
Towards Real-time, On-board, Hardware-supported Sensor and
Software Health Management for Unmanned Aerial Systems

Johann Schumann1, Kristin Y. Rozier2, Thomas Reinbacher3, Ole J. Mengshoel4, Timmy Mbaya5, and Corey Ippolito6

1 SGT, Inc., NASA Ames Research Center, Moffett Field, CA 94035, USA
johann.m.schumann@nasa.gov

2 University of Cincinnati, Cincinnati, OH 45221, USA
Kristin.Y.Rozier@uc.edu

3 Vienna University of Technology, Treitlstrasse 3, 1040 Wien, Austria
treinbacher@ecs.tuwien.ac.at

4 Carnegie Mellon University, Moffett Field, CA 94035, USA
ole.mengshoel@sv.cmu.edu

5 University of Southern California, Los Angeles, CA 90033, USA
mbaya@usc.edu

6 NASA Ames Research Center, Moffett Field, CA 94035, USA
corey.ippolito@nasa.gov

ABSTRACT

For unmanned aerial systems (UAS) to be successfully de-
ployed and integrated within the national airspace, it is im-
perative that they possess the capability to effectively com-
plete their missions without compromising the safety of other
aircraft, as well as persons and property on the ground. This
necessity creates a natural requirement for UAS that can re-
spond to uncertain environmental conditions and emergent
failures in real-time, with robustness and resilience close en-
ough to those of manned systems. We introduce a system
that meets this requirement with the design of a real-time on-
board system health management (SHM) capability to con-
tinuously monitor sensors, software, and hardware compo-
nents. This system can detect and diagnose failures and vi-
olations of safety or performance rules during the flight of a
UAS. Our approach to SHM is three-pronged, providing: (1)
real-time monitoring of sensor and software signals; (2) sig-
nal analysis, preprocessing, and advanced on-the-fly tempo-
ral and Bayesian probabilistic fault diagnosis; and (3) an un-
obtrusive, lightweight, read-only, low-power realization us-
ing Field Programmable Gate Arrays (FPGAs) that avoids

Johann Schumann et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

overburdening limited computing resources or costly re-cer-
tification of flight software. We call this approach rt-R2U2,
a name derived from its requirements. Our implementation
provides a novel approach of combining modular building
blocks, integrating responsive runtime monitoring of tempo-
ral logic system safety requirements with model-based diag-
nosis and Bayesian network-based probabilistic analysis. We
demonstrate this approach using actual flight data from the
NASA Swift UAS.

1. INTRODUCTION

Modern unmanned aerial systems (UAS) are highly complex
pieces of machinery, combining mechanical and electrical sub-
systems with complex software systems and controls, such as
the autopilot and payload systems (e.g., cameras or scientific
instruments). Rigorous requirements for safety, both in the
air and on the ground, must be met so as to avoid endangering
other aircraft, people, or property. Even after thorough pre-
flight certification, mission-time diagnostics and prognostics
capabilities are required to react to unforeseeable events dur-
ing operation. In case of problems and faults in components,
sensors, or the flight software, the on-board system health ca-
pability must be able to detect and diagnose the failure(s) and
respond in a timely manner, possibly by triggering mitigation
actions. These corrective actions can range from a simple

International Journal of Prognostics and Health Management, ISSN2153-2648, 2015 021 1

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

mode change to following a pre-programmed flight path to
continue the mission (in case of minor problems, such as a
lost communications link) to a “limp” home. In case of se-
vere problems, a controlled emergency landing in a remote
and safe area might be necessary.

Most current UAS systems, however, only have very rudi-
mentary fault detection systems. For example, the open-source
ArduPilot software1 only performs rudimentary sanity checks
of sensor data and received commands. Faults that manifest
themselves with a more complex failure pattern can often not
be detected or diagnosed. Also, there can be dangerous in-
teractions between the sensors and the software. Perfectly
working sensors can trigger software faults, when, for exam-
ple, operating in an unexpected environment. Alternatively,
a faulty sensor can cause unexpected software behavior, e.g.,
originating from a dormant software bug.

There is a definite need for advanced health management sys-
tems that, in case of anomalies, can quickly and reliably pin-
point failures, carry out accurate diagnosis of unexpected sce-
narios, and, based upon the determined root causes, make in-
formed decisions. These decisions should maximize capa-
bilities to meet mission objectives while maintaining safety
requirements and avoiding safety hazards. Although care-
ful system design and pre-deployment verification and val-
idation (V&V) can be very effective in minimizing sensor
failures and bugs in on-board software, it is in practice im-
possible to eliminate all problem sources and software bugs
due to the size and complexity of the software as well as
unanticipated, and therefore unmodeled, environmental con-
ditions. The need to catch fault scenarios not detected by
pre-deployment V&V is perhaps even more pressing when
considering software in unmanned systems, since these sys-
tems often do not have to undergo the same highly rigorous
and costly V&V processes as required by DO-178C (RTCA,
2012) for manned commercial aircraft.

In this paper, we describe a novel framework called rt-R2U2
that enables the design and realization of a powerful, real-
time, on-board system (including sensor and software) health
management (SHM) system that can (a) dynamically moni-
tor a multitude of sensor and software signals; (b) perform
substantial reasoning for fault diagnosis and prognosis; and
(c) avoid interfering with the original flight software or im-
pede on scarce on-board computing resources—the original
(and certified) behavior of the UAS flight software must not
be affected.

In this paper, we design a capability that enables SHM models
for complex and large systems to be specified in a concise
and modular manner. To this end, we have developed a three-
pronged approach that combines the capabilities of temporal
logic runtime observers, model-based analysis, and powerful

1https://github.com/diydrones/ardupilot

probabilistic reasoning with Bayesian networks (BNs).

In general, any fault detection and diagnosis system uses ab-
stracted models of the usually complex system to be moni-
tored in order to decide if the system is operating in a nom-
inal mode or if any faults are occurring. A large number of
different SHM modeling paradigms with different levels of
abstraction and expressive power have been developed. They
exhibit very different model expressiveness and complexity
and might require vastly different computational resources
for their execution. For an overview, see Section 2. SHM
design must find a balance between expressive power, level
of abstraction, and required resources.

Figure 1 shows a high-level representation of the design space,
spanned by the three major abstraction dimensions. Several
well-known paradigms and diagnostic/monitoring systems are
mapped into this figure and described in Section 2. The coars-
est abstraction for detection and diagnosis uses a set of Bool-
ean conditions, for example, safety requirements that are con-
tinuously monitored throughout the UAS mission. Typically,
software checks performed using if-then-else statements use
this kind of abstraction. The incorporation of model-specific
information can substantially increase the detection and di-
agnosis performance. For example, the commercial system
QSI/TEAMS2 uses hierarchical, multi-signal diagnosis, where
information about the system structure and signal types are
incorporated. On the other end of the spectrum, systems like
HyDE3 simulate simplified dynamic systems during diagno-
sis. Although potentially very powerful, such approaches
need substantial computational resources, which makes real-
time processing on-board a resource-constrained system, like
a UAS, difficult, given the current state of the art. Proba-
bilistic information about the components’ reliability or the
likelihood of certain conditions can be important for the dis-
ambiguation of diagnosis results. Bayesian network-based di-
agnosis systems can represent such information and belong to
the corresponding category. Finally, temporal issues can be of
extreme importance. Only when properties like fault propa-
gation and other temporal relationships can be expressed can
large sets of realistic faults can be described, detected, and
diagnosed. Examples here include fault-propagation models
(like FACT/TFPG4) and detection or monitoring mechanisms
that are based upon temporal logic.

In our rt-R2U2 framework, we combine model-based, tem-
poral, and probabilistic approaches in a modular and hierar-
chical manner. We obtain high expressiveness, yet a clear
separation between, for example, temporal and probabilistic
aspects. This makes it possible to develop SHM models in a
compact and concise manner.

2http://www.teamqsi.com/products/teams-designer/
3http://ti.arc.nasa.gov/tech/dash/diagnostics-and
-prognostics/hyde-diagnostics/

4http://w3.isis.vanderbilt.edu/Projects/Fact/
Fact.htm

2

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

In this paper, we discuss in detail the three major building
blocks of our rt-R2U2 approach and describe a novel method
to implement such a health management system on a Field
Programmable Gate Array (FPGA) for efficient processing
and minimal intrusiveness. We demonstrate in detail how to
instrument NASA’s Swift UAS with this new SHM capability.

This paper is based upon (Schumann, Rozier, et al., 2013)
and has been substantially extended and improved. In par-
ticular, we refined the framework for the construction of hi-
erarchical SHM models, placed rt-R2U2 into the abstraction
space of SHM approaches, and discussed advantages of using
MTL and LTL for specifying health models. We furthermore
elaborated on the description of our FPGA hardware imple-
mentation and improved and extended the presentation of our
examples.

After discussing related approaches in Section 2, we intro-
duce in Section 3 our problem domain, including the archi-
tecture of NASA’s Swift UAS and the requirements that must
be met for its safe operation. In Section 4, we discuss major
design requirements for our rt-R2U2 framework and present
an overview of its building blocks. In the subsequent sec-
tions, we give further details of the major components of rt-
R2U2, namely observers using temporal logic in Section 5,
model-based monitors in Section 6, and Bayesian reasoning
components in Section 7. We then provide further details on
our implementation of all these components, and discuss ex-
perimental results for flight test data from the Swift UAS in
Section 9. Finally, Section 10 discusses future work and con-
cludes.

(3)

pro
bab

ili
st

ic

temporal

m
o

d
e
l
b

a
s
e
d

(2)

(1)

(4)

(5)

(6)

(7)
(8)

(9)

Figure 1. Abstraction space for SHM along the dimensions
of temporal, model-based, and probabilistic reasoning. In
this figure, (1) corresponds to Boolean conditions, (2) to
paradigms similar to QSi/TEAMS, (3) to Livingstone, (4) to
HyDe, (5) to temporal logic, (6) to FACT/TFPG. (7) to (static)
Bayesian networks (BN), (8) to dynamic BN, and (9) to our
rt-R2U2 framework. For further related work see Section 2.

2. RELATED WORK

2.1. System Health Management

System, or vehicle, health management performs similar tasks
to Fault Detection, Diagnosis, and Recovery (FDDR). There
exist many FDDR approaches and commercial tools that are
being actively used in the aerospace industry. For example,
QSi/TEAMS is a model-based tool used for diagnosis and test
planning. It enables hierarchical, multi-signal diagnosis, but
does not model temporal or probabilistic relationships. The
underlying paradigm of FACT is a Temporal Fault Propaga-
tion Graph (TFPG) with temporal constraints. More complex
diagnosis systems like HyDE execute simplified dynamical
models on various abstraction levels and compare model re-
sults against signal values for fault detection and diagnosis.
Livingston5 is a NASA open-source diagnosis and recovery
engine that uses a set of high-level qualitative models; the
behaviors are specified in propositional logic. Formal V&V
for such models have been carried out using the SMV model
checker (Lindsey & Pecheur, 2004).

Bayesian networks are also useful for fault detection, diag-
nosis, and decision making because of their ability to per-
form deep reasoning using probabilistic models (Pearl, 1988;
Darwiche, 2009; Koller & Friedman, 2009; Choi, Darwiche,
Zheng, & Mengshoel, 2011). Design-time knowledge about
component reliability can, for example, be expressed in terms
of mean time to failure (MTTF) and cleanly incorporated as
priors. Whereas there are several tools for Bayesian reason-
ing, e.g., SamIam6 or Hugin Expert,7 they have not been used
extensively for system health management, in part because of
computationally intensive reasoning algorithms.

Fortunately, this situation has started to change. A testbed
for electrical power systems in aerospace vehicles, the NASA
ADAPT testbed (Poll et al., 2007), has been used to bench-
mark several system health management techniques. One of
them is ProADAPT, a system health management algorithm
using Bayesian networks (Ricks & Mengshoel, 2009a, 2009b,
2010, 2014). ProADAPT uses compilation of Bayesian net-
works into arithmetic circuits (Darwiche, 2003; Huang, Cha-
vira, & Darwiche, 2006; Chavira & Darwiche, 2007) for effi-
cient sub-millisecond computation. In addition, ProADAPT
demonstrates how to diagnose a comprehensive set of faults,
including faults of a continuous and dynamic nature, by means
of discrete and static Bayesian networks (Ricks & Mengshoel,
2014). This work also shows how Bayesian system health
models can be generated automatically from schematics of
electrical power systems such as ADAPT (Mengshoel et al.,
2008, 2010).

5http://ti.arc.nasa.gov/opensource/projects/
livingstone2/

6http://reasoning.cs.ucla.edu/samiam/
7http://www.hugin.com/

3

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

2.2. Software Health Management

With increasing complexity and size of software in safety-
critical systems, the burden of pre-deployment verification
and validation is extremely high. Despite all efforts, dormant
bugs in the software or operation in unforeseen environments
can cause catastrophic software and subsequent system fail-
ures. (Srivastava & Schumann, 2013) give an introduction
into software health management and discuss crucial proper-
ties and requirements. (Zhao & Rozier, 2014b) utilizes prob-
abilistic model checking to compare flight software designs at
system design time to maximize system health management
during deployment. Specific approaches here include (Pike,
Goodloe, Morisset, & Niller, 2010; Luo et al., 2014; Huang
et al., 2014).

2.3. Runtime Verification

Existing methods for Runtime Verification (RV) (Qadeer &
Tasiran, 2012; Legay & Bensalem, 2013; Bonakdarpour &
Smolka, 2014) assess system status by automatically gener-
ating (mainly software-based) observers to check the state of
the software system against a formal specification. Observa-
tions in RV are usually made accessible via software instru-
mentation (Havelund, 2008); they usually report only when
a specification has failed, e.g., through adding hooks in the
code base to detect changes in the state of the system being
monitored. Such instrumentation may unfortunately make re-
certification of the system necessary, alter the original timing
behavior, or increase resource consumption (Pike, Niller, &
Wegmann, 2011); we seek to avoid these problems. Also, re-
porting only the outcomes of specifications does not provide
the real-time responsiveness we require for rt-R2U2, because
no diagnostic information is provided.

Systems in our applications domain often need to adhere to
timing-related flight rules like this one: after receiving the
command “takeoff,” reach an altitude of 600 ft within five
minutes. These flight rules can be easily expressed in tem-
poral logics, often in some flavor of Linear Temporal Logic
(LTL) (Bauer, Leucker, & Schallhart, 2010), such as Met-
ric Temporal Logic (MTL) (Alur & Henzinger, 1990). They
can be generated specifically for runtime verification or car-
ried over from the design phase. For example, Zhao and
Rozier (2012, 2014a) generated LTL specifications in the de-
sign phase of an air traffic control system that could be easily
carried throughout the system development process, as could
the LTL specifications that check human-human communica-
tion protocols for air transportation (Bolton & Bass, 2013).
LTL formulas have also been used to verify the design of an
embedded satellite software control system (Gan, Dubrovin,
& Heljanko, 2011).

