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ABSTRACT

Support vector machine (SVM) is a popular machine learning
algorithm used extensively in machine fault diagnosis. In this
paper, linear, radial basis function (RBF), polynomial, and
sigmoid kernels are experimented to diagnose inter-turn faults
in a 3kVA synchronous generator. From the preliminary re-
sults, it is observed that the performance of the baseline sys-
tem is not satisfactory since the statistical features are non-
linear and does not match to the kernels used. In this work,
the features are linearized to a higher dimensional space to
improve the performance of fault diagnosis system for a syn-
chronous generator using feature mapping techniques, sparse
coding and locality constrained linear coding (LLC). Experi-
ments and results show that LLC is superior to sparse coding
for improving the performance of fault diagnosis of a syn-
chronous generator. For the balanced data set, LLC improves
the overall fault identification accuracy of the baseline RBF
system by 22.56%, 18.43% and 17.05% for the R, Y and B-
phase faults respectively.

1. INTRODUCTION

Condition based maintenance (CBM) is the most preferred
technique in many industrial applications for its reduced main-
tenance costs and improved safety operations. CBM reduces
the downtime and increases the productivity (Jardine, Lin, &
Banjevic, 2006). Data acquisition is the primary step in CBM
wherein mechanical and electrical signals are collected from
the machines to monitor its health. Feature extraction is an
important process in CBM which maps the measured signal
into the feature space. The performance of the fault diagnosis
algorithm is also dependent on the features (Saxena, Wu, &
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Vachtsevanos, 2005; Wu et al., 2004; Wu, Saxena, Patrick, &
Vachtsevanos, 2005). Signal processing based feature extrac-
tion methods such as time-domain (Samanta & Al-Balushi,
2003), frequency-domain (Chen, Du, & Qu, 1995), wavelet
(Peter, Peng, & Yam, 2001; Lin & Zuo, 2004; Yan, Gao,
& Wang, 2009), and empirical mode decomposition (Yan &
Gao, 2008; He, Liu, & Kong, 2011) have been widely used in
machine condition monitoring applications. Many feature se-
lection algorithms have been developed for effective fault di-
agnosis (Chiang, Kotanchek, & Kordon, 2004; Casimir, Bout-
leux, Clerc, & Yahoui, 2006; Verron, Tiplica, & Kobi, 2008;
Y. Yang, Liao, Meng, & Lee, 2011; K. Zhang, Li, Scarf,
& Ball, 2011) which are used to select the fault discrimina-
tive features from the feature space for better classification.
Feature transformation approaches are also used to improve
the fault identification performance (Widodo, Yang, & Han,
2007; Widodo & Yang, 2007; Y. Zhang, 2009).

Choosing an appropriate classification algorithm for a partic-
ular application is a difficult task. It also depends on the char-
acteristics of extracted features from the raw data. SVM is
an important supervised machine learning algorithm widely
used in various applications including machine fault diag-
nosis (Nayak, Naik, & Behera, 2015). The performance of
the SVM classifier could be affected by the kernel functions,
training sample size, and kernel parameters. Zhou et al. in-
vestigated the effects of the training sample size, SVM order,
and kernel parameters using least squares SVM for the linear,
polynomial and Gaussian kernels (J. Zhou, Shi, & Li, 2011).
Wang et al. reviewed SVM for uncertain data. Robust opti-
mization is used when the direct model could not guarantee a
good performance on uncertainty data set (X. Wang & Parda-
los, 2015). Khang et al. proposed genetic algorithm based
kernel discriminative features to improve the performance of
multi-class SVM for low speed bearing fault diagnosis (Kang
et al., 2015). Fu et al. made a comparative study on grid
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search (GS), genetic algorithm (GA), and particle swarm op-
timization (PSO) to optimize the penalty factor A and ~y in a
kernel function in a training process (Fu, Tian, & Wu, 2015).

In this work, first the baseline system is developed using SVM
kernels (linear, radial basis function (RBF), polynomial, and
sigmoid) to identify inter-turn faults in a 3k VA synchronous
generator. It is observed that the performance of the classifier
is not satisfactory as the statistical features are non-linear and
does not match with the kernels used. Performance of the
SVM classifier can be improved by the following approaches:
a) Select the features matching a particular kernel. b) Choose
an appropriate kernel that fits the features. c) Linearize the
features to a higher dimensional space and match with linear
kernel. In this paper, the third approach is experimented to
improve the performance of fault diagnosis of a synchronous
generator using feature mapping techniques.

