agarwal 
et al. (2014). 

7.2. RUL Estimation 

Test scenarios were developed to evaluate the performance 
and robustness of the implemented models in the FW-
PHM’s RUL Database. A synopsis of the prognostic 
capability of the FW-PHM Suite using the RUL Database 
and Remaining Life Advisor is presented in this paper. The 
report by Agarwal et al. (2014) documents the detailed 
prognosis exercise.  

For the Chendong model, a 2FAL concentration of 0.6 ppm 
and an initial 𝐷𝑃! = 1150  were assumed. Using Eq. (1), the 
estimated DP was 494.8, resulting in an elapsed life 
estimate of 17.3 years (Eq. [4]). The mean RUL estimate is 
3.2 years given a life expectancy of 20.5 years. FW-PHM 
has the capability to display upper and lower bounds for 
RUL. The best way to calculate uncertainty for the 
Chendong model is a topic for future research. For the 
purposes of evaluation, the upper and lower bounds on RUL 
were calculated simply as 1.05 and 0.95 times the average 
RUL, respectively. For more information, refer to Agarwal, 
Lybeck, Pham, Bickford, and Rusaw (2015). 

For the IEEE thermal model, a data set was fabricated using 
average ambient temperature from Idaho Falls, Idaho 
between June 1, 2013, and August 1, 2014. The load and 
ambient temperature profiles are shown in Figure 9. The left 
(solid) axis is the ratio of measured load to rated load, and 
the right (dashed) axis is ambient temperature. The model 
input parameters are described in Table 3. The transformer 
was assumed to have previous usage of 17.2 years.  

Figure 10 shows the RUL estimate based on these data in 
the PHM prognostic advisor. The load ratios are generally a 
higher than rated load for this data set, thus the usage 
estimate shows 1.35 years of life were consumed during this 

1-year period. The mean RUL estimate is given by the 
expected insulation life minus the sum of the life spent (the 
input usage value of 17.2 years) and the estimated usage: 
20.5 – (17.2 + 1.35) = 1.95 years. Again, in this case, the 
upper and lower bounds on RUL are simply calculated to be 
1.05 and 0.95 times the mean RUL. 

 
Figure 9. Load (solid) and ambient temperature (dashed) 

profile 

Parameter Name 

Parameter 
Value 
(Unit) Description 

R 4.87 Ratio of load loss at 
rated load to no-load 
loss 

dT_TOR 36.0°C Top oil temperature 
rise over ambient at 
rated load (°C) 

dT_HSTOR 28.6°C Winding hot spot 
temperature rise over 
top oil temperature at 
rated load (°C) 

dT_HSAR 80°C Winding hot spot rise 
over ambient at rated 
load (°C) 

T_TOR 3.5 h Oil thermal time 
constant for rated 
load (hours) 

T_W 0.083 Winding time 
constant for moderate 
overload (hours) 

Rated_Load 1200 MVA Rated load of the 
transformer 

Life_Expectancy 20.5 years Expected life of the 
transformer (years) 

Table 3. Numeric parameter inputs to the IEEE thermal 
model as implemented in the FW-PHM Suite  
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Figure 10. RUL estimate for the GSU transformer based on the IEEE life consumption model 

8. RESEARCH SIGNIFICANCE 

Diagnosing a potential problem (fault) in a NPP can take 
significant time and plant resources. There is an immediate 
need to optimize plant resources to support productive and 
economical operation of the current fleet of nuclear plants. 
At the same time, the challenges of aging subject matter 
experts and knowledge drain are preventing nuclear plants 
from maintaining economic competitiveness in the energy 
market.  

By embracing advanced sensors and instrumentation, the 
nuclear industry can alleviate some of the burden of time 
consuming work with the use of remote monitoring and 
automated diagnosis and prognosis of component health. 
Advanced sensors and instrumentation will also enhance the 
safety of NPPs. The online monitoring research presented in 
this paper enables: 

• Mitigation of equipment failure. Timely identification 
of developing faults allows plant staff to anticipate and 
avoid equipment issues that could limit plant 
production or reduce asset life. 

• Improved reliability and productivity. An accurate 
diagnosis and prognosis will help develop effective 
troubleshooting plans for the plants that can be used to 
reduce unexpected failures, thereby reducing unplanned 
outages. 

• Optimization of management. Creation of a formal 
record of industry-wide diagnostic experiences. When a 

systematic cause is observed, plants can change their 
response accordingly to minimize the problem. 

• Knowledge expansion. The system learns through 
continuous database development and consolidation of 
information across the fleet. The knowledge of 
experienced engineers (i.e., domain knowledge) and 
mining the volume of information gathered from 
sensors and instrumentation installed on plant assets 
will enhance the accuracy of future diagnosis and 
prognosis.  

EPRI is working with nuclear utilities to install, test, and 
implement the automated diagnosis and prognosis 
capabilities of the FW-PHM Suite. EPRI is also leading the 
PHM Asset Fault Signature Development Users’ Group that 
involves industrial experts and research entities working on 
developing fault signatures for different active plant assets. 

The research presented in this paper has the potential to be 
consolidated in the integrated operation of a nuclear power 
plant. This research would support the real-time condition 
monitoring of data from different sources that include fixed 
sensors installed on plant equipment, mobile technologies 
used by field workers, etc., to perform automated diagnosis 
and prognosis. The resulting plant health information can be 
readily shared with different plant entities such as the plant 
engineering system health program, troubleshooting and 
root cause teams, original equipment manufacturers and 
technical consultants, etc. 
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9. CONCLUSIONS AND FUTURE RESEARCH 

The paper presented research activities at Idaho National 
Laboratory related to online monitoring of active assets in 
NPPs. This included:  

• Introduction of the FW-PHM Suite software 
• Research, development, and implementation of 

diagnostic models for GSUs in the Asset Fault 
Signature Database of the FW-PHM Suite 

• Diagnostic capability of the FW-PHM Suite using the 
Diagnostic Advisor 

• Research, development, and implementation of the 
Type II prognostic models in the Remaining Life 
Database of the FW-PHM Suite 

• Prognostic capability of the FW-PHM Suite using the 
RUL Advisor to estimate the GSU winding insulation 
lifetime. 

Ongoing research activities involve researching, developing, 
and implementing diagnostic and prognostic models for 
large electrical motors in NPPs. To date, the FW-PHM Suite 
software has been used to perform diagnosis and prognosis 
for active assets in NPPs. Research efforts are expanding to 
develop and implement diagnostic and prognostic models 
for passive nuclear assets. In addition, future research 
should focus on developing meaningful uncertainty 
quantification methods for RUL models implemented in the 
Remaining Life Database. 
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