To reduce runtime overhead, restrictions of LTL to its past-
time fragment have been used for RV applications previously,
mainly due to promising complexity results (Basin, Klaedtke,

& Zălinescu, 2011; Divakaran, D’Souza, & Mohan, 2010).
Though specifications including past time operators may be
natural for some other domains (Lichtenstein, Pnueli, & Zuck,
1985), flight rules like those we must monitor for the Swift
UAS require future-time reasoning. To enable more intu-
itive specifications, others have studied monitoring of future-
time claims; see (Maler, Nickovic, & Pnueli, 2008) for a
survey and (Geilen, 2003; Thati & Roşu, 2005; Divakaran
et al., 2010; Maler, Nickovic, & Pnueli, 2005, 2007; Basin,
Klaedtke, Müller, & Pfitzmann, 2008) for algorithms and fra-
meworks. Most of these RV algorithms were, however, de-
signed with a complex software implementation in mind and
require powerful computers that would far exceed the limits
of a small UAS.

2.4. Hardware Architectures

The above approaches to system health management are typi-
cally implemented in software executing on traditional CPUs.
However, with the recent developments in parallel comput-
ing hardware, including in many-core graphics processing
units (GPUs), Bayesian inference can be performed more ef-
ficiently (Kozlov & Singh, 1994; Namasivayam & Prasanna,
2006; Xia & Prasanna, 2007; Silberstein, Schuster, Geiger,
Patney, & Owens, 2008; Kask, Dechter, & Gelfand, 2010;
Linderman et al., 2010; Jeon, Xia, & Prasanna, 2010; Low et
al., 2010; Bekkerman, Bilenko, & Langford, 2011; Zheng,
Mengshoel, & Chong, 2011; Zheng & Mengshoel, 2013).
Several of the recent many-core algorithms are based on the
junction tree data structure, which can be compiled from a
BN (Lauritzen & Spiegelhalter, 1988; Dawid, 1992; Huang &
Darwiche, 1994; Jensen, Lauritzen, & Olesen, 1990). Junc-
tion trees can be used for both marginal and most probable ex-
planation (MPE) inference in BNs. A data parallel implemen-
tation for junction tree inference was developed in the mid-
1990s (Kozlov & Singh, 1994), and the basic sum-product
computation has been implemented in a parallel fashion on
GPUs (Silberstein et al., 2008). Based on the cluster-sepset
mapping method (Huang & Darwiche, 1994), node-level par-
allel computing techniques have recently been developed for
GPUs (Zheng et al., 2011; Zheng & Mengshoel, 2013), re-
sulting in as much as a 20-fold speed-up in processing com-
pared to sequential techniques. GPUs also have power con-
sumption benefits compared to CPUs, which is another im-
portant factor for a UAS.

Other authors have used the benefits of a hardware architec-
ture to natively answer statistical queries on BNs. For ex-
ample, (Lin, Lebedev, & Wawrzynek, 2010) discuss a BN
computing machine with a focus on high throughput. Their
architecture contains two switching crossbars to interconnect
process units with memory. Their implementation, however,
targets a resource-intensive grid of FPGAs, making this ap-
proach unsuitable for our purposes. (Kulesza & Tylman, 2006)
present another approach to evaluate Bayesian networks on

4

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

reconfigurable hardware. Their approach targets embedded
systems as execution platforms and is based on evaluating
Bayesian networks through elimination trees. The major draw-
back of their approach is that the hardware structure is tightly
coupled with the elimination tree and requires that the hard-
ware be re-synthesized with every change in the BN.

(Watterson & Heffernan, 2007) review established and emerg-
ing approaches for monitoring software executions of embed-
ded systems. They call for future work on runtime verifica-
tion approaches that utilize existing chip interfaces to provide
the observations as events to an external monitoring system.
(Pike et al., 2010) worked on runtime verification for real-
time systems by defining observers in a data-flow language,
which are compiled into programs with constant runtime and
memory. If the original system is periodically schedulable
with some safety margin, the monitored system can be shown
to be schedulable, too. This approach targets software only,
whereas we monitor a combination of embedded software
and hardware components. Hardware observers that simply
probe one or more internal signals have been known in the
literature for a few decades. An early instance thereof is the
non-interference monitoring and replay mechanism by (Tsai,
Fang, Chen, & Bi, 1990). Their monitoring system is based
on the MC6800 processor that records the execution history
of the target system. A dedicated replay controller then re-
plays stored executions, which supports test engineers in low-
level debugging. Although we share a similar idea of prob-
ing internal signals, rt-R2U2 detects specification violations
on-the-fly, rather than replaying traces from some execution
history.

The Dynamic Implementation Verification Architecture (DIVA)
exploits runtime verification at an intra-processor level (Austin,
1999). Whenever a DIVA-based microprocessor executes an
instruction, the operands and the results are sent to a checker
that verifies correctness of the computation; the checker also
supports fixing an erroneous operation. (Chenard, 2011) gives
a system-level approach to debugging based on in-silicon hard-
ware checkers.

Work of Brörkens and Möller (2002) akin to ours also does
not rely on code instrumentation to generate event sequences.
Their framework, however, targets Java and connects to the
bytecode using the Java Debug Interface (JDI) so as to gener-
ate sequences of events.

BusMOP (Pellizzoni, Meredith, Caccamo, & Rosu, 2008) gen-
erates observers for past time LTL on FPGAs, which are con-
nected to the Peripheral Component Interconnect (PCI). The
commercial Temporal Rover system (Drusinsky, 2003) im-
plements observers for Metric Temporal Logic (MTL) for-
mulas, but the implementation and algorithms used are not
published.

The concept of a separate hardware processor to monitor the

behavior of the main control computer for safety is, for exam-
ple, being used in the automotive industry. Barr (2013) dis-
cusses the engine control module of a Toyota vehicle, which
has a dedicated separate processor for monitoring some safety
and health requirements during operation.

3. SYSTEM BACKGROUND

Due to the increasing interest in using unmanned aircraft for
different military, civilian, and scientific applications, NASA
has been engaged in UAS research since its inception. The
Swift UAS was designed to support NASA’s research inter-
ests in aeronautics and earth science, with particular focus on
autonomy, intelligent flight control, and green aviation. For
safe operation, the UAS must meet a large number of require-
ments derived from NASA and FAA processes and standards.
In this section, we will briefly describe the characteristics of
the Swift UAS and discuss types of safety requirements and
flight rules.

3.1. The NASA Swift UAS

For full scale flight testing of new UAS concepts, the NASA
Ames Research Center has developed the Swift UAS (Ippolito,
Espinosa, & Weston, 2010), a 13-meter-wingspan all-electric
experimental platform based upon a high-performance sail-
plane (Figure 2). The Swift UAS has a full-featured flight
computer and a payload control computer for sensor pay-
loads. The individual components are connected via a com-
mon bus interface running the Reflection Architecture, which
provides a component-based plug-and-play infrastructure. Ty-
pical sensors include barometric altitude sensors, airspeed in-
dicator, GPS, and a laser altimeter to measure the altitude
above ground. Figure 3 shows the high-level schematics of
the Swift flight computer and sensor system.

Figure 2. The Swift all-electric UAS (right) shown with other
UAS and some of the authors.

5

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

R
ad

io

PayloadFlight
Control

Computer Computer
Control

Actuators
Servos

GPS
Laser

Altimeter tometer
Magne−

RS232

Figure 3. High-level schematics for the Swift flight electron-
ics. Data between the flight control computer and the payload
computer are exchanged using a serial RS232 connection.

3.2. Requirements and Flight Rules

The system safety requirements we want to monitor during
operation of the Swift UAS can be categorized into these
three types: value checks, relationships, and flight rules.

Value Checks test whether data values are plausible. Exam-
ples in this category include rate checks, e.g., the maximal
safe climb (or descent) rate or the maximum rate of change
for some sensor value. For safe operation, the values must
always stay within certain bounds. Other examples include
range checks including the operating windows for sensors and
common-sense bounds like that we cannot measure a rate of
descent when we are below the minimum range for such a
measurement, i.e., parked on the ground. Such checks can be
combined with additional conditions, e.g., during the flight
phase or above a minimal altitude, or temporal ranges, e.g.,
the maximal current drawn from the battery must not exceed
50A for more than 60 seconds to avoid overheating. On the
software side, value checks can include the size of the current
call stack or lengths of message buffers.

Relationships encode dependencies among sensor or software
data that may originate from different subsystems. For exam-
ple, altitude readings obtained by GPS and barometric alti-
tude should be highly correlated. For another example, when-
ever the Swift UAS is in the air, its indicated airspeed reading
should be greater than its stall speed; if not there is certainly a
problem and rt-R2U2 needs to find the most likely root cause,
e.g., a broken Pitot tube sensor, a dangerous flight maneuver,
or a dead engine.

Finally, Flight Rules are defined by national or international
institutions (e.g., part 91 of the Federal Aviation Regulations
(FAR) in the USA (Federal Aviation Administration, 2013))
or are rules that must be obeyed for mission- or system-specific
reasons. For example, a common flight rule defines the mini-
mum altitude an aircraft needs to climb to after takeoff: reach
an altitude of 600ft within five minutes after takeoff. In a
similar way, we can specify a timeout for the landing proce-

dure of the Swift UAS: after receiving the landing command,
touchdown needs to take place within three minutes. We dis-
cuss in detail in Section 5 how these requirements and flight
rules can be specified in rt-R2U2 and how they can be trans-
lated into efficient hardware.

4. THE RT-R2U2 SYSTEM HEALTH MANAGEMENT
FRAMEWORK

Our modeling framework for system (including sensor and
software) health management separates signal processing and
model-based analysis, temporal monitoring, and statistical rea-
soning with BNs. We first discuss the overarching design
requirements from which rt-R2U2 gets its name before we
focus on the description of the design framework. Each of
the rt-R2U2 framework’s three prongs will then be described
in detail in the subsequent sections; observers using temporal
logic in Section 5, model-based monitors in Section 6, and
Bayesian reasoning components in Section 7.

4.1. Design Requirements

For autonomous systems running with severely constrained
computing hardware such as the Swift UAS, the following
properties are required for a deployable SHM framework.

UNOBTRUSIVENESS The SHM framework must not al-
ter crucial properties of the Swift UAS, such as: func-
tionality (not change its behavior), certifiability (avoid
re-certification of, e.g., autopilot flight software or certi-
fied hardware), timing (not interfere with timing guaran-
tees), and tolerances (not exhaust size, weight, power, or
telemetry bandwidth constraints). The framework should
be able to run and perform analysis externally to the (pre-
viously developed and tested) Swift architecture.

RESPONSIVENESS The framework must continuously and
in real time monitor adherence to the safety requirements
of the Swift UAS. Changes in the validity of monitored
requirements must be detected within tight and a priori
known time bounds. Responsive monitoring of specifi-
cations enables responsive input to the BN-based prob-
abilistic reasoner. In turn, the BN reasoner must effi-
ciently support decision-making to mitigate any prob-
lems encountered (e.g., for the Swift UAS an emergency
landing in case the flight computer fails) to avoid dam-
age to the UAS and its environment. This paper focuses
on the detection and reasoning part; a follow-on mitiga-
tion process is left for future work. See Section 10 for a
discussion.

REALIZABILITY The framework must operate in a plug-
and-play manner by connecting via a read-only interface
to existing communication interfaces of the Swift UAS.
The framework must be usable by test engineers without
assuming in-depth knowledge of hardware design and
must be able to operate on-board existing UAS compo-

6

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

nents without requiring significant reconfiguration or ad-
ditional components. The framework must be reconfi-
gurable so that health models can be updated without a
lengthy recompilation process and can be used both dur-
ing testing of the UAS and after deployment.

Considering these requirements, it seems natural to imple-
ment our SHM framework in hardware. This allows us to
build a self-contained unit, operating externally to the ex-
isting Swift UAS computing architecture, and thereby com-
plying with the UNOBTRUSIVENESS requirement. Multiple
safety requirements can be monitored in parallel, with status
updates delivered at every tick of the system clock, estab-
lishing the RESPONSIVENESS requirement. Previous imple-
mentations of system monitors in hardware, however, have
often violated the REALIZABILITY requirement as a recon-
figuration, e.g., changes in the SHM model necessitate a re-
design of the framework’s hardware.8 We create a realiz-
able framework that avoids pushing system constraints by
running on-board isolated but previously flight-certified, inte-
grated hardware. Our framework is designed to uphold all of
these requirements, thus we call it the real-time, Realizable,
Responsive, Unobtrusive Unit (rt-R2U2).

4.2. Design Framework

Control Unit

co
n

fi
g

.
m

g
m

t

Memory Interface

d
a

ta
 l

o
g

g
in

g

read−only

interface

Computer

Flight

Payload

R
V

−
U

n
it

te
m

p
o

ra
l

lo
g

ic

R
R

−
U

n
it

B
N

 r
ea

so
n

in
g

F
il

te
rs

S
ig

n
al

 P
ro

ce
ss

Figure 4. Principled architecture of rt-R2U2 with read-only
interfaces to flight computer and communication bus.

4.2.1. Overview

Figure 4 shows the high-level schematics of our FPGA-based
framework and its connection to the Swift flight hardware.
The FPGA monitor obtains the sensor and software data from
the flight computer and sensor systems using a hardware-
based read-only communications channel. For example, an
RS-232 connection with two wires (RxD and Gnd) can be
used; optical isolation can protect the flight hardware from
any electrical interference. That way, it can be guaranteed
that the operation of the flight computer will not be disturbed
under any circumstances; an important part of our UNOB-
TRUSIVENESS requirement. The implementation architec-
ture of rt-R2U2 on the FPGA is straightforward: incoming

8Or, at least a run of a logic synthesis tool, which can easily take tens of
minutes to hours to complete.

sensor and software signals are preprocessed, filtered, and
made ready for processing by the RV-Unit (Runtime Verifi-
cation), which performs temporal reasoning using MTL. The
RR-unit (Runtime Reasoning) contains a reasoning engine for
Bayesian diagnostic models. Data transfer and overall con-
trol is performed by a specialized control unit. In Section 8,
we discuss the architecture in more detail and describe the
special-purpose execution engines for the RV- and RR-units.