Sparse coding is an unsupervised machine learning algorithm
used to represent feature vectors as a linear combination of
basis vectors. Liu et al. used adaptive sparse features and
classified the faults using multi-class linear discriminant anal-
ysis for machine fault diagnosis (Liu, Liu, & Huang, 2011).
Liu et al. also pointed out that sparse coding requires high
computational cost for dictionary learning for which faster
algorithms are to be developed (Liu et al., 2011). Zhu et al.
proposed an automatic and adaptive feature extraction tech-
nique via K-SVD. Faults are diagnosed using the reconstruc-
tion error of the sparse representation (Zhu et al., 2014). Fur-
ther, fusion sparse coding technique was proposed to extract
impulse components from the vibration signals effectively
(Deng, Jing, & Zhou, 2014). For a good classification per-
formance, coding algorithm should generate similar codes for
similar feature vectors. However, sparse coding might select
different bases for similar feature vectors to support sparsity,
thus fails to capture the correlations between codes (J. Wang
etal., 2010).

Local coordinate coding (LCC) overcomes the drawbacks of
sparse coding by explicitly encouraging the bases to be local
and consequently requires the codes to be sparse (Yu, Zhang,
& Gong, 2009). However, sparse coding and LCC algorithms
have the computational complexity of O(M?), where M rep-
resents the total number of vectors in the basis set. Wang et
al. proposed locality constrained linear coding (LLC) method
for the image classification applications (J. Wang et al., 2010)
to represent the non-linear features that improve the perfor-
mance using linear classifiers (J. Yang, Yu, Gong, & Huang,
2009; X. Zhou, Cui, Li, Liang, & Huang, 2009). LLC is a
fast implementation of LCC which uses locality constraint to
select k& nearest bases for each feature vector, therefore it re-
duces the computational complexity from O(M?) to O(M +
k?). Recent studies show that LLC have been applied to many
image processing applications such as video summarization
(Lu et al., 2014), human action recognition (B. Wang et al.,

2014; Rahmani, Mahmood, Huynh, & Mian, 2014), magnetic
resonance (MR) imaging (P. Zhang et al., 2013), and coloriza-
tion for gray scale facial images for improved performance
(Liang et al., 2014). In this paper, the performance of the
sparse coding and locality constrained linear coding (LLC)
are compared for improving the performance of fault diagno-
sis of a synchronous generator. The details of the experimen-
tal setup, data collection, feature extraction, sparse coding,
locality constrained linear coding (LLC) and support vector
machine (SVM) are discussed in section 2. Experiments and
results are discussed in section 3 and finally, section 4 con-
cludes this paper.

2. SYSTEM DESCRIPTION
2.1. Experimental Setup and Data Collection

In synchronous generators, short circuit faults may happen in
stator winding and field winding coils. Generally, stator and
field winding terminal of synchronous generator has taps at
0% and 100% of the coil windings. The three phase 3kVA
synchronous generator is customized to inject faults in differ-
ent magnitude. For example, 30%, 60%, and 82 % of the total
number of turns in the stator winding leads are made available
to the front panel for injecting short circuit faults between any

of these points.
“A Synchronous Three Phase
Motor [/ (s
\/J or Resistive Load
Voltage and Current Signals

Data Acquisition
System

Figure 1. Block diagram of the experimental setup

Each phase has 18 taps, making the total number of taps
across three phases to 54, to inject different short circuit faults
in the generator. All terminal leads from the stator winding
are taken to the front panel board. Block diagram of the ex-
perimental setup is shown in Fig. 1. Photograph of the cus-
tomized synchronous generator and experimental facility is
shown in Figs. 2 and 3. Design details of the customized syn-
chronous generator can be found in (Gopinath et al., 2013).