The health models in rt-R2U2 are hierarchical, graphical mod-
els; see Figure 5. Inputs to the models consist of signals car-
rying sensor values or values of software variables of the sys-
tem to be monitored. Outputs can be results of the evaluation
of formulas in temporal logic or probability values, indicat-
ing the health of a component or subsystem. The signals con-
necting the processing blocks are of different types as shown
in Table 1. The width, in bits, of each signal type depends
on the concrete FPGA realization and the size of the FPGA.
The numbers here correspond to our current implementation,
which is detailed in Section 8 and (Geist, Rozier, & Schu-
mann, 2014). Sensor signals S carry analog sensor readings,
represented as, in our case, 18-bit fixed-point values. In a
similar way, we represent probabilities P. Discrete values D
are found, e.g., after discretization of sensor signals and can
have the values 0 . . .15. Time-stamps T correspond to ticks
of the global clock and also have a width of 18 bits, Finally,
B (true, false) andB+ (true, false, maybe) carry the results of
temporal logic operators.

sync

async
T

fT

Atomic

−1
z

s_baroAlt Atomic
>= 600ft

B
A

Y
E

S

s_laserAlt smooth

H_altimeter

>= 0ft

sync

async
T

fT

Figure 5. An rt-R2U2 configuration block diagram: two sen-
sor signals are read in, processed and discretized by atomic
blocks. The signals are then subjected to various temporal
formulas before they are fed into a Bayesian reasoner.

Table 1. Data types for signals in rt-R2U2.

Type Width (bits) Description
S 18 analog sensor reading
P 18 probability
D 4 discrete value 0 . . .15
T 18 time stamp
B 1 Boolean
B+ 2 true, false, maybe

7

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Table 2. Typical SHM building blocks; n,m ∈N.

Signal processing
A1 S→ B atomic preprocessor
A2 S2 → B atomic preprocessor
FLT S→ S smoothing filter
RATE S→ S rate filter
FFT S→ Sn FFT
KF Sn → ⟨Sn,Sm⟩ Kalman filter

Temporal logic
pT Bn → B past time observer
fTs Bn → B+ synchronous fT observer
fTa Bn → ⟨B,T⟩ asynchronous fT observer

Bayesian reasoning
BN Dn → Pm discrete Bayesian reasoner

Miscellaneous
Ev B+ → D observer discretization
maxi Pn → ⟨D,P⟩ find maximum value and index
argmaxB Pn → Bn select maximum marginal
mini Pn → ⟨D,P⟩ find minimum value and index
z−1 X→X unit delay for discrete typeX
SPL X→X rate conversion/subsampling

4.2.2. Model Building Blocks

Table 2 shows an overview of the available modeling blocks.
New types of blocks can be added to our framework. The
most prominent and flexible blocks for processing of sensor
and software signals are the unary and binary atomic blocks.
Each discretizer block can process one or two signals s1, s2

according to (±2p1 × F 2
1 (F 1

1 (s1)) ± 2p2 × F 2
2 (F 1

2 (s2))) & c
for integer scaling constants p1, p2, comparison constant c,
filters F ij , and a comparison operator & ∈ {=,<,≤,≥,>, /=}.
With this basic architecture, multiple discretization operators
can be defined. For example, the detection of a smoothed
positive climb rate given the altitude alt could be done by
lp(altt − altt−1) > 5, where lp is a low-pass filter. In this
case, our atomic block would be instantiated with p1 = 0, F 1

1

a rate filter, F 2
1 = lp the smoothing filter, & = ” > ”, and

c = 5. In this case, p2, F
2
2 , F

1
2 and s2 are not used. This

method would be used to specify, for example, the condition
when the measured GPS altitude is larger than the barometric
altitude: altGPS > altbaro.
Additional blocks can specify special purpose processors like
a Fast Fourier Transform, Kalman Filters, or potentially a
model-based prognostics block, which is part of future work.
These model-based processing units are discussed in Sec-
tion 6. Temporal logic blocks execute observers for variations
of past time and future time linear temporal logic to provide
efficient evaluation of signals over time; see Section 5. Prob-
abilistic reasoning and Bayesian diagnosis is performed using
a discrete Bayesian reasoner block. It receives, as evidence,
multiple discrete values, e.g., results from temporal process-
ing or discretized signals, and estimates posterior marginals
that indicate the health of the system or components. Addi-
tional blocks are defined to process the output of the Bayesian
reasoner such that its results can be used by temporal reason-
ing. The reasoner and its hardware implementation are de-

scribed in detail in Section 7.

4.2.3. Execution Mechanism

The execution of an SHM model is performed in several steps
that are governed by the FPGA implementation of our frame-
work (Geist et al., 2014). New sensor data is obtained through
a read-only interface at each time stamp. An internal time
base provides these time stamps. Our system can also use
an external time base, e.g., derived from the GPS system, to
issue new time stamps. In a first step, these analog signals
are processed using the signal processing and atomic blocks.
Then, in a second step, temporal logic expressions are eval-
uated using the current values of the discretized signals. In
a third step, evidence is set in a Bayesian Network and the
marginal posterior probabilities carrying the health informa-
tion are computed. In a fourth and final step, results are trans-
ported to the output. The communication between the dif-
ferent blocks is accomplished through memory blocks on the
FPGA.

Complex models can require multiple processing cycles. For
example, signals going from the BN reasoning block “back”
to the temporal logic processor require a delay block in order
to avoid cyclic dependencies; see the example in Fig. 6 below.

4.2.4. Examples

O
RSensors

B
A

Y
E

S

LTL B

−1
z

−1
z

a
rg

m
a

x

LTL

1

2

Figure 6. Example of an rt-R2U2 block diagram: depending
on the reasoning outcome, different sets of temporal specifi-
cations (LTL1 vs. LTL2) are used for monitoring.

Figure 6 shows an example where the behavior of the SHM
changes with the most likely system state as determined by
the health model. In nominal mode (according to the SHM
reasoner output), a set of temporal rules (LTL1) is being
used for monitoring. Those rules can contain past-time and
future time components. If an anomaly is detected by the
Bayesian network, different health nodes will become active.
Then, the specifications LTL2 will be used. LTL2 may en-
code a different, reduced, set of mission goals and perhaps
relaxed requirements. The argmaxB block finds the posi-
tion of the maximum of the posterior marginals as produced

8

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

by the Bayesian network and generates a Boolean signal to
select the appropriate set of temporal rules. Because the eval-
uation of the selected rules happens a timestamp later, delay
blocks denoted z−1 are used.

B
A

Y
E

S sync

async
T

fT

B
a

rg
m

a
x

Figure 7. Example of an excerpt of an rt-R2U2 configura-
tion block diagram: diagnostic results are arguments of LTL
formulas.

With a model as shown Figure 7, requirements like “a di-
agnosed altimeter sensor problem should last at most 5 sec-
onds,” or “the health of the battery should not drop more than
three times within 120 seconds,” can be modeled. Here, the
output of the Bayesian network is analyzed by an argmaxB
block, which sets a Boolean value if a root cause is identified
(e.g., an altimeter sensor or battery problem).

5. MONITORING OF TEMPORAL SENSOR DATA USING
TEMPORAL LOGIC

5.1. Linear and Metric Temporal Logic

In order to encapsulate the safety requirements of the Swift
UAS in a precise and unambiguous form that can be ana-
lyzed and monitored automatically, we write them in tempo-
ral logic. Specifically, we use Linear Temporal Logic (LTL)
(Pnueli, 1977), which allows the expression of requirements
over timelines and also pairs naturally with the original En-
glish expression of the requirements.9 For requirements that
express specific time bounds, we use a variant of LTL that
adds these time bounds, called Metric Temporal Logic (MTL)
(Alur & Henzinger, 1990). We can automatically generate
runtime observers for requirements expressed in these logics,
thereby enabling real-time analysis of sensor data as well as
system health assessment. LTL formulas consist of:

1. Variables representing system state: we include vari-
ables representing the data streaming from each sensor on-
board the Swift UAS.
2. Propositional logic operators: these include the standard
operators, logical AND (∧), logical OR (∨), negation (¬), and
implication (→).
3. Temporal operators: these operators express temporal re-

9In the temporal logic formulas of this paper, we follow the standard syntax
for evaluating temporal properties where =means assignment and ==means
equality comparison. For example, (a == b) returns true if a and b are
equal and false otherwise. At the same time, we follow the tradition in
probability, where = means equality and not assignment. It should be clear
from the context whether we are dealing with a temporal logic expression
or a probability expression.

lationships between events, for example, ALWAYS, EVENTU-
ALLY, NEXTTIME, UNTIL, and RELEASE. Given Boolean
variables p, q, we define the temporal operators as:

ALWAYS p (◻p) means that pmust be true at all times along
the timeline.

EVENTUALLY p (◇p) means that p must be true at some
time, either now or in the future.

NEXTTIME p (Xp) means that p must be true in the next
time step; in this paper a time step is a tick of the system
clock on-board the Swift UAS.

p UNTIL q (p U q) signifies that either q is true now, at
the current time, or else p is true now and p will remain
true consistently until a future time when q must be true.
Note that q must be true sometime; p cannot simply be
true forever.

p RELEASES q (pR q) signifies that either both p and q are
true now or q is true now and remains true unless there
comes a time in the future when p is also true, at the
same time that q is true. Note that in this case there is no
requirement that p will ever become true; q could simply
be true forever. The RELEASE operator is often thought
of as a “button push” operator: pushing button p triggers
event ¬q.

In MTL, each of these temporal operators are accompanied
by upper and lower time bounds that express the time period
during which the operator must hold. Specifically, MTL in-
cludes the operators ◻[i,j] p,◇[i,j] p, p U[i,j] q, and pR[i,j] q
where the temporal operator applies in the time between time
i and time j, inclusive. Additionally, we use a mission boun-
ded variant of LTL where these time bounds are implied to
be the start and end of the mission of a UAS. In all cases,
time steps refer to ticks of the system clock. So, a time bound
of [3,8] would designate the time bound between 3 and 8
ticks of the system clock from now. Note that this bound is
relative to “now” so that continuously monitoring a formula
◇[3,8] p would produce true at every time step t for which p
holds anytime between 3 and 8 time steps after t, and false
otherwise.

Figure 8 gives pictorial representations of how these logics
(mission-bounded LTL and MTL) enable the precise specifi-
cation of temporal safety requirements in terms of timelines.

5.2. Examples of System Requirements in TL

Due to their intuitive nature and a wealth of tools and algo-
rithms for analysis of LTL and MTL formulas, these logics
are frequently used for expressing avionics system require-
ments (Zhao & Rozier, 2012, 2014a; Gan et al., 2011; Bolton
& Bass, 2013; Alur & Henzinger, 1990). Recall the example
system safety requirements from Section 3.2. In a straight-
forward manner, we can encode each of the value checks (V),
relationship requirements (R), and flight rules (F) as temporal

9

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

LTL Operator Timeline MTL Operator Timeline

Xp p

◻p p p p ppp p p p ◻[2,6]p 0 1 2 3 4 5 6 7 8
p p p p p

◇p p ◇[0,7]p 0 1 2 3 4 5 6 7 8
p

pUq p pp p q pU[1,5]q 0 1 2 3 4 5 6 7 8
p p q

pRq p,qq qq q pR[3,8]q
p,q

0 1 2 3 4 5 6 7 8
qqq

Figure 8. Pictorial representation of LTL temporal operators (left) and MTL operators (right). For a formal definition of LTL,
see for example (Rozier, 2011); for MTL, see for example (Alur & Henzinger, 1990).

logic formulas to enable runtime monitoring, as demonstrated
by the following examples:10

V1: the maximal safe climb and descent rate Vz of the Swift
UAS is limited by its design and engine characteristics:

◻(−200
ft

min
≤ Vz ≤ 150

ft
min

)

For a compact notation, we allow relational expressions in-
side the formula. Within our framework, the relational ex-
pressions are evaluated by atomic blocks returning Boolean
values that then comprise the input to the temporal observers.

V2: the maximal angle of attack α is limited by Swift design
characteristics:

◻(α ≤ 15○)

V3: the Swift roll (p), pitch (q), and yaw rates (r) are limited
to remain below maximum bounds for safe operation:

◻(p < 0.99
rad
s
∧ q < 4.0

rad
s
∧ r < 2.2

rad
s

)

V4: the battery voltage Ubatt and current Ibatt must remain
within certain bounds during the entire flight. Furthermore,
no more than 50A should be drawn from the battery for more
than 30 consecutive seconds in order to avoid battery over-
heating:

◻((20V ≤ Ubatt ≤ 26.5V) ∧
(Ibatt ≤ 75A) ∧
((Ibatt > 50A)U[0,29s](Ibatt ≤ 50A)))

R1: pitching up, i.e., increasing the angle of attack α from its
default value α0, for a sustained period of time (more than 20
seconds) should result in a positive change in altitude, mea-
sured by a positive vertical speed Vz . This increase in vertical
speed should occur within two seconds after the Swift starts

10The numbers given below are for illustration purposes only and do not
necessarily reflect the actual properties of the Swift UAS.

to pitch up:

◻(◻[0,20s](α > α0)→◇[0,2s]Vz > 0)

This relationship can be refined to only hold if the engine has
enough power (as measured by the electrical current to the
engine Ieng) to cause the aircraft to actually climb:

◻(◻[0,20s]((α > α0) ∧ (Ieng > 30A))→◇[0,2s]Vz > 0)

Similarly, a rule for descent can also be defined:

◻(◻[0,20s]((α < α0) ∨ (Ieng < 10A))→◇[0,2s]Vz < 0)

R2: whenever the Swift UAS is in the air, its indicated air-
speed (VIAS) must be greater than its stall speed VS . The UAS
is considered to be air-bound when its altitude alt is greater
than that of the runway alt0:

◻((alt > alt0)→ (VIAS > VS))

Here, we assume that the altitude of the runway is always
lower than that of the flying aircraft. In a scenario where
the airfield is on a hill and the UAS is flying through a nearby
valley, R2 would not be valid and would need to refined. This
is an example demonstrating that the definition of concise and
correct requirements is far from trivial.

R3: the sensor readings for the vertical velocity Vz and the
barometric altimeter altb are correlated, because Vz corre-
sponds to changes in altitude. This means that whenever the
vertical speed is positive, we should measure within 2 sec-
onds that the increase of altitude, ∆altb is larger than 5ft/s or
300ft/min. In order to avoid triggering that rule by very short
pulses of positive Vz , a positive Vz must be measured for at
least 5 consecutive seconds:

◻(◻[0,5s](Vz > 0)→◇[0,2s](∆altb > 300
ft

min
))

R4: the precision of the position reading PGPS from the GPS
subsystem depends on the number of visible GPS satellites

10

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Nsat, i.e., it must be larger than a given precision threshold
P iGPS for i satellites:

◻(
◻(Nsat == 1) → PGPS ≥ P 1

GPS ∧
◻(Nsat == 2) → PGPS ≥ P 2

GPS ∧
◻(Nsat == 3) → PGPS ≥ P 3

GPS ∧
◻(Nsat ≥ 4) → PGPS ≥ P +

GPS)

F1: after receiving a command (cmd) for takeoff, the Swift
UAS must reach an altitude of 600ft within 40 seconds:

◻((cmd == takeoff)→◇[0,40s](alt ≥ 600 ft))

F2: after receiving the landing command, touchdown needs
to take place within 40 seconds, unless the link (lnk) is lost.
The status of the link is denoted by slnk. In a lost-link sit-
uation, the aircraft should reach a loitering altitude around
425ft within 20 seconds. Landing is indicated by returning
to runway altitude (alt0) and turning off power to the engine
(Ieng):

◻((cmd == landing)→
((slnk == ok)→◇[0,40s]((alt0 − 1ft ≤ alt ≤ alt0 + 1ft)

∧(Ieng < 1A))∨
(slnk == lost)→◇[0,20s](400ft ≤ alt ≤ 450ft)))

F3: the Swift default mode is to stay on the move; it should
not loiter in one place for more than a minute unless it re-
ceives the loiter command, which may not ever happen during
a mission. Let sector crossing be a Boolean variable that is
true if the UAS crosses the boundary between the small sub-
division of the airspace in which the UAS is currently located
and another subdivision. After receiving the loiter command,
the UAS should stay in the same sector, at an altitude be-
tween 400ft and 450ft until it receives a landing command.
The UAS has 30 seconds to reach loitering position:

◻([(cmd == loiter)R (◇[0,60s] sector crossing)]∧
[(cmd == loiter)→

(◻[0,30s]((¬sector crossing)∧
(400ft ≤ alt ≤ 450ft))

U (cmd == landing))

F4: all messages sent from the guidance, navigation, and
control (GN&C) component to the Swift actuators must be
logged into the on-board file system (FS). Logging has to oc-
cur before the message is removed from the queue. In contrast
to the requirements stated above, this flight rule specifically
concerns properties of the flight software:

◻((addToQueueGN&C ∧◇removeFromQueueSwift) →
¬removeFromQueueSwift U writeToFS)

F5: a working laser altimeter should be available if the baro-

metric altitude of the Swift is less than 1000ft. This flight rule
requires reasoning about the health of a component itself and
can be expressed as:

◻((s baroAlt < 1000ft)→ (p(H laserAlt = healthy) > 0.8))

Here, we require that the health of the laser altimeter is at
least 80% when flying at low altitudes. In our framework,
the output of the BN is, after discretization, fed back into the
temporal observer block in a configuration similar to Figure 6.

5.3. Advantages of Temporal Logic Requirements.

Encoding the set of system requirements in temporal logic
offers several significant advantages. Temporal logic can be
used to produce a very precise, unambiguous specification
of requirements and this set of specifications can be carried
throughout the entire process from initial system requirements,
through system design, through testing, and finally to run-
time monitoring. The use of temporal logic enables the use
of automated tools and processes, such as automated require-
ments debugging (i.e., satisfiability checking (Rozier & Vardi,
2010)) and design-time V&V techniques such as model check-
ing (Rozier, 2011). We note that writing large formulas in
temporal logic can be tricky, as with writing good require-
ments in general; specification debugging is a required step
in system development.

Our rt-R2U2 framework simultaneously handles past-time and
future-time temporal logics; we include evaluation of past-
time formulas since this is easier than the future-time imple-
mentation required for our system. Past-time LTL or MTL
might be convenient to express specific requirements. Fur-
thermore, automatic evaluation of strictly past-time formulas
is easier since we have already seen all of the data needed
to complete the evaluation. Although such temporal relation-
ships could be formalized using Dynamic Bayesian Networks
(DBNs), reasoning over larger time-spans would require ex-
tremely large networks whereas we can evaluate temporal
logic observers very efficiently. Alternatively, reducing the
DBN network size would diminish accuracy substantially.

5.4. Monitoring Approach

From each temporal logic requirement, we automatically gen-
erate two kinds of observers, which we call synchronous and
asynchronous observers. This dual-observer construction op-
erates in parallel to provide real-time system health updates.
Our synchronous runtime observer outputs a verdict (true,
false, or maybe) at every tick of the system clock. This
is important because it provides blocks such as the Bayesian
reasoner with better real-time information and therefore im-
proves diagnostic and prognostic capabilities by enabling mon-
itoring input to be considered by the reasoner. If the verdict
is true or false, the synchronous observer was able to de-
termine the result of the satisfaction check of the temporal

11

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

logic requirement immediately. If the verdict is maybe the
result of the satisfaction check depends on an event that will
happen at a future point in time; our asynchronous observer
will refine the preliminary maybe verdict of the satisfaction
check into either true or false.

An asynchronous observer provides the final outcome of the
requirement at an a priori known time. An asynchronous ob-
server reports if a requirement is satisfied or fails earlier as
soon as this can be known or else yields the final result of
the requirement when its time bound has elapsed. For de-
tails on the construction of these observers, and formal proofs
that our constructions are correct, see (Reinbacher, Rozier, &
Schumann, 2014).

The availability of dual observers is a key element of our rt-
R2U2 framework, because it enables our runtime observers
to be used as building blocks in combination with the other
blocks described in this paper. Traditional runtime monitor-
ing techniques only operate asynchronously and only report
when a monitored property fails. Our observers provide much
more useful output. Such output can, for example, be impor-
tant in computing prognostics to know that a requirement that
must happen within a specified time bound has not yet been
satisfied and that the time bound is almost up. This allows
mitigating actions to be considered in time. For another ex-
ample, if a requirement states that (◇[3,2005] p) and p occurs
at time 5 it is important to utilize this information for real-
time calculations of system health. Traditional runtime mon-
itoring techniques do not yield any output in this case, either
at time 5 or 2005, since no property failure occurred.

6. MODEL-BASED MONITORING OF TEMPORAL SEN-
SOR DATA

Highly accurate and detailed information about system health
could be obtained if the actual system were compared in real
time against a high-fidelity simulation model. Model com-
plexity and resource limitations make such an approach in-
feasible in most cases. However, a comparison of system be-
havior with an abstracted dynamical model is an attractive op-
tion. HyDE, for example, performs health management using
simplified and abstracted system models.

For rt-R2U2, we provide the capability to use model-based
monitoring components to various degrees of abstraction. The
most common of such components is a Kalman filter. Here, a
linearized model of the (sub-)system dynamics is used to pre-
dict the system state from past sensor readings. Besides this
state prediction, the residual of the Kalman filter is of impor-
tance for our purposes, as it reflects how well the model repre-
sents the actual behavior (Brown & Hwang, 1997). A sudden
increase of the filter residual, for example, can give an indica-
tion of a malfunctioning sensor. In our rt-R2U2 framework,
we can define Kalman filters that can be directly mapped to
corresponding FPGA designs; see, e.g., (Pasricha & Sharma,

2009). In a similar manner, non-linear models could be han-
dled using Particle Filters (Ristic, Arulampalam, & Gordon,
2004); (Ye & Zhang, 2009) describe an FPGA implementa-
tion.

A very simple temporal monitoring technique is the use of
FFT in order to obtain an estimate of the frequency spec-
trum of the monitored signals. This information is, for exam-
ple, important to detect oscillations of the aircraft (see Sec-
tion 9.3), or to detect unexpected software behavior, like a
reboot loop.

All model-based components primarily interact with atomic
blocks, which discretize their outputs to ready the signals for
processing by the temporal and probabilistic model compo-
nents. Though our implementation at this time is limited to
standard filtering monitors, we envision creating more pow-
erful model-based monitors using prognostics models to pro-
duce statistical distributions for the end-of-life of system com-
ponents based upon sensor readings; see Section 10 for a
more detailed discussion.

7. BAYESIAN HEALTH MANAGEMENT REASONING

We use a Bayesian network (BN) to perform diagnostic rea-
soning and root causes analysis. A BN is a multivariate prob-
ability distribution that enables reasoning and learning under
uncertainty (Pearl, 1988; Darwiche, 2009). In a BN, ran-
dom variables are represented as nodes in a Directed Acyclic
Graph (DAG), while conditional dependencies and indepen-
dencies between variables are induced by the edges in the
DAG. Figure 9 is a simple example of a BN. A BN’s graphi-
cal structure often represents a domain’s causal structure, and
is typically a compact representation of a joint probability
table. Each node in a BN is associated with a correspond-
ing conditional probability table (CPT) that typically captures
its causal relationship with parents and children in the DAG.
It should be noted that BNs are not necessarily causal (see
(Pearl, 2000)), and a developer is free to introduce non-causal
edges as well.

S

U

S

C U

H

H

Figure 9. Simple Bayesian network.

In rt-R2U2, the BN inputs are comprised of discrete values,
e.g., Boolean, three-valued outputs of synchronous observers,
or discretized sensor values, and reasoning is performed at
each tick of the system clock. We are using discrete and
static BNs, which do not perform any reasoning in the tem-
poral domain. All temporal reasoning, as well as other pro-
cessing, has been cleanly separated out within our model-
ing framework. Although, in general, many different prob-

12

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

abilistic queries can be formulated, our rt-R2U2 framework
aims to compute marginal posterior probabilities of selected
nodes, giving an indication (probability) of sensor or software
health. Thus our Bayesian reasoning components output a
posteriori probabilities over system health nodes.

7.1. Bayesian Health Models

For the Bayesian models, we follow an approach that “glues
together” BN fragments (Mengshoel et al., 2010; Schumann,
Mengshoel, & Mbaya, 2011; Schumann, Mbaya, et al., 2013;
Ricks & Mengshoel, 2014). For example, consider the BN
in Figure 9. It consists of four different types of intercon-
nected nodes, namely: command node C, health node H ,
sensor node S, and status node U . The health node H has
subtypes HS for a sensor node and HU for a status node.

Command nodes C are handled as ground truth and used to
indicate commands, modes, actions, or other known states.
Command nodes do not have incoming edges in the network.
Sensor nodes S are also input nodes, but the input signal is
not assumed correct, e.g., it could result from a failed sensor
or excessive noise. This behavior is modeled by connecting
an S node to a health node H that reflects the health of the
input to S. Status nodes U , and similar behavior nodes B,
are internal nodes and reflect the (latent) status of the subsys-
tem or component, or recognize a specific behavior, such as
pilot-induced oscillation. By definition, a health node H is
attached to a status node U , but not to a behavior node B.

For modeling the edges of a BN, we generally follow the rule
that an edge from node X to node Y indicates that the state
of X has a causal influence on the state of Y . Table 3 gives
an overview of the different kinds of edges in our modeling
framework.

Table 3. Types of edges typically used in BN models for the
SHM reasoning blocks.

edge E E represents how . . .

{HU ,C} E→ U status U , with health HU , is controlled
through command C

{C} E→ U status U is controlled through com-
mand C

{HU} E→ U health HU influences status U

{HS , U} E→ S status U influences sensor S, which
may fail as reflected in health HS

{HS}
E→ S health HS influences sensor S

{U} E→ S status U influences sensor S

Once the BN nodes and edges are in place, the BN param-
eters found in conditional probability tables (CPTs) need to
be decided. The CPT associated with each node defines the
conditional probability of a state in a node, given the states
of its parent nodes. Table 4 shows two examples of CPTs for

our network in Figure 9. Nodes that have no incoming edges
(e.g., HS) only contain prior probabilities for each state. In
Table 4 (left) the CPT for H S shows that the sensor S is
healthy with a probability of 0.99. Table 4 (right) shows the
CPT for the sensor node S, assuming it has the two states
“low” and “high,” and U has the states “up” and “down.”
Since this node has two incoming edges, it contains the con-
ditional probabilities p(S∣U,H S). In this example, the sen-
sor reads “low” most of the time when in the “up” mode and
“high” in the “down” mode. If the sensor is broken, and in
state “bad,” no such relation exists as indicated by the 0.5
probabilities.

Table 4. Conditional probability tables for node H S (left)
and S (right) of the Bayesian network in Figure 9.

H S ΘH S

healthy 0.99
bad 0.01

U H S S ΘS

up healthy low 0.8
up healthy high 0.2
up bad low 0.5
up bad high 0.5
down healthy low 0.01
down healthy high 0.99
down bad low 0.5
down bad high 0.5

Once the nodes, edges, and CPT parameters of a BN have
been specified, it can be used for reasoning, in other words
for computing outputs from inputs. Each input to a BN is, in
our rt-R2U2 setting, provided by connecting an input signal
to the state of a C or S node, called “clamping” or “condi-
tioning.” Note that inputs to the BN can be outputs of any
block in our rt-R2U2 framework, for example, a smoothed
and discretized sensor reading, the result (binary or ternary)
of a temporal observer, or the output of another reasoning
block. The BN outputs are further discussed in Section 7.2,
after describing how computation is in fact not performed us-
ing the BN directly. Instead, it is done using a data structure,
an arithmetic circuit, that the BN in compiled to, off-line.

7.2. Compilation to Arithmetic Circuits

Different BN inference algorithms can be used to compute
a posteriori probabilities. These algorithms include junction
tree propagation (Lauritzen & Spiegelhalter, 1988; Jensen
et al., 1990; Shenoy, 1989), conditioning (Darwiche, 2001),
variable elimination (Li & D’Ambrosio, 1994; Zhang & Poole,
1996), stochastic local search (Park & Darwiche, 2004; Meng-
shoel, Roth, & Wilkins, 2011; Mengshoel, Wilkins, & Roth,
2011), and arithmetic circuit (AC) evaluation (Darwiche, 2003;
Chavira & Darwiche, 2007).

We select AC evaluation as the rt-R2U2 inference algorithm;
we therefore compile our BN into an arithmetic circuit. In
real-time avionics systems, where there is a strong need to
align the resource consumption of SHM computation with re-
source bounds (Musliner et al., 1995; Mengshoel, 2007), al-

13

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

gorithms based upon arithmetic circuit evaluation are power-
ful, as they provide predictable real-time performance (Cha-
vira & Darwiche, 2005; Mengshoel et al., 2010).

An arithmetic circuit is a DAG in which the leaf nodes λ rep-
resent parameters and indicators while other nodes represent
addition and multiplication operators.