In this work, inter turn short circuit faults are injected in a
controlled manner. Generator is connected to the three phase
resistive load. Data acquisition system NI-PXI 6221 is used
to interface the current sensors. Each experiment is con-
ducted for 10 seconds and current signals are sampled at 1
kHz. This makes the number of samples available for each
trial to be 10,000. The process is then repeated for different

Thttp://sine.ni.com/ds/app/doc/p/id/ds-15/lang/en
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Figure 3. Experimental Facility

fault conditions to make the data collection process complete.
Fig. 4, illustrates the current signatures acquired from the
3kVA generator. Specifications of the synchronous genera-
tor is listed in Appendix A. Short circuit faults are injected at
30% (8 turns), 60% (16 turns), and 82% (22 turns) of the total
number of turns (27 turns). The data from each trial is divided
into multiple frames with a window size of 512 samples. The
time domain signal is converted into frequency domain using
Fast Fourier Transform (FFT). Statistical frequency domain
features are used to extract the fault information from the raw
data. The details of the frequency domain features (Lei, He,
& 7Zi, 2008) are listed in Table 1.

2.2. Sparse Coding

Sparse coding is an unsupervised learning method, learns the
set of over-complete bases to represent the data efficiently
(Olshausen & Field, 1997). Sparse coding finds the basis vec-
tors such that, the input vectors X = [x1,xo, ...... ,on|T €
RP*N with D dimension can be expressed as a linear com-
bination of these bases. The input vector can be expressed as
(Olshausen & Field, 1997):

N
2= bic; 6]

i=1
where B = [b1,ba, ...... ,bar] € RPXM s basis vectors or

codebooks. Over-complete basis identifies the patterns in the

input data. However, coefficients or codes c; are not uniquely
determined by the input vectors, with an over-complete basis.
This necessitates to add the sparsity criterion for better repre-
sentation (J. Yang et al., 2009), i.e., most of the coefficients
¢; are zero or nearly zero and only a few coefficients are non-
zero to represent the input data efficiently. Sparse coding can
be expressed as (J. Yang et al., 2009):

N
mcinzHl"i—BCi||2+/\||Cinl 2)

i=1

where A ||¢;||,: is the sparse regularization term and it is deter-
mined as ! norm of ¢;. Sparse regularization ensures that the
codebook is over-complete and unique solution for the under-
determined system, hence it captures the patterns in the input
data.

2.3. Locality Constrained Linear Coding (LLC)

Locality constrained linear coding (LLC) is a feature map-
ping technique used to represent non-linear features as linear
features (J. Wang et al., 2010). LLC codes are sparse and
high dimensional. In LLC, each input vector is represented
as a linear combination of k-nearest basis vectors. The basis
vectors are computed from the data set using k-means clus-
tering algorithm. Basis vectors are called as codebooks in the
context of coding schemes algorithm (J. Wang et al., 2010).
The LLC coding process is described in Fig. 5. Let X be a set
of D- dimensional input database X = [z, 22, ...... ,ZN| €
RP*N | Given a codebook, B = [by, by, ......, bys] € RP*M|
coding algorithm converts each input data into a M- dimen-
sional code, where [by, ba, ...... , bar] are basis vectors and these
basis vectors captures the patterns in the input data. Criteria
for the LLC code is expressed as (J. Wang et al., 2010):

N
i _ Beill? o ell?
mgﬂZsz aill” + Alldi © i 3)

i=1

st1%¢; =1, Vi

where © represents element-wise multiplication. Locality
adaptor d; € RM provides freedom for each basis vector pro-
portional to its similarity to the input feature x;. Locality
adaptor can be expressed as (J. Wang et al., 2010):

“4)

) i) B
d = exp (dzst(z ))

g

where dist(x;, B) is the Euclidean distance between x; and
b; and it can be written as (J. Wang et al., 2010):
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Table 1. Frequency Domain Features

Description Feature Description Feature
K K
Mean Feat; = M Root Mean Square (RMS) Feat; = \/W
k=19
frequency
K 2 K
Variance Featy = Zk:l(sg:ﬁ“tl) Spectrum power convergence  Featg = 7%’??1 ;’gzgg
k=1Jk
S K (s(k)—Featp)® .- SSK L fEs(k)
Skewness Feats = =k=L Stability factor Featy = k=1-k
37T K(Fany y O VR s fis (k)
Kurtosis Featy = Z’“:%zgﬁ;gzatl) Coefficient variability Featyg = %Zig
YK fs(h) K (fr—Feats)3s(k)
Frequency centre Feat; = f;ﬂiili(k) Skewness frequency Featy = =& IKIEFeat(;)g
K K 4
Standard deviation Feats = \/Zk:l(fk_geatS)zs(k) Kurtosis frequency Feats = Zk:l%f;jﬁgi) 2(8)

frequency

1
_ X (fs—Feats) 2 s(k)
F€Gt13 - K+/Featg

Spectrum power
positional factor

where s(k) is the spectrum for k = 1,2..K, K is the number of spectrum lines f}, is the frequency value of the k' spectrum.

3kVA Generator No—fault at 3.5A load

Current in Amps

(o] 20 40

60 80 100 12
Time in secs
3kVA Generator inter—turns faults in R—phase (14 turns shorted) at 3.5A load

Y T T

Current in Amps

(o] 20 40

1
60 80 100 12

Time in secs

Figure 4. Current signature captured during no fault and inter turn fault conditions for the 3 kVA generator

dist(z;, B) = [dist(x;, b1), ...dist(x;, bas)]”

d; is normalized to (0,1] by subtracting max(dist(z;, B))
from dist(z;, B). o adjusts the weight decay speed for the
locality adaptor. The constraints 17¢c; = 1 indicates the shift
invariant requirements of the LLC code. LLC selects the lo-
cal bases from the basis set for each feature vector to form a
local coordinate system using Eq. (3). LLC encoding process
can be speeded up by using the k- nearest neighbors of x; as
the local bases B; instead of using all the bases in the Eq. (3).
This approach is called as fast approximation LLC method
and it uses the following criteria (J. Wang et al., 2010):

N
min X; — B2 5)
i ;II [ (

st1Te =1, Vi

Fast approximation LLC method reduces the computation com-
plexity from O(M?) to O(M+k?). In this paper, fast approx-
imation LLC is used for its reduced computational complex-
ity and fast encoding process (J. Wang et al., 2010).

2.4. Support Vector Machine (SVM)

SVM (Vapnik & Vapnik, 1998) is a supervised learning algo-
rithm which is widely used for classification problems. SVM
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Figure 5. LLC coding process

constructs a hyperplane that separates two classes, and it can
be extended to multi-class classification problems. Fig. 6,
pictorially explains how an SVM classifier finds the sepa-
rating hyper-plane. The planes parallel to the hyperplane
are called bounding planes. The data points that lie on the
bounding planes are called support vectors. The distance be-
tween the two bounding planes is the margin. The central
hyperplane or classifier maximizes the margin and it can be
obtained by finding the distance (d; and ds) between each
bounding plane to the origin respectively, and subtracting be-
tween the distances (d = dy — dy). Margin of the classifier can
be expressed as (Vapnik & Vapnik, 1998):

2
[w]]?

(6)

In order to maximize the margin, SVM learning is formulated
by rewriting the Eq. (6) as a minimization problem, and it can
be expressed as (Vapnik & Vapnik, 1998):

w2
w,b 2

(N

Subject to the constraint:

yil(wlz)] +b>1

where z; = [x1, 22, ....2,] is the data set and y; € {1,—1}
be the class label of x;. b is the bias. Using the Lagrange
multipliers, the optimal solution can be computed by using
the following equation:

ngz mgx{ Jw]|® Za, yi (whz; —b) — 1]} (8)

A
o
Margin ‘\\ o
0 0 O
w
[ N
N )
. o
‘e X
° 4 -
Q. wix+b=1
° e e )
—b
W @ ° . wix+b=0
wlix+b=—1

Figure 6. Linear separating hyperplanes for a separable case

where «; is a Lagrange multiplier. Using Karush Kuhn Tucker
(KKT) conditions (Kuhn & Tucker, 1951), solution can be
expressed as the following:

w= Z YT &)
1 N
b=—> wlz, —y (10)

Using the definition for w as defined in Eq. (9), the problem
can be written in the dual form as:

n
1
maz § 3" 0i = 5 Y iagyyik(eaa) o (D)
2V

n
subject to a; > 0 and Z a;y; = 0.
i=1

where k(x;,2;) is a kernel function. ¢; can be obtained by
solving the Eq. (11), and the decision function can be ex-
pressed as (Vapnik & Vapnik, 1998):

f(z) = sign(w’z +b) = szgn(z itz —b) (12)
i=1
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When the data is not linearly separable, the non-linear kernel
is applied for the classification, which transforms the features
into a higher dimensional space, where it is linearly separable.
In this paper, linear and non-linear SVM are experimented
for the fault diagnosis. The complete process of the proposed
approach is shown in the Fig. 7.