Posterior marginals in a BN can be computed from the joint
distribution over all variables Xi ∈ X :

p(X1,X2, . . .) = ∏
λx

λx∏
θx∣u

θx∣u, (1)

where θx∣u are the parameters of the Bayesian network, i.e.,
the conditional probabilities that a variable X is in state x
given that its parents U are in the joint state u, i.e., p(X =
x ∣ U = u). Further, λx indicates whether or not state x is
consistent with BN inputs or evidence. For efficient calcula-
tion, we rewrite the joint distribution into the corresponding
network polynomial f (Darwiche, 2003):

f = ∑
x
∏
λx

λx∏
θx∣u

θx∣u (2)

An arithmetic circuit is a compact representation of a network
polynomial (Darwiche, 2009) which, in its non-compact form,
is exponential in size and thus unrealistic in the general case.
Hence, answers to our SHM probabilistic queries, includ-
ing marginals and most probable explanations (MPEs), are
computed using algorithms that operate directly on the arith-
metic circuit. The marginal probability (see Corollary 1 in
(Darwiche, 2003)) for x given evidence e is calculated as

Pr(x ∣ e) = 1

Pr(e) ⋅
∂f

∂λx
(e), (3)

where Pr(e) is the probability of the evidence e. In a bottom-
up pass over the circuit, the probability of a particular evi-
dence setting (or clamping of λ parameters) is evaluated. A
subsequent top-down pass over the circuit computes the par-
tial derivatives ∂f

∂λx
. This mechanism can also be used to pro-

vide information about how change in a specific node affects
the whole network (sensitivity analysis), and to perform MPE
computation (Darwiche, 2003, 2009).

8. HARDWARE REALIZATION

8.1. Architecture Overview

Figure 12 shows a detailed overview of the FPGA hardware.
Sensor and software signals are fed into the RV-unit (runtime
verification) for signal processing and temporal reasoning.
Bayesian diagnostic reasoning is performed by the RR-unit
on the FPGA. All processing units are connected via a mem-
ory interface and controlled by the control interface, which is
also in charge of loading the compiled specifications. The de-
tailed architecture of RV- and RR-units is described in (Geist

et al., 2014); (Reinbacher et al., 2014) focuses on the tem-
poral reasoning algorithms and their FPGA implementation.
In this paper, we discuss how the reasoning with a diagnos-
tic BN can be implemented efficiently within our rt-R2U2
framework on an FPGA. A detailed description of the tempo-
ral reasoning algorithms and their FPGA implementation can
be found in (Reinbacher et al., 2014). The core of the RR-
unit is a special-purpose processing unit for reasoning with
Bayesian networks, µBayes. We designed the µBayes unit in
the hardware description language VHDL and use the logic-
synthesis tool ALTERA QUARTUS II11 to synthesize the de-
sign onto an Altera Cyclone IV EP4CE115 FPGA.

8.2. Hardware Realization for Reasoning Component

In our rt-R2U2 framework the BN reasoning blocks are pro-
vided with values produced by other blocks, as inputs to C
and S nodes. We use these evidence values to calculate pos-
terior marginals for the health nodes H of the Bayesian SHM
model in our BN hardware implementation. Posterior mar-
ginals for this kind of BN reasoning can be evaluated in the
arithmetic circuit by traversing the nodes of the circuit in a
bottom-up and a subsequent top-down manner. We also make
the following observations regarding the structure of arith-
metic circuits:

(i) The labels of inner nodes in the arithmetic circuit alter-
nate between addition and multiplication. Nodes labeled
with “+” are addition nodes; those labeled with “×” are
multiplication nodes.

(ii) Each multiplication node has a single parent.

(iii) Input nodes (i.e., leaf nodes) are always children of mul-
tiplication nodes.

8.2.1. Hardware Architecture of µBayes

The above observations led us to a hardware architecture that
is centered around parallel processing units called comput-
ing blocks. A computing block, as shown in Figure 10, is
designed to match the structural properties (i-iii) of an arith-
metic circuit. A single computing block supports three basic
modes to process the different kinds of structures found in
subtrees of an arithmetic circuit. By rearranging the arith-
metic circuit using commutative and associative properties,
we can tile the entire AC with instances of these three modes.

These computing blocks are the building blocks of our Bay-
esian SHM hardware unit, which we call µBayes. Figure 11
shows the internals of a computing block. The unit is loaded
with network parameters from the CPT of the health model, at
configuration time. At each SHM update cycle, inputs (“ev-
idence”) to the BN are provided as evidence indicators and
stored in a separate evidence indicator memory. An offline

11Available at http://www.altera.com. We used v11.1 in our experi-
ments.

14

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

SWIFT

Se
ns

or
s,

Fl
ig

ht
C

om
pu

te
r,.

..
Host PC

rt
-R

2U
2

To
ol

C
ha

in
&

D
at

a
L

og
gi

ng

Health Management Hardware

FPGA

RV
-U

ni
t

atChecker
filter #0

#1

..
.

pa
st

-t
im

e
O

bs
er

ve
r

sy
nc

hr
on

ou
s

fu
tu

re
-t

im
e

O
bs

er
ve

r

as
yn

ch
ro

no
us

fu
tu

re
-t

im
e

O
bs

er
ve

r
RTC

R
R

-U
ni

t

Reasoning Master

Computing Blocks

#0 #1 #2 . . .

Memory Interface

Control UnitCommunication
Interface LCD

Figure 12. Overview of the rt-R2U2 hardware architecture (see Geist et al., 2014).

computing
block

mode a)

×/+

×/+ ×/+

i1 i2 i3 i4

mode b)

×/+

×/+

i1 i3 i4

mode c)

×/+

i1 i4
i1 i2 i3 i4

result

mode

Figure 10. A computing block and its three modes of opera-
tion. Inputs to the computing block are denoted by i1, . . . , i4.

bus interface

control unit

memory interface / multiplexer

network
parameter (θ)

memory

evidence
indicator (λ)
memory

instruction
memory

scratchpad
memory

ALU

×/+

×/+ ×/+

i1 i2 i3 i4

Figure 11. Internal architecture of a computing block.

compiler (see Section 8.2.2) translates the structure of the
arithmetic circuit into native instructions for the µBayes unit.

The control unit executes these instructions, which encode
the operation (either addition or multiplication) of each indi-
vidual node of the Arithmetic Logic Unit (ALU), control the
multiplexer to load/store operands from/to memory, trigger
transfers of results, and coordinate loads of inputs. Each com-
puting block manages a scratchpad memory to save interme-
diate local results, computed during the bottom-up traversal,
which can be reused during the top-down traversal. The mem-
ory blocks of the µBayes unit are mapped to block RAMs of
the FPGA.

computing
block 0

computing
block 1

computing
block . . .

computing
block n − 1

computing
block n

master

input bus

output bus

config
⟨Π,C⟩

Figure 13. Architecture of the µBayes unit with parallel com-
puting blocks. The configuration consists of the native pro-
gram Π for µBayes and network parameters C.

Figure 13 shows the architecture of our Bayesian health man-
agement hardware unit. It interconnects and controls multiple
computing blocks to process arithmetic circuits in parallel.
The master unit manages bus accesses and computes posterior
marginals according to Equation 3. The inverse of the proba-
bility of the evidence, 1/Pr(e), in this equation can be com-

15

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

puted by the master unit in parallel to the top-down traver-
sal of the arithmetic circuit once the bottom-up traversal has
been completed. Posterior marginals can then be computed
efficiently by multiplying the partial derivatives ∂f

∂λx
obtained

by the top-down traversal with the calculated value of 1
Pr(e) .

In our implementation, we chose to represent fractional val-
ues in a fixed-point representation. This substantially reduces
the hardware requirements compared to using a full-fledged
floating-point unit. Instead, we instantiate fixed-point multi-
pliers, available on our target FPGA, to realize the arithmetic
operations within the computing blocks. Modern FPGAs pro-
vide several hundred of such multiplier units. Our selected
FPGA provides an 18-bit hardware multiplier, yielding a res-
olution of 2−18 or approximately 10−6 for the representation
of probabilities.

8.2.2. Synthesizing an Arithmetic Circuit into a µBayes
Program

A GUI-based application (Reinbacher, 2013) (see Figure 14)
on a host computer compiles an arithmetic circuit into a tuple
⟨Π, P ⟩, where Π is a native program for the µBayes unit and
P is a configuration for the network parameter memory, in-
cluding the number of required computing blocks. The syn-
thesis of ⟨Π, P ⟩ from an arithmetic circuit involves the fol-
lowing steps:

(1) Parse the circuit into a DAG and use compile-time in-
formation from the Ace package12 to relate nodes in the
DAG to evidence indicators and network parameters. As-
semble network parameter values according to the CPTs
and add them to P . Perform equivalence transformations
on the DAG to ensure that the available modes of a com-
puting block are able to cover all parts of the arithmetic
circuit.

(2) Apply a variant of the Bellman-Ford algorithm (Bellman,
1958) to the DAG to determine the distance of each node
to the root node. Based on the distances and the width of
the arithmetic circuit, determine the number of required
computing blocks. Rearrange computing blocks to opti-
mize the number of results that can be reloaded from the
same computing block in the next computation cycle.

(3) For each computing block, generate an instruction π for
each node in the arithmetic circuit that is computed by
that computing block and add π to Π.

To configure the µBayes unit, the tuple ⟨Π,C⟩ is transferred
at configuration time, i.e., before deployment, to the master
unit, which then programs the individual computing blocks.
During operation, the entries for the evidence indicator mem-
ory are broadcast by the master unit at each tick of the system
clock when new input values are available.

12http://reasoning.cs.ucla.edu/ace/

A
5 10 15 20 25 30

80

100

120

140

Number of computing blocks

fmax[MHz] at 85o C

B
5 10 15 20 25 30

2

5

10
x 104

Number of computing blocks

Number of LE
Memory [bits]

Figure 15. Logic synthesis results of our µBayes unit for an
Altera Cyclone IV EP4CE115 FPGA. A: maximum operat-
ing frequency fmax. B: number of logic elements (LE), and
required memory bits versus number of parallel computing
blocks.

8.2.3. Hardware Resource Consumption

We synthesized the hardware design of the µBayes unit for
various FPGAs using industrial logic synthesis tools from Al-
tera and Xilinx. For the experiments in this paper, the tool
ALTERA QUARTUS II was used. To study the hardware re-
source consumption of our design, we synthesized the de-
sign several times with varying numbers of computing blocks.
For our implementation, we used a fixed-point number rep-
resentation with 18 bits to internally represent probabilities.
We have chosen this representation mainly because our target
FPGA provides fixed point multipliers that support vectors of
up to 18 bits.

For example, an instantiation of the µBayes unit with 7 par-
allel computing blocks accounts for a total of 25,719 logic el-
ements (22.5% of the total logic elements) and 20,160 mem-
ory bits (2.5 kByte, 0.5% of the total memory bits) and al-
lows for a maximum operating frequency fmax of 115 MHz
for the slow timing model at 85 ○C on an Altera Cyclone IV
EP4CE115 FPGA. We note that the operating frequency can
easily be increased by moving to a more powerful FPGA.
Figure 15 shows the influence of the number of computing
blocks on the maximum operating frequency, the number of
logic elements, and the number of memory bits.

9. EXPERIMENTS AND RESULTS

In this section, we present results of experiments. In order to
illustrate our three-pronged approach, we first discuss moni-
toring of requirements using examples of temporal logic ob-
servers as presented in Section 5. For all examples, actual

16

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Figure 14. Screen-shot of our GUI-based synthesis tool (Reinbacher, 2013) for µBayes configurations. There is a textual
description of the altimeter health model Bayesian network (top), a compiled arithmetic circuit of the network (bottom left),
and a binary configuration for our µBayes unit (bottom right).

sensor and signal values are prefixed by “s ,” e.g., s baroAlt
comprises a stream of sensor readings of the barometric al-
titude. We next discuss an example (Section 9.2) of how to
determinate the health of sensors using BNs and show results,
using actual flight data, where the laser altimeter failed. The
final part of this section is devoted to an example of how our
rt-R2U2 framework can be used for reasoning about software
(Section 9.3).

9.1. Monitoring of Requirements

Recall from Section 3.2 that our rt-R2U2 framework oper-
ates on a set of requirements, which are interpreted via paths
through a network of building blocks to achieve our fault de-
tection and diagnostic goals. We create model-based mon-
itors (Section 6) and Bayesian reasoning components (Sec-

tion 7) to support monitoring these requirements. We cre-
ate synchronous and asynchronous runtime observers in hard-
ware, on-board FPGAs, from our temporal logic translations
of the requirements (Section 5). In this way, requirements
form the backbone of our rt-R2U2 framework.

Here, we exemplify the monitoring process for our temporal
logic-based runtime observers, including how they take input
from and pass input to other blocks in our rt-R2U2 frame-
work (Figure 16). We demonstrate the power of generating
observers from temporal logic requirements.

Consider our requirement F1 from Section 3.2, instantiated
with data from the barometric altimeter:

◻((s cmd == takeoff)→◇[0,40s](s baroAlt ≥ 600 ft))

17

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

that states, “After takeoff, the Swift UAS must reach an al-
titude of 600ft within 40 seconds.” Recall that we encoded
this requirement in MTL in Section 5 and discussed creating
a pair of runtime observers that yield both a synchronous ob-
server that updates with each tick of the system clock and an
asynchronous observer that determines the satisfaction of the
requirement as soon as there is enough information to do so.

sync

async
T

fT

Atomics_baroAlt

s_cmd_takeoff

>= 600ft

Figure 16. An rt-R2U2 configuration block diagram for
monitoring the requirement ◻((s cmd == takeoff) →
◇[0,40s](s baroAlt ≥ 600 ft)).

A

s baroAlt / ft
300

600

900

s cmd

ta
ke

o
ff

la
n
d

B
s baroAlt ≥ 600ft

s cmd = takeoff

ϕF1 = ◻((s cmd = takeoff)→◇[0,40s](s baroAlt ≥ 600 ft)) ✓

Figure 17. A: flight data recorded on-board the Swift UAS:
barometric altitude (top) and commanded mode s cmd. B:
temporal traces of subformulas and results of ◻((s cmd ==
takeoff) → ◇[0,40s](s baroAlt ≥ 600 ft)). The UAS reaches
the top of the climb at about 30s after takeoff.

Figure 16 breaks down how we monitor this requirement.
First, the raw data from the barometric altimeter are passed
through one of our atomic filter blocks, as described in Sec-
tion 4 and compared to the threshold of 600ft. The resulting
stream of Boolean values and the command data stream are
the two inputs to our pair of temporal logic observers for this
requirement. Figure 17B shows the corresponding temporal
traces. The top line is the result of monitoring the subformula
(s baroAlt ≥ 600 ft) and the middle line is the result of mon-
itoring the subformula (s cmd == takeoff). The straight red
line at the bottom shows that the requirement holds at every
time point during the flight. This bottom line is the output
from our asynchronous observer and can be used as the in-

put to another block in our rt-R2U2 framework, such as a
Bayesian reasoning block. During UAS flight, this stream of
output data will be delayed until there is enough data to de-
termine if the temporal requirement is true. In order to better
support real-time reasoning, we use the output of the paired
synchronous observer, which differentiates, in real time, when
we know that the flight rule holds from when we do not have
enough information, at the present time, to make that deci-
sion.