3. EXPERIMENTS AND RESULTS

In this work, the following experiments have been carried out
for diagnosing the inter-turn faults in the 3 kVA synchronous
generator.

1. Develop baseline system using linear, polynomial, radial
basis function (RBF), and sigmoid SVM kernels for the
fault classification

2. Improve the performance of the baseline system using
feature mapping techniques, sparse coding and LLC.

3. Performance comparison of the feature mapping tech-
niques using overall classification accuracy and receiver
operating characteristic (ROC) curve.

Inter-turn faults are injected in the R, Y, and B phases of a 3
kVA generator stator winding. For every trial, current signals
are acquired from all the three phases. Frequency domain
statistical features are extracted from the raw data. Then, the
experiments with the R, Y, and B phase inter-turn faults are
treated as independent two class classification problems, i.e.,
no-fault or fault in R phase, no-fault or fault in Y phase and
no-fault or fault in B phase, of a 3 kVA generator. It may be
noted that an NV class problem may be realized as N two class
problems.

Experiments are conducted at different load conditions such
as05 A 1A 15A,2A,25A,3A,and 3.5 A loads. Data
from these loads are combined together for fault classifica-
tion. However, training and test data are collected separately,
and no data is shared between the training and test sets. In
this work, the experiments have been performed using bal-
anced and unbalanced data sets to check the effectiveness of
the proposed approach. Further, k-fold cross validation tech-
nique is also experimented using balanced data set separately.
In addition, experiments using unseen load condition is per-
formed to check the effectiveness of the proposed approach in
removing load dependencies of the features. Experiments are
carried out on a IBM X3100 M4? (Intel Xeon E3-1220v2 se-
ries) server, with 8 GB memory and 3.1 GHz Quad-core pro-
cessor. MATLABS? toolboxes are used for computing sparse®
and LLC? codes.

Zhttp://www-03.ibm.com/systems/x/hardware/tower/x3100m4/
3http://in.mathworks.com/products/matlab/
“http://stanford.edu/"boyd/11_1s/
Shttp://www.ifp.illinois.edu/jyang29/LLC.htm

3.1. Experiments using balanced data set

In this experiment, the data set used for training and test are
nearly balanced (no-fault data: 55% and fault data: 45%).
Details of the data sets used in our experiments are presented
in Table 2.

Table 2. Total data collected for no fault and fault conditions
(No-fault data:55%; Fault-data:45%)

Machine condition

No fault Inter-turn fault Total
Train data 13300 10640 23940
Test data 5852 4683 10535
Total 19152 15323 34475

Baseline system: The baseline system is developed using
SVM kernels such as linear, polynomial, RBF, and sigmoid.
Table 3 lists the baseline system performance of the SVM ker-
nels for the R, Y, and B phase faults. From the experiments,
it is noted that RBF kernel performs better when compared to
other kernels for the baseline system. It is observed that the
performance of the classifier is not encouraging since the fea-
tures does not match with the kernels and exhibit non-linear
characteristics. The classification accuracies are generally
low in the baseline system because the fault characteristics
vary largely across the load conditions. The classification ac-
curacy can be improved by removing this load dependencies
of the features. In this paper, the objective is to improve the
performance of fault diagnosis of generator by linearizing the
features in a higher dimensional space using feature mapping
techniques.

Table 3. Baseline system classification performance (accu-
racy in %) of SVM for the balanced data set

Kernel/Inter-turn fault R phase Y Phase B Phase
Linear 67.45 61.46 66.68

¢ =10, = 0.0256

RBF 76.66 81.35 82.31

¢ =10, = 0.0256

Polynomial 65.33 67.94 72.86
¢=1,7=0.0256

Sigmoid 55.54 55.54 55.54

c=1,v = 0.0256

where c is the cost and +y is the kernel parameter.

Sparse coding: First, codebook (basis set or dictionary) is
computed from the training data set. Subsequently, the fea-
ture vectors from the training and test data set are represented
as a linear combination of the basis vectors from the code-
book. In this process, codebook is common for the training
and test data sets. Then the feature dimension is expanded
from 39 (13 features per phase) to 256, 512, and 1024 fea-
ture vectors. Linear SVM is then used to classify the sparse
represented features. Table 4 lists the classification perfor-
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mance of the sparse coding for the inter-turn fault diagno-
sis of the generator. Experiments are performed for the dif-
ferent codebook sizes of 256, 512, and 1024, and obtained
the improved performance for 256 codebooks. Sparse coding
improves the performance of the baseline RBF kernel, from
76.66% to 87.35%, 81.35% to 87.37% and 82.31% to 91.14%
for the R, Y and B phase faults respectively. Table 5 lists the
improved classification performance and its computation time
for sparse coding. Since the computation time is very large,
it is not suitable for practical applications.

Table 4. Classification performance of sparse coding using
linear SVM for the balanced data set

Classification accuracy (%)

Inter-turn fault 756 317 024
codebooks codebooks codebooks
R Phase 87.35 87.40 87.23
Y Phase 87.37 86.91 86.82
B Phase 91.14 90.85 91.44
e A

Input Vectors (Features)

A 4

Find K- nearest basis from
codebook using KNN
algorithm

!

4 1\
Represent each input vector
as linear combination of k—

\. J

nearest basis
- J

LLC

Figure 7. Machine fault diagnosis using locality constrained
linear coding (LLC)

LLC: In LLC, finding basis vectors is similar to sparse cod-
ing, but the input data is represented as a linear combination
of k nearest basis vectors. Experiments are performed with
different codebook sizes and k-nearest neighbors (k-NN) to
achieve a good classification performance for the fault iden-

Table 5. Improved classification performance and its compu-
tation time for sparse coding (256 codebooks)

Inter-turn fault  Accuracy (%) CPU time (Mins)
R Phase 87.35 36.87
Y Phase 87.37 35.43
B Phase 91.14 39.93

tification system. Table 6 lists the performance of the LLC
based linear SVM for the different codebook size and k-NN
respectively. Codebook sizes 256, 512, and 1024 are used,
and each codebook is experimented with 10, 20, 30, and 40
nearest neighbors for the R, Y, and B phase inter-turn faults
respectively. Though codebook sizes 256 and 512 improves
the performance, 1024 codebooks achieve the best classifica-
tion performance. For 1024 codebooks with a selection of 40
nearest neighbors, LLC improves the baseline system (RBF
kernel) by 22.56%, 18.43% and 17.05% absolute for the R, Y
and B phase faults respectively.

Table 6. Classification performance of LLC using linear
SVM for the balanced data set

Inter-turn ~ k-NN  Codebooks & accuracy (%)

fault

R Phase 10 0833 98.19 98.50
20 97.88 99.07 99.14
30 96.43 99.12 99.15
40 92.74 98.31 99.22

Y Phase 10 98.07 98.88 98.48
20 98.01 99.34 99.17
30 97.16 99.17 99.58
40 9595 9796 99.78

B Phase 10 99.41 99.37 98.56
20 99.20 99.64 99.31
30 99.17 99.50 99.34
40 99.01 99.23 99.36

Table 7. Improved classification performance and its compu-
tation time for LLC (1024 codebooks)

Inter-turn fault kNN  Accuracy (%) CPU time (Sec)
R Phase 40 99.22 70.45
Y Phase 40 99.78 63.90
B Phase 40 99.36 50.13

Table 7 lists the improved classification performance and its
computation time for LLC. From our experiments, it is noted
that LLC takes less computation time compared to sparse
coding, therefore LLC reduces computational complexity and
achieves improved performance for the classifier.

3.2. Experiments using unbalanced data set

In practical applications, injecting faults and collecting large
number of fault data is not possible, to capture the intelli-
gence about the system. This necessitates to analyze the fault
identification system using smaller proportion of fault data, to
check the effectiveness of the feature mapping techniques. In
this work, the experiments were carried out using unbalanced
data (No-fault data:80%; Fault-data:20%) by taking smaller
proportion of fault data for the training. However, equal pro-
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portion of fault and no-fault data is taken for the testing for a
fair comparison of the results with the balanced data set ex-
periments. Details of the data set used in our experiments is
listed in Table 8. The performances of the baseline, sparse
coding and LLC for the unbalanced data set are listed in the
Tables 9 -11. From the results it is observed that, the perfor-
mance of the baseline system, sparse coding and LL.C have
reduced for R, Y and B phases with the use of unbalanced
data set. For the sparse coding, 256 codebooks performs bet-
ter than other codebook sizes. However, when compared to
the performance of the sparse coding for the balanced and
unbalanced data set for 256 codebooks, the performance for
the unbalanced data set got decreased by 4.27%, 2.10%, and
2.25% absolute for the R, Y, and B phases respectively. Simi-
larly, the performance of the LLC with 1024 codebooks using
balanced and unbalanced data set, the performance for the un-
balanced data set got reduced by 3.84%, 1.77%, and 0.76%
absolute for the R, Y, and B phases respectively. Though
the unbalanced data set affect the performance of the clas-
sifier, the overall classification accuracy does not reduce sig-
nificantly for the sparse coding and LLC, emphasizing these
algorithms are suitable when data under fault conditions is
scarce.