Now consider requirement R3 from Section 5.2

◻(◻[0,5s](Vz > 0)→◇[0,2s](∆s baroAlt > 300ft/min))

stating that a significant positive vertical velocity (at least 5
consecutive seconds) needs to be followed by an increase in
altitude. Figure 18 shows the rt-R2U2 configuration block
diagram for this requirement.

Again, we take the raw measurement data from the baromet-
ric altimeter (s baroAlt), pass it through one of our smooth-
ing filter blocks to reduce the sensor noise, take the differ-
ence and compare that against the threshold of 300ft/min;
the output of this atomic block corresponds to the subformula
∆s baroAlt > 300ft/min. This stream is fed as an input to our
temporal observer. In Figure 19, the barometric altitude ap-
pears in the top panel. The inertial navigation unit supplies
the vertical velocity Vz reading; its data stream is the second
panel of Figure 19. We feed this sensor data stream through
a moving average filter or smoothing; the result is shown in
blue in the third panel. These data streams are then processed
by components of our asynchronous runtime observer; results
are shown in the bottom three panels of Figure 19. The red
curve at the top, our vertical velocity observer, checks for
a “significant positive vertical velocity.” System designers
equate this to a steady positive reading of the filtered vertical
velocity reading for five seconds. The red curve in the middle,
our barometric altimeter observer, flags time points that fall
within a two second time interval when the change in altitude
is above the given threshold. These components comprise our
runtime observer, which continuously verifies that “every oc-
currence of significant positive vertical velocity is indeed fol-
lowed by a corresponding positive change in altitude.” This
is reflected by the straight red line in the bottom-most panel
of Figure 19.

Atomic
sync

async
T

fT

Atomic

s_baroAlt

s_V_z

> 0 ft/min

rate, smooth

> 5 ft/min

smooth

Figure 18. The rt-R2U2 configuration block diagram for
monitoring requirement R3.

18

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

s baroAlt / ft
300

600

900

v vel / ft
min

v vel (filtered)/ ft
min

◻[0,5s](v vel > 0)

◇[0,2s]∆s baroAlt > θ

ϕ ∶= ◻(◻[0,5s](v vel > 0)→◇[0,2s]∆s baroAlt > θ) ✓

s baroAlt [ft]

s V z [ft
min]

s V z (filt) [ft
min]

◻[0,5s](s V z > 0)

◇[0,2s](∆s baroAlt > θ)

◻(◻[0,5s](s V z > 0)→◇[0,2s](∆s baroAlt > θ))

Figure 19. Raw input signals (top two panels), intermediate
signals (panels 3–5), and outputs of temporal logic observers
(bottom panels).

9.2. Sensor Health Management

The continuous monitoring of a UAS’s flight-critical sensors
is very important. Faulty, iced, or clogged Pitot tubes for
measuring speed of the aircraft has, for instance, caused sev-
eral catastrophes. For example, the crash of Birgenair Flight
301, which claimed 189 lives, was caused by a Pitot tube be-
ing blocked by wasp nests.13 Similarly, faults in the determi-
nation of the aircraft’s altitude can lead to dangerous situa-
tions. In many cases, however, the health of a sensor cannot
be established independently. Only by taking into account in-
formation from other sources can a reliable result be obtained.
Unfortunately, these other sources of information are also not
independently reliable, thus creating a non-trivial SHM prob-
lem.

In this experiment, we integrate information from a baromet-
ric altimeter measuring altitude above sea level, a laser al-
timeter measuring altitude above ground level (AGL), and in-
formation about the vertical velocity and the pitch angle pro-
vided by the Inertial Measurement Unit (IMU). Table 5 lists
the signals and their intended meanings. Our corresponding
rt-R2U2 configuration block diagram is shown in Figure 20.

The measurements of the laser and barometric altimeter are
smoothed and applied to a rate filter to obtain velocities. Then,
the atomic block discretizes these rates into into increasing
(rate ≥ 0) and decreasing (rate < 0), before the information
is fed into the reasoning component. Here, the atomic block
produces two signals: inc and dec.

Figure 21 shows the BN model for reasoning about altime-
ter failures. Sensor nodes (inputs) for each of the different
sensor types are at the bottom. The unobservable state UA,

13http://en.wikipedia.org/wiki/Birgenair Flight 301

Table 5. Signals and their intended meanings.

Signal Unit Description
s baroAlt ft altitude reading from baromet-

ric altimeter
s laserAlt ft altitude reading from laser al-

timeter
s V z ft/min vertical velocity reading from

IMU
s pitch rad Euler pitch reading from IMU

Atomic

B
A

Y
E

S

s_baroAlt

s_laserAlt

s_pitch

smooth

s_V_z

>=0 | <0ft/min

>=0 | <0ft/min

<−0.1ft/min|> 0.1|*

undet}

>0.2rad

{pitch−up}

{inc,dec}

{inc,dec}

{inc,dec,

rate, smooth

rate, smooth

Atomic

Atomic

Atomic

Figure 20. rt-R2U2 configuration block diagram: model for
altimeter health.

describing whether the altitude of the UAS is increasing or
decreasing, influences the sensor readings, hence there are
edges from UA to sensor nodes SL, SB , and SS . The laser al-
timeter can fail. Therefore, the sensor node SL is influenced
by the node HL, reflecting the health of the laser altimeter.
A similar structure can be found for the barometric altimeter
(nodes SB and HB , respectively). For simplicity, we did not
model the health of the IMU sensors SS , so there is no sepa-
rate health node. Since no further knowledge is available on
how often the UAS climbs or descends, the prior probabili-
ties of the status node UA are set to p(inc) = p(dec) = 0.5.
This information is encoded in the CPTs of the health node
HU . Because the laser altimeter is prone to errors, its proba-
bility of being healthy is only 0.7, i.e., p(healthy) = 0.7 and
p(bad) = 1 − p(healthy) = 0.3. This information is present in
the CPT of HL. Barometric altitude, which is measured by a
more reliable sensor is defined in HB with a prior probabil-
ity of being healthy of 0.9. For details on the CPTs see also
Section 7.1 above.

The CPTs for the sensor nodes shown in Figure 21 are read
as follows: if the latent status UA is increasing and the laser
altimeter is healthy, then the probability that it is reading an
increasing value is 1; no decreasing measurement is reported
(p = 0). In the case of a failing laser altimeter, no meaningful
result can be obtained; hence p = 0.5. The same model is used
for the barometric altitude. The IMU sensors are modeled
somewhat differently. If they report an upward velocity, it is

19

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

S BaroAlt
(SB)

H BaroAlt
(HB)

S LaserAlt
(SL)

H LaserAlt
(HL)

S Sensors
(SS)

U Altimeter
(UA)

HB ΘHB

healthy 0.9
bad 0.1

HL ΘHL

healthy 0.7
bad 0.3

UA ΘUA

inc 0.5
dec 0.5

UA SS ΘHL

inc
inc 0.7
dec 0.1
undet 0.2

dec
inc 0.1
dec 0.7
undet 0.2

UA HB SB ΘSB

inc
healthy inc 1.0

dec 0.0

bad inc 0.5
dec 0.5

dec
healthy inc 0.0

dec 1.0

bad inc 0.5
dec 0.5

UA HL SL ΘSL

inc
healthy inc 1.0

dec 0.0

bad inc 0.5
dec 0.5

dec
healthy inc 0.0

dec 1.0

bad inc 0.5
dec 0.5

Figure 21. Bayesian network and CPT tables for reasoning
about altimeter failure.

likely (p = 0.7) that this has been caused by an upward move-
ment of the UAS (UA = inc). Due to high noise of the IMU
sensors, we introduce a dead-band such that small sensor val-
ues will not be considered for this reasoning. Those sensor
values, which are below a given threshold, cause Ss = undet.
Figure 22 breaks down how we evaluate this BN and how our
architecture is able to detect a temporary outage of the laser
altimeter. The data shown here are based upon actual Swift
data, recorded during a test flight where the laser altimeter in
fact failed.

s baroAlt / [ft]

s laserAlt / [ft]

300

600

900

s pitch / [rad]

s V z / [ft
min

]

Pr(HL = healthy ∣ output of runtime monitors)

Pr(HB = healthy ∣ output of runtime monitors) ✓

× ×

✓ ✓

Figure 22. Flight data collected from the Swift UAS (top
three panels) and output of our Bayesian SHM model, given
as probabilities (bottom two panels). For this figure, a ground
level of 0ft is assumed resulting in s baroAlt ≈ s laserAlt
for healthy sensors.

With our current implementation of the µBayes unit and a
configuration as shown in Figure 20, running at a system

clock frequency of 115 MHz, the unit is able to evaluate the
altimeter health model displayed in Figure 21 at 660Hz. We
believe this is a strong result, given that an update rate of 50–
200Hz is typical for control loops in aircraft.

9.3. Reasoning about Software Health

In principle, SHM models for software components are struc-
tured in a similar way to those for sensor monitoring. Sig-
nals are extracted from communication links between com-
ponents, the operating system, or from specific memory loca-
tions using shared variables. If the required data are available
on external buses, like on the Swift, no specific instrumen-
tation of the safety-critical control code is necessary. Com-
pared to hardware and sensor management, the complexity
of software health models is usually higher, because of an
often substantial code complexity and the multitude of op-
erational modes. Furthermore, substantial reasoning can be
required because individual failures, e.g., caused by dormant
software bugs or problematic hardware-software interaction,
might pervade large portions of the software system and can
cause seemingly unrelated failures in other components. Such
a situation occurred when a group of six F-22 Raptors was
first deployed to the Kadena Air Base in Okinawa, Japan
(Johnson, 2007). When crossing the international dateline
(180○ longitude), a dormant software bug caused multiple
computer crashes. Not only was navigation completely lost,
but also the seemingly unrelated communications computer
crashed. “The fighters were able to return to Hawaii by fol-
lowing their tankers in good weather. The error was fixed
within 48 hours and the F-22s continued their journey to Ka-
dena” (Johnson, 2007).

We now consider how such an unfortunate interplay between
software design and poor implementation could cause ad-
verse effects on the flight hardware. Figure 23 shows a mock-
up of a flawed architecture for a flight-control computer. This
system consists of the aircraft guidance, navigation, and con-
trol (GN&C) system, the drivers for the aircraft sensors and
actuators, a science camera, and the transmitter for the video
stream. All components communicate via a global message
queue. This message queue is, under certain conditions de-
tailed below, fast enough to push through all messages at the
required speed. For debugging and logging purposes, all mes-
sage headers are written in blocking mode into an on-board
file system. A corresponding requirement appears as example
flight rule F4 in Section 5:

◻((addToQueueGN&C ∧◇removeFromQueueSwift) →
¬removeFromQueueSwift U writeToFS).

This architecture works perfectly when the system is started
and the file system is empty or near empty. After some time of
operation, as the file system becomes increasingly populated
but writes can still occur, suddenly oscillations in the alti-

20

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Software

Queue

System
File

GN&C

Transmitter

Antenna

Camera
Science

Message

Figure 23. Flawed system architecture for file system-related
scenario.

tude of the aircraft occur. These are similar to pilot-induced-
oscillations (PIO). However, no software error whatsoever
is reported and the situation worsens if the science camera,
which also uses this message queue, is in operation.

The underlying root cause is that writes into the file system
take an increasing amount of time as the file system fills up
due to longer searches for free blocks. This situation ac-
counts for longer delays in the message queue, which cause
delays in the seemingly unrelated inner control loop, ulti-
mately causing oscillations of the entire UAS. For a software
health model, therefore, non-trivial reasoning is important,
because these kinds of failures can manifest themselves in
seemingly unrelated components of the aircraft.

Table 6. Discrete signals and their intended meanings.

Signal Unit Description
s FS Error B error in file system (FS)
s W FS B writing into file system
s FS % available space in FS
s Queue lng N length of message queue
s baroAlt ft barometric altitude
s delta q 1/s dynamic queue behavior (derived)
s osc B UAS oscillation (derived)

Table 6 and Figure 24 show details of our model. All signals,
except the barometric altitude signal, are extracted from the
operating system running on the flight computer. In the di-
agram in Figure 24, discrete signals are fed directly into the
Bayesian network; continuous signals like the length of the
message queue or the amount of data in the file system are dis-
cretized into categories using thresholds, e.g., the file system
is empty, filled to more than 50%, filled to more than 90%,
or full. The barometric altitude is fed through a Fast Fourier
Transform (FFT) in order to obtain the frequency spectrum.
Here, we use a standard FFT of size 128 and pick the low-
frequency band 2. A threshold of 3.5 is used to determine
if low-frequency oscillations occur. This band selection also
allows the health model to distinguish between oscillations
with a low frequency and high-frequency vibrations.

s_FS

s_Queue_lng

s_W_FS

s_FS_Error

>=1000

Atomic

Atomic

Atomic

B
A

Y
E

S

{F,T}

{F,T}

{empty,med,

al_full,full}

Atomic

{F,T}

s_baroAlt

FFT, smooth

<0|=0|>0

{F,T}

{F,T}

>= threshold

=0|>50|>90|=100

rate

threshold=3.5

Figure 24. The rt-R2U2 configuration block diagram for the
file system scenario.

Figure 25 shows the relevant excerpt from our Bayesian SHM
model for this scenario, including the file system and the mes-
sage queue. The software-related sensor nodes for this model
are located on the left side of the network, shaded in gray.
File system sensors include: a sensor detecting file system
errors; a sensor detecting writes; and a sensor providing in-
formation on storage capacity in the file system (with states:
empty, medium, almost full, and full). Message queue sen-
sors include: S Queue length providing information about
the length of the message queue and S Delta queue sensing
whether the length of the message queue is increasing or de-
creasing. The oscillation sensor node S Oscillation connects
to the output of a FFT block to detect regularly repeated vari-
ations of the vertical acceleration. Nodes for the internal sta-
tus of components, such as the file system and the message
queue, are connected via sensor and health nodes. The be-
havior and status nodes for system oscillation and delay build
the foundation for reasoning about this and similar scenarios.

Figure 26 shows the temporal traces of a file system-induced
fault scenario in simulation. For the purpose of this experi-
ment, we start out with a file system that is considerably full.
At time stamp t = 20, the file system status is set to almost
full. Figure 26 (top) illustrates how the oscillation in altitude
ramps up. The output of the 128-element FFT filter, band 2,
indicates the presence of oscillation at around t = 100 time
stamps (Panel 2). The black line indicates the threshold of
3.5. Panel 3 shows the values of relevant discrete signals
(from top to bottom): pitch-up and pitch-down commands,
oscillation, file system almost full, and file system full. Note
that the latter signal never becomes true.

The bottom panel shows the marginal posteriors of the health
nodes H SW (blue), H pitch (red) and H accelerometer (ma-
genta). A clear drop of H SW at the time when the oscil-
lation is being detected indicates a problem in the on-board

21

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

File_System

Msg_queue

Network

U_ H_

U_

File_System

File_System_
Error

S_

Write_

Queue_length

Delta_queue

S_

S_

Oscillation

S_

Delay

Msg_queue

Oscillation

Rest of Bayesian SWHM

H_SW

File_System

S_

Capacity
File_System

Figure 25. Relevant nodes from Bayesian system health
model for oscillation detection (from Schumann, Mbaya, et
al., 2013).

software, whereas the aircraft sensors seem to be healthy. In
this scenario, the health of the file system and of the mes-
sage queue, when considered individually, do not drop sig-
nificantly. Also, the software itself does not flag any error.
This experiment clearly shows the capability of rt-R2U2 to
isolate non-trivial software faults.

10. CONCLUSIONS AND FUTURE WORK

We have in this article presented a coordinated, extensible,
three-pronged approach to sensor and software health man-
agement in real time, on-board a UAS. Health models are
constructed in a modular and scalable manner using a num-
ber of different building blocks. Major block types provide
advanced capabilities for temporal logic runtime observers,
model-based analysis and signal processing, and powerful
probabilistic reasoning using Bayesian networks. This de-
sign adheres to our overarching design requirements of UN-
OBTRUSIVENESS, RESPONSIVENESS, and REALIZABILITY,
and we can automatically transform the resulting rt-R2U2
block diagrams of health models into efficient FPGA hard-
ware designs. We demonstrated the capabilities of this ap-
proach on a set of requirements and flight rules, both for sen-
sor and software health management. We presented exper-
imental results for this approach using actual data recorded
on-board the NASA Swift UAS.

However, the results shown here are only the first steps toward
a real-time on-board sensor and software health management

0

500

al
tit

ud
e

0

5

10

PS
12

8(2
)

 FT
 FT
 FT
 FT
 FT

di
sc

re
te

0 50 100 150

0.5
1

0.5
1

 P

(H
S)

 P

(H
SW

)

Figure 26. Traces of simulation experiment with a file-system
related failure scenario (based upon (Schumann, Mbaya, et
al., 2013)). Top panel: altitude profile with oscillation. Panel
2: frequency band 2 of FFT power spectrum. Panel 3: values
of discrete signals (see text). Panel 4: marginal posteriors for
selected health nodes.

system. For the proof of concept demonstration in this ar-
ticle, we analyzed recorded data streams from test flights of
the Swift UAS. For our analysis, we played back these data
streams, simulating real-time processing. There are two clear
options for processing the data on-board instead: reading sen-
sor data passed on the common bus or having sensor data
sent to our rt-R2U2 framework by the flight computer. In the
near future, we plan to define and build unobtrusive read-only
interfaces that will enable us to get real-time sensor and soft-
ware data from the common bus or flight computer while pro-
viding the guarantee that under no circumstances would our
rt-R2U2 framework disturb the bus or any other UAS compo-
nent. This is a major requirement for obtaining flight certifi-
cation and carrying out actual flight tests running rt-R2U2 on
the Swift UAS, which are our next goals.

Other directions for future work include specializations of
rt-R2U2 for specific UAS that would maintain flight certi-
fiability but enable us to use the outputs in real time rather
than maintaining a read-only interface with the UAS. Uses for
the output range from simple, conservative mitigation recom-
mendations in the case of failed components to full-fledged
autonomous decision making.

Our approach enables a designer to embed efficient SHM
components that are capable of accurately capturing system
complexity. The rt-R2U2 design is extensible because the
building blocks comprising it can be connected in any num-
ber of ways and additional blocks could be added seamlessly
if required. For example, the output of a prognostics model
for monitoring on-board battery life could be used to improve
accuracy of the system health model and augment diagnostic

22

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

reasoning (Schumann, Roychoudhury, & Kulkarni, 2015).

We are currently investigating possibilities for increasing au-
tomation in the process of generating each of the rt-R2U2
configuration blocks. Our tool chain for the generation of
the FPGA configuration (Geist et al., 2014) can be extended
to handle modular and hierarchical health models. Model-
based blocks using a Kalman filter can be generated automat-
ically from a high-level, domain-oriented specification using
the AutoFilter tool (Whittle & Schumann, 2004).

On a broader level, research needs to be performed on how
to automatically generate advanced system health manage-
ment models from requirements, designs, and architectural
artifacts. In particular, for managing the health of a complex
and large software systems, automatic model generation is es-
sential. We are confident that our approach, which allows us
to combine monitoring of sensors, prognostics, and software
while separating out model-based signal processing, tempo-
ral, and probabilistic reasoning, will substantially facilitate
the development of improved and powerful on-board health
management systems for unmanned aerial systems.

ACKNOWLEDGMENTS

This work was in part supported by the NASA NRA grant
“ISWHM: Tools and Techniques for Software and System
Health Management” (NNX08AY50A) and by NASA ARMD
2014 Seedling Phase I, International Research Initiative for
Innovation in Aerospace Methods and Technologies (I3AMT),
NNX12AK33A. We would like to thank the anonymous re-
viewers for their detailed feedback to improve this paper.

REFERENCES

Alur, R., & Henzinger, T. A. (1990). Real-time Logics: Com-
plexity and Expressiveness. In LICS (pp. 390–401).
IEEE Computer Society Press.

Austin, T. M. (1999). DIVA: A reliable substrate for deep
submicron microarchitecture design. In Micro (pp.
196–207). IEEE Computer Society Press.

Barr, M. (2013). Bookout vs. Toyota, 2005 Camry L4 Soft-
ware Analysis. (redacted) Retrieved from http://
www.safetyresearch.net/Library/
BarrSlides FINAL SCRUBBED.pdf

Basin, D., Klaedtke, F., Müller, S., & Pfitzmann, B. (2008).
Runtime Monitoring of Metric First-order Temporal
Properties. In FSTTCS (pp. 49–60).

Basin, D., Klaedtke, F., & Zălinescu, E. (2011). Algorithms
for monitoring real-time properties. In Proc. 11th Inter-
national Conference on Runtime Verification (RV’11)
(Vol. 7186, pp. 260–275). Springer Verlag.

Bauer, A., Leucker, M., & Schallhart, C. (2010). Comparing
LTL semantics for Runtime Verification. J. Log. and
Comput., 20(3), 651–674.

Bekkerman, R., Bilenko, M., & Langford, J. (Eds.). (2011).
Scaling up machine learning: Parallel and distributed
approaches. Cambridge University Press.

Bellman, R. (1958). On a routing problem. Quarterly of
Applied Mathematics, 16, 87–90.

Bolton, M., & Bass, E. (2013). Evaluating human-
human communication protocols with miscommunica-
tion generation and model checking. In Proc. NASA
Formal Methods Symposium (Vol. 7871, pp. 42–68).
Springer Verlag.

Bonakdarpour, B., & Smolka, S. A. (Eds.). (2014).
Proc. Runtime Verification, Fifth International Confer-
ence, RV’14 (Vol. 8734). Springer Verlag.

Brörkens, M., & Möller, M. (2002). Dynamic event gen-
eration for runtime checking using the JDI. Electronic
Notes in Theoretical Computer Science, 70(4), 21 - 35.

Brown, R., & Hwang, P. (1997). Introduction to Random
Signals and Applied Kalman Filtering (3rd ed.). John
Wiley & Sons.

Chavira, M., & Darwiche, A. (2005). Compiling Bayesian
networks with local structure. In Proc. 19th Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI) (pp. 1306–1312).

Chavira, M., & Darwiche, A. (2007). Compiling Bayesian
networks using variable elimination. In Proc. of the
Twentieth International Joint Conference on Artificial
Intelligence (IJCAI) (pp. 2443–2449).

Chenard, J.-S. (2011). Hardware-based temporal logic check-
ers for the debugging of digital integrated circuits [Dis-
sertation]. McGill University Montreal, Canada.

Choi, A., Darwiche, A., Zheng, L., & Mengshoel, O. J.
(2011). A tutorial on Bayesian networks for sys-
tem health management. In A. Srivastava & J. Han
(Eds.), Data mining in systems health management:
Detection, diagnostics, and prognostics. Chapman and
Hall/CRC Press.

Darwiche, A. (2001). Recursive conditioning. Artificial In-
telligence, 126(1-2), 5-41.

Darwiche, A. (2003). A differential approach to inference in
Bayesian networks. Journal of the ACM, 50(3), 280–
305.

Darwiche, A. (2009). Modeling and reasoning with Bayesian
networks. Cambridge, UK: Cambridge University
Press.

Dawid, A. P. (1992). Applications of a general propagation
algorithm for probabilistic expert systems. Statistics
and Computing, 2, 25–36.

Divakaran, S., D’Souza, D., & Mohan, M. R. (2010).
Conflict-tolerant real-time specifications in Metric
Temporal Logic. In Time (p. 35-42). IEEE Computer
Society Press.

Drusinsky, D. (2003). Monitoring temporal rules combined
with time series. In CAV (Vol. 2725, pp. 114–118).
Springer Verlag.

23

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Federal Aviation Administration. (2013). Federal Aviation
Regulation §91.

Gan, X., Dubrovin, J., & Heljanko, K. (2011). A symbolic
model checking approach to verifying satellite onboard
software. Electronic Communications of the EASST ,
46, 1–15.

Geilen, M. (2003). An Improved On-The-Fly Tableau Con-
struction for a Real-Time Temporal Logic. In Proc.
Computer Aided Verification (CAV) (Vol. 2725, pp.
394–406). Springer Verlag.

Geist, J., Rozier, K. Y., & Schumann, J. (2014). Runtime
Observer Pairs and Bayesian Network Reasoners On-
board FPGAs: Flight-Certifiable System Health Man-
agement for Embedded Systems. In Proc. 14th Inter-
national Conference on Runtime Verification (RV’14)
(Vol. 8734, pp. 215–230). Springer-Verlag.

Havelund, K. (2008). Runtime Verification of C Programs.
In TestCom/FATES (pp. 7–22). Springer Verlag.

Huang, C., & Darwiche, A. (1994). Inference in belief net-
works: A procedural guide. International Journal of
Approximate Reasoning, 15(3), 225-263.

Huang, J., Chavira, M., & Darwiche, A. (2006). Solving
MAP exactly by searching on compiled arithmetic cir-
cuits. In Proc. 21st National Conference on Artificial
Intelligence (pp. 143–148).

Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sun-
daresan, A., & Rosu, G. (2014). ROSRV: Runtime Ver-
ification for Robots. In Proc. 14th International Con-
ference on Runtime Verification (RV’14) (Vol. 8734,
pp. 247–254). Springer Verlag.

Ippolito, C., Espinosa, P., & Weston, A. (2010). Swift UAS:
An electric UAS research platform for green aviation
at NASA Ames Research Center. In CAFE EAS IV.

Jensen, F. V., Lauritzen, S. L., & Olesen, K. G. (1990).
Bayesian updating in causal probabilistic networks by
local computations. SIAM Journal on Computing, 4,
269–282.

Jeon, H., Xia, Y., & Prasanna, V. K. (2010). Parallel exact
Inference on a CPU-GPGPU heterogeneous System. In
Proc. of the 39th International Conference on Parallel
Processing (pp. 61–70).

Johnson, D. (2007). Raptors Arrive at Kadena. Re-
trieved from http://www.af.mil/news/story
.asp?storyID=123041567

Kask, K., Dechter, R., & Gelfand, A. (2010). BEEM: bucket
elimination with external memory. In Proc. of the 26th
Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI) (pp. 268–276).

Koller, D., & Friedman, N. (2009). Probabilistic graphical
methods: Principles and techniques. MIT Press.

Kozlov, A. V., & Singh, J. P. (1994). A parallel Lauritzen-
Spiegelhalter algorithm for probabilistic inference. In
Proc. of the 1994 ACM/IEEE Conference on Supercom-
puting (pp. 320–329).

Kulesza, Z., & Tylman, W. (2006). Implementation of
Bayesian network in FPGA circuit. In Mixdes (p. 711
-715). IEEE Computer Society Press.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local com-
putations with probabilities on graphical structures and
their application to expert systems. Journal of the
Royal Statistical Society, 50(2), 157–224.

Legay, A., & Bensalem, S. (Eds.). (2013). Proc. Runtime Ver-
ification, Fourth International Conference, RV’13 (Vol.
8174). Springer Verlag.

Li, Z., & D’Ambrosio, B. (1994). Efficient inference in Bayes
nets as a combinatorial optimization problem. Interna-
tional Journal of Approximate Reasoning, 11(1), 55–
81.

Lichtenstein, O., Pnueli, A., & Zuck, L. (1985). The glory of
the past. In Logics of programs (Vol. 193, p. 196-218).
Springer Verlag.

Lin, M., Lebedev, I., & Wawrzynek, J. (2010). High-
throughput Bayesian computing machine with recon-
figurable hardware. In FPGA (pp. 73–82). ACM Press.

Linderman, M. D., Bruggner, R., Athalye, V., Meng, T. H.,
Asadi, N. B., & Nolan, G. P. (2010). High-throughput
Bayesian network learning using heterogeneous Mul-
ticore Computers. In Proc. of the 24th ACM Interna-
tional Conference on Supercomputing (pp. 95–104).

Lindsey, A. E., & Pecheur, C. (2004). Simulation-based
verification of autonomous controllers via Livingstone
Pathfinder. In Proc. TACAS 2004 (Vol. 2988, pp. 357–
371). Springer Verlag.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C.,
& Hellerstein, J. (2010). GraphLab: A new frame-
work for parallel machine learning. In Proc. of the 26th
Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI) (p. 340-349).

Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P. O., Ser-
banuta, T. F., & Rosu, G. (2014). RV-Monitor: Ef-
ficient parametric runtime verification with simultane-
ous properties. In Proc. 14th International Conference
on Runtime Verification (RV’14). (Vol. 8734, pp. 285–
300). Springer Verlag.

Maler, O., Nickovic, D., & Pnueli, A. (2005). Real Time
Temporal Logic: Past, Present, Future. In FORMATS
(Vol. 3829, pp. 2–16). Springer Verlag.

Maler, O., Nickovic, D., & Pnueli, A. (2007). On synthesiz-
ing controllers from bounded-response properties. In
Proc. CAV (Vol. 4590, pp. 95–107). Springer Verlag.

Maler, O., Nickovic, D., & Pnueli, A. (2008). Checking
temporal properties of discrete, timed and continuous
behaviors. In Pillars of Comp. Science (pp. 475–505).
Springer Verlag.