Table 8. Experiments using unbalanced data set (Training
data: No-fault data:80%:; Fault-data:20%, Test data: No-fault
data:55%; Fault-data:45%)

Machine condition

No-fault Inter-turn fault Total
Train data 13300 3346 16646
Test data 5852 4683 10535
Total 19152 8029 27181

Table 9. Baseline system classification performance (accu-
racy in %) of the SVM for the unbalanced data set

Kernel/Inter-turn fault R phase Y Phase B Phase
Linear 62.71 57.30 60.54

¢ =5,~ =0.0256

RBF 59.54 59.92 59.49
c=10,v = 0.0256

Polynomial 59.28 63.78 72.67

c = 20,v = 0.0256

Sigmoid 55.54 55.54 55.54

c=1,v=0.0256
where c is the cost and + is the kernel parameter.

3.3. ROC curve analysis

Receiver operating characteristic (ROC) curve is used to vi-
sualize and evaluate the classifier performance (Japkowicz &
Shah, 2011). It shows the trade-off between the probability
of detection or true positives rate (TPR), and the probabil-
ity of false alarm or false positives rate (FPR). In this work,
the performance of the baseline RBF system, sparse coding

Table 10. Classification performance of sparse coding using
linear SVM for the unbalanced data set

Classification accuracy (%)

Inter-turn fault 756 317 004
codebooks codebooks codebooks

R Phase 83.08 83.02 82.21

Y Phase 85.27 84.02 84.17

B Phase 88.89 88.66 88.45

Table 11. Classification performance of LLC using linear
SVM for the unbalanced data set

Inter-turn  k-NN  Codebooks & accuracy (%)

fault

R Phase 10 95.67 94.60 93.76
20 9548 94.65 94.71
30 93.29 94.86 94.93
40 90.56 96.44 95.38

Y Phase 10 95.87 96.25 96.01
20 94.69 97.69 97.27
30 93.59 97.09 98.01
40 9430 9440 97.82

B Phase 10 97.05 97.19 96.77
20 98.32 97.84 97.86
30 97.03 98.69 98.15
40 97.31 98.25 98.60

and LLC are compared using ROC curve for the balanced
and unbalanced data set (smaller proportion of fault data is
considered for the training). Figure 8 -10 shows the perfor-
mance comparison of the feature mapping techniques for the
R, Y, and B phase faults. It is observed that area under curve
(AUC) value becomes closer to 1 for the LLC compared to
baseline RBF and sparse coding techniques. However, for
the experiments using unbalanced AUC value got reduced for
the baseline RBF, sparse coding and LLC.

3.4. k-fold cross validation using balanced data set

The experiments discussed in the subsections 3.1 and 3.2 were
performed using one partition of data only. However, the use
of fixed data set may over-fit the model. To overcome this
problem, k-fold cross validation technique is used to assess
the performance of the classifier. The balanced data set is
used for evaluating the performance of the classifier. In this
experiment, 19152 samples of no-fault and 15323 of fault
samples are used for 10-fold cross validation. The perfor-
mance of the baseline system, sparse coding and LLC for the
10-fold cross validation technique is listed in Table 12-14.

From the experiments it is noted that RBF kernel performs
better than other kernels. Sparse coding improves the perfor-
mance by 7.61%, 1.07% and 5.37% for the R, Y, and B phases
respectively for 256 codebooks. Similarly, LLC improves the
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Performance comparison of feature mapping techniques for R phase fault
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Figure 8. ROC plot for the performance comparison of fea-
ture mapping technniques for the R phase fault
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Figure 9. ROC plot for the performance comparison of fea-
ture mapping techniques for the Y phase fault

Table 12. Baseline system classification performance (accu-
racy in %) of the SVM using 10-fold cross validation