Mengshoel, O. J. (2007). Designing resource-bounded rea-
soners using Bayesian networks: System health moni-
toring and diagnosis. In Proc. 18th International Work-
shop on Principles of Diagnosis (DX) (pp. 330–337).

24

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Mengshoel, O. J., Chavira, M., Cascio, K., Poll, S., Dar-
wiche, A., & Uckun, S. (2010). Probabilistic model-
based diagnosis: An electrical power system case
study. IEEE Trans. on Systems, Man and Cybernetics,
Part A: Systems and Humans, 40(5), 874–885.

Mengshoel, O. J., Darwiche, A., Cascio, K., Chavira, M.,
Poll, S., & Uckun, S. (2008). Diagnosing faults in
electrical power systems of spacecraft and aircraft. In
Proc. of the Twentieth Innovative Applications of Arti-
ficial Intelligence Conference (IAAI) (pp. 1699–1705).
Chicago, IL.

Mengshoel, O. J., Roth, D., & Wilkins, D. C. (2011). Port-
folios in stochastic local search: Efficiently comput-
ing most probable explanations in Bayesian networks.
Journal of Automated Reasoning, 46(2), 103–160.

Mengshoel, O. J., Wilkins, D. C., & Roth, D. (2011). Initial-
ization and restart in stochastic local search: Comput-
ing a most probable explanation in Bayesian networks.
IEEE Transactions on Knowledge and Data Engineer-
ing, 23(2), 235–247.

Musliner, D., Hendler, J., Agrawala, A. K., Durfee, E., Stros-
nider, J. K., & Paul, C. J. (1995). The challenges of
real-time AI. IEEE Computer, 28, 58–66.

Namasivayam, V. K., & Prasanna, V. K. (2006). Scalable
parallel implementation of exact inference in Bayesian
networks. In Proc. of the 12th International Conference
on Parallel and Distributed Systems (pp. 143–150).

Park, J. D., & Darwiche, A. (2004). Complexity results and
approximation strategies for MAP explanations. Jour-
nal of Artificial Intelligence Research (JAIR), 21, 101-
133.

Pasricha, R., & Sharma, S. (2009). An FPGA-based design of
fixed-point Kalman filter. ICGST International Journal
on Digital Signal Processing, DSP, 9, 1–9.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems: Networks of plausible inference. Morgan Kauf-
mann.

Pearl, J. (2000). Causality : models, reasoning, and infer-
ence. Cambridge University Press.

Pellizzoni, R., Meredith, P., Caccamo, M., & Rosu, G.
(2008). Hardware Runtime Monitoring for Dependable
COTS-Based Real-Time Embedded Systems. RTSS,
481-491.

Pike, L., Goodloe, A., Morisset, R., & Niller, S. (2010).
Copilot: A Hard Real-Time Runtime Monitor. In Proc.
10th International Conference on Runtime Verification
(RV’10) (Vol. 6418, pp. 345–359). Springer Verlag.

Pike, L., Niller, S., & Wegmann, N. (2011). Runtime veri-
fication for ultra-critical systems. In Proc. 14th Inter-
national Conference on Runtime Verification (RV’14)
(Vol. 7186, pp. 310–324). Springer Verlag.

Pnueli, A. (1977). The temporal Logic of Programs. In Proc.
18th Annual Conference on Foundations of Computer
Science (FOCS’77) (pp. 46–57). IEEE Computer So-

ciety Press.
Poll, S., Patterson-Hine, A., Camisa, J., Garcia, D., Hall, D.,

Lee, C.& Koutsoukos, X. (2007). Advanced Diagnos-
tics and Prognostics Testbed. In Proc. of the 18th In-
ternational Workshop on Principles of Diagnosis (DX)
(pp. 178–185).

Qadeer, S., & Tasiran, S. (Eds.). (2012). Proc. Runtime Ver-
ification, Third International Conference, RV’12 (Vol.
7687). Springer Verlag.

Reinbacher, T. (2013). Analysis of embedded real-time sys-
tems at runtime Dissertation. Vienna University of
Technology Vienna, Austria.

Reinbacher, T., Rozier, K. Y., & Schumann, J. (2014).
Temporal-logic based runtime observer pairs for sys-
tem health management of real-time systems. In Proc.
20th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS)
(Vol. 8413, pp. 357–372). Springer-Verlag.

Ricks, B., & Mengshoel, O. J. (2014). Diagnosis for uncer-
tain, dynamic and hybrid domains using Bayesian Net-
works and Arithmetic Circuits. International Journal
of Approximate Reasoning, 55(5), 1207–1234.

Ricks, B. W., & Mengshoel, O. J. (2009a). The diagnos-
tic challenge competition: Probabilistic techniques for
fault diagnosis in electrical power systems. In Proc. of
the 20th International Workshop on Principles of Di-
agnosis (DX) (pp. 415–422).

Ricks, B. W., & Mengshoel, O. J. (2009b). Methods for prob-
abilistic fault diagnosis: An electrical power system
case study. In Proc. Annual Conference of the PHM
Society (PHM’2009).

Ricks, B. W., & Mengshoel, O. J. (2010). Diagnosing inter-
mittent and persistent faults using static Bayesian net-
works. In Proc. of the 21st International Workshop on
Principles of Diagnosis (DX).

Ristic, B., Arulampalam, S., & Gordon, N. (2004). Beyond
the Kalman Filter: Particle Filters for Tracking Appli-
cations. Artech House.

Rozier, K. Y. (2011). Linear Temporal Logic Symbolic
Model Checking. Computer Science Review Journal,
5(2), 163–203.

Rozier, K. Y., & Vardi, M. Y. (2010). LTL satisfiability check-
ing. International Journal on Software Tools for Tech-
nology Transfer (STTT), 12(2), 123 - 137.

RTCA. (2012). DO-178C/ED-12C: Software considerations
in airborne systems and equipment certification. Re-
trieved from http://www.rtca.org

Schumann, J., Mbaya, T., Mengshoel, O. J., Pipatsrisawat, K.,
Srivastava, A., Choi, A., & Darwiche, A. (2013). Soft-
ware Health Management with Bayesian Networks. In-
novations in Systems and Software Engineering, 9(2),
1–22.

Schumann, J., Mengshoel, O. J., & Mbaya, T. (2011). In-
tegrated software and sensor health management for

25

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

small spacecraft. In Proc. of the 2011 IEEE Fourth In-
ternational Conference on Space Mission Challenges
for Information Technology (pp. 77–84).

Schumann, J., Roychoudhury, I., & Kulkarni, C. (2015).
Diagnostic reasoning using prognostic information for
unmanned aerial systems. In Proc. Annual Conference
of the PHM Society (PHM’2015) PHM (under review).

Schumann, J., Rozier, K. Y., Reinbacher, T., Mengshoel,
O. J., Mbaya, T., & Ippolito, C. (2013). Towards Real-
time, On-board, Hardware-supported Sensor and Soft-
ware Health Management for Unmanned Aerial Sys-
tems. In Proc. Annual Conference of the Prognostics
and Health Management Society (PHM’2013).

Shenoy, P. P. (1989). A valuation-based language for expert
systems. International Journal of Approximate Rea-
soning, 3(5), 383 – 411.

Silberstein, M., Schuster, A., Geiger, D., Patney, A., &
Owens, J. D. (2008). Efficient computation of sum-
products on GPUs through software-managed cache.
In Proc. of the 22nd ACM International Conference on
Supercomputing (pp. 309–318).

Srivastava, A. N., & Schumann, J. (2013). Software
Health Management: a necessity for safety critical sys-
tems. Innovations in Systems and Software Engineer-
ing, 9(1), 219–233.

Thati, P., & Roşu, G. (2005). Monitoring algorithms for
Metric Temporal Logic specifications. ENTCS, 113,
145–162.

Tsai, J. J., Fang, K. Y., Chen, H. Y., & Bi, Y. (1990). A
noninterference monitoring and replay mechanism for
real-time software testing and debugging. Transactions
on Software Engineering, 16, 897–916.

Watterson, C., & Heffernan, D. (2007). Runtime verification
and monitoring of embedded systems. IET Software,
1(5), 172-179.

Whittle, J., & Schumann, J. (2004, December). Automating
the implementation of Kalman filter algorithms. ACM
Transactions on Mathematical Software, 30(4), 434–
453.

Xia, Y., & Prasanna, V. K. (2007). Node level primitives
for parallel exact inference. In Proc. 19th International
Symposium on Computer Architecture and High Per-
formance Computing (pp. 221–228).

Ye, B., & Zhang, Y. (2009). Improved FPGA implementation
of particle filter for radar tracking applications. In 2nd
Asian-Pacific Conference on Synthetic Aperture Radar
(APSAR) (pp. 943–946).

Zhang, N. L., & Poole, D. (1996). Exploiting causal inde-
pendence in Bayesian network inference. Journal of
Artificial Intelligence Research, 5, 301-328.

Zhao, Y., & Rozier, K. Y. (2012). Formal specification and
verification of a coordination protocol for an automated
air traffic control system. In Proc. 12th International
Workshop on automated Verification of critical Systems

(AVoCS 2012) (Vol. 53). European Association of Soft-
ware Science and Technology.

Zhao, Y., & Rozier, K. Y. (2014a). Formal specification and
verification of a coordination protocol for an automated
air traffic control system. Science of Computer Pro-
gramming Journal, 96(3), 337-353.

Zhao, Y., & Rozier, K. Y. (2014b). Probabilistic model check-
ing for comparative analysis of automated air traffic
control systems. In Proc. 33rd IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD
2014) (pp. 690–695). IEEE/ACM.

Zheng, L., & Mengshoel, O. J. (2013). Optimizing parallel
belief propagation in junction trees using regression. In
Proc. of 19th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD-13).

Zheng, L., Mengshoel, O. J., & Chong, J. (2011). Belief prop-
agation by message passing in junction trees: Comput-
ing each message faster using GPU parallelization. In
Proc. of the 27th Conference in Uncertainty in Artifi-
cial Intelligence (UAI).

BIOGRAPHIES

Dr. Johann Schumann is Chief Scientist
for Computational Sciences with SGT, Inc.
and working at the NASA Ames Research
Center. He received his PhD (1991) and
German habilitation degree (2000) in Com-
puter Science from the Technische Univer-
sity Munich in Germany. His general re-
search interests focus on the application of

formal and statistical methods to improve design and relia-
bility of advanced safety-critical software. Dr. Johann Schu-
mann is engaged in research on software health management,
verification and validation of IVHM algorithms, analysis and
V&V of advanced air traffic control algorithms, and the auto-
matic generation of reliable code. He is author of a book on
theorem proving in software engineering and has published
numerous articles on automated deduction and its applica-
tions, automatic program generation, V&V of safety-critical
systems, and neural network oriented topics.

Dr. Kristin Yvonne Rozier is Assistant
Professor of Aerospace Engineering and
Engineering Mechanics at the University of
Cincinnati and currently heads the Labo-
ratory for Temporal Logic; previously she
spent 14 years as a Research Scientist at
NASA. She earned her PhD (2012) from
Rice University. Her research focuses on

formal methods, temporal logic, model checking, and au-
tomated reasoning. Her advances in computation for the
aerospace domain earned her the American Helicopter Soci-
ety’s Howard Hughes Award, the American Institute of Aero-
nautics and Astronautics Intelligent Systems Distinguished

26

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Service Award, and the Women in Aerospace Inaugural
Initiative-Inspiration-Impact Award. She has also earned the
Lockheed Martin Space Operations Lightning Award, two
NASA Group Achievement Awards, and the SWE Above and
Beyond Award. She is an Associate Fellow of AIAA and a
Senior Member of IEEE and SWE.

Dr. Thomas Reinbacher obtained his PhD
“sub auspiciis praesidentis rei publicae” in
Computer Engineering from Vienna Univer-
sity of Technology in 2013. He held vari-
ous visiting research positions and collabo-
rated with RWTH Aachen University (Ger-
many) and the NASA Ames Research Cen-

ter (USA). His research interest focus on runtime analysis and
formal verification techniques for embedded real time sys-
tems. Application wise, he is interested in safety critical, high
reliability systems found in aeronautics, aviation and the au-
tomotive domain. Dr. Reinbacher is currently working for a
professional services company based in Munich, Germany.

Dr. Ole J. Mengshoel is an Associate Re-
search Professor of Electrical and Computer
Engineering at CMU Silicon Valley. His
current research focuses on reasoning, diag-
nosis, decision support, and machine learn-
ing under uncertainty often using Bayesian
networks. Dr. Mengshoel has published
over 50 articles and papers in journals and

conferences, and holds 4 U.S. patents. He has a Ph.D. in
Computer Science from the University of Illinois, Urbana-
Champaign. Prior to joining CMU, he was a research scientist
in the Knowledge-Based Systems Group at SINTEF (Scandi-
navia’s largest independent research organization), in the De-
cision Sciences Group at Rockwell Scientific (now Teledyne
Scientific and Imaging), and a senior scientist/research area
lead at USRA/RIACS (a research organization that supports
NASA).

Timmy Mbaya is an avionics engineer at
Boeing Defense & Space. His work in-
cludes avionics real-time systems for NASA
Space Launch System (SLS) and other ex-
perimental space systems. Also he is cur-
rently pursuing a thesis-based M.S. with a
focus on Artificial Intelligence and Intelli-
gent robotics, and emphasis on probabilis-

tic reasoning, from the University of Southern California.
He holds a B.S. in Computer Science Summa Cum Laude
and distinction from the University of Massachusetts. Mr.
Mbaya has been engaged in published research in the field of
probabilistic reasoning/Bayesian networks with applications
to Integrated Vehicle Health Management/Integrated Soft-
ware Health Management for aerospace systems for the past
five years; including research work at NASA Ames Research
Center through RIACS.

Corey Ippolito is a Research Scientist at
NASA Ames Research Center and is cur-
rently pursuing a PhD at Carnegie Mel-
lon University. He has an M.S. and B.S.
in Aerospace Engineering from the Geor-
gia Institute of Technology, and a gradu-
ate certificate in Space Systems Engineer-
ing from the Stevens Institute of Technol-

ogy. Mr. Ippolito heads the Exploration Aerial Vehicles and
Green Aviation (EAV/GA) laboratory. He has also lead sev-
eral aircraft development projects, including the Swift UAV,
the EAV, and the eXperimental Sensor Controlled Aerial Ve-
hicle (X-SCAV). He has received several awards including
NASA Group Achievement Awards for leading a robotic re-
search team in the Atacama Desert and the Surprise Valley
UAS project, a NASA Award of Excellence, and a NASA
Award for Superior Accomplishment for successful flight test
of collaborative UAV/UGV autolanding.

27