Kernel/Inter-turn fault R phase Y Phase B Phase
Linear 60.16 58.31 65.70

¢ =10,7 = 0.0256

RBF 80.01 85.77 86.02
c=10,v = 0.0256

Polynomial 63.05 67.16 65.43

¢ =30,y = 0.0256

Sigmoid 55.55 55.55 55.55

c=10,v = 0.0256

where c is the cost and v is the kernel parameter.

performance by 18.97%, 13.83%, and 13.76% for the R, Y,
and B phases respectively for 1024 codebooks. It is observed

that, the

experiments using 10-fold cross validation technique
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Figure 10. ROC plot for the performance comparison of fea-
ture mapping techniques for the B phase fault

Table 13. Classification performance of sparse coding using
linear SVM for the 10-fold cross validation

Inter-turn fault

Classification accuracy (%)

256 512 1024
codebooks codebooks codebooks
R Phase 87.62 87.48 87.25
Y Phase 86.84 86.55 86.63
B Phase 91.39 90.88 91.44

Table 14. Classification performance of LLC using linear
SVM for the 10-fold cross validation

Inter-turn  k-NN  Codebooks & accuracy (%)

fault

R Phase 10 98.47 98.86 98.98
20 98.10 99.08 98.32
30 96.31 99.04 98.31
40 93.47 98.03 98.42

Y Phase 10 98.00 98.61 98.67
20 98.36 99.32 99.46
30 98.04 99.29 99.60
40 99.01 99.23 99.60

B Phase 10 99.41 99.37 99.42
20 99.20 99.64 99.73
30 99.17 99.50 99.75
40 99.01 99.23 99.78

for the balanced data set does not affect the performance of
the feature mapping techniques significantly compared to ex-
periments using single partition of data.
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3.5. Experiments on unseen load condition

Experiments are also carried out for unseen load condition of
3 kVA synchronous generator to check the effectiveness of
LLC in removing the load dependencies of the features. The
model is trained using 0.5A, 1A, 2A,2.5A, 3A, and 3.5A load
conditions and tested on 1.5A load. Total samples of 18240
and 1338 are used for training and testing, respectively, with
an equal proportion of no-fault and fault data. From the ex-
periments, it is observed that the best performance for the
baseline system is obtained using linear kernel with an over-
all classification accuracy of 59.04%, 72.79% and 80.94%
for the R, Y, and B phases respectively. The improved per-
formance is obtained using LLC with an overall accuracy of
73.46%, 78.70%, and 87.66% by selecting 8, 23, and 36 near-
est neighbors for the R, Y, and B phases respectively, with the
codebook size of 64. Experimental results show that LLC
could perform better even if unseen load condition is used for
fault diagnosis.

4. CONCLUSIONS

In this paper, feature mapping algorithms, sparse coding and
LLC are used to improve the performance of SVM for the
inter-turn fault identification of 3kVA synchronous genera-
tor. As the features are non-linear, feature mapping tech-
niques are used to linearize the features in a higher dimen-
sional space to improve performance of the fault diagnosis
system. Experiments are performed for the balanced and un-
balanced data using single partition of data. Sparse coding
improves the performance significantly with a high compu-
tational cost. Therefore, LLC is used to reduce the com-
putational complexity and enhance the performance of the
system. By using the balanced data set, 1024 codebooks
with 40 nearest neighbors are selected empirically for its best
performance. LLC improves the overall fault identification
accuracy of the baseline RBF system by 22.56%, 18.43%
and 17.05% absolute for the R, Y and B-phase faults respec-
tively. The performance of the feature mapping techniques
are also illustrated through ROC curves. The AUC value be-
comes closer to one for LLC compared to the sparse coding
and baseline RBF system. The performance of the classi-
fier is also assessed using 10-fold cross validation technique.
From the experiments, it is observed that LLC outperforms
sparse coding in terms of classification performance and com-
putational cost for the inter-turn fault diagnosis of the syn-
chronous generator. Though LLC has been used widely in
image classification problems, the reported experimental re-
sults show that, LLC could be used for other applications also
if the features used in the system does not match with SVM
kernels and exhibits non-linear characteristics.
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APPENDIX A

Synchronous generator specifications

Parameter Value
Rated power 3kVA
Rated voltage 415V
Rated frequency 50Hz
Connection type star

Number of poles 4
Number of phases 3

Speed 1500 rpm
Current 4.2A
Power factor 0.8
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