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ABSTRACT 

In order to identify incipient failures due to a progressive 

wear of a primary flight command electromechanical 

actuator, several approaches could be employed; the choice 

of the best ones is driven by the efficacy shown in fault 

detection/identification, since not all the algorithms might 

be useful for the proposed purpose. In other words, some of 

them could be suitable only for certain applications while 

they could not give useful results for others. Developing a 

fault detection algorithm able to identify the precursors of 

the abovementioned electromechanical actuator (EMA) 

failure and its degradation pattern is thus beneficial for 

anticipating the incoming malfunction and alerting the 

maintenance crew such to properly schedule the 

servomechanism replacement. The research presented in the 

paper was focused to develop a fault detection/identification 

technique, able to identify symptoms alerting that an EMA 

component is degrading and will eventually exhibit an 

anomalous behavior, and to evaluate its potential use as 

prognostic indicator for the considered progressive faults 

(i.e. frictions and mechanical backlash acting on 

transmission, stator coil short circuit, rotor static 

eccentricity). To this purpose, an innovative model based 

fault detection technique has been developed merging 

several information achieved by means of Fast Fourier 

Transform (FFT) analysis and proper "failure precursors" 

(calculated by comparing the actual EMA responses with 

the expected ones). To assess the performance of the 

proposed technique, an appropriate simulation test 

environment was developed: the results showed an adequate 

robustness and confidence was gained in the ability to early 

identify an eventual EMA malfunctioning with low risk of 

false alarms or missed failures. 

1. INTRODUCTION 

As defined by Vachtsevanos, Lewis, Roemer, Hess, & Wu 

(2006), the purpose of prognostics is to predict accurately 

the Remaining Useful Life (RUL) of a failing component or 

subsystem. In fact, especially in aeronautics but also in 

many other technological fields, the development of a 

prognostics health management (PHM) based fault-tolerant 

control architecture can increase safety and reliability by 

detecting and accommodating impending failures thereby 

minimizing the occurrence of unexpected, costly and 

possibly life-threatening mission failures; reduce 

unnecessary maintenance actions; and extend system 

availability / reliability. The advantages gained by means of 

PHM strategies are evident comparing the features of a 

system developed according to this discipline with the ones 

of a classical design. The primary flight controls are a 

critical feature of the aircraft system and are therefore 

designed with a conservative safe-life approach, which 

imposes to replace the related components subsequently to a 

certain number of flight hours (or operating cycles). This 

approach fails in the detection of possible initial flaws, due 

to the manufacturing process, that could generate a sudden 

failure, which could compromise the safety of the aircraft. 

Moreover, this design criterion merely requires the 

component replacement, regardless of its effective status or 

capability to operate still correctly, with the related 

inefficiencies and additional costs.  

Instead, in a system suitably designed by taking into account 

the PHM strategies, the failures could be managed in a more 

proper way, obtaining the following advantages: 

1. lower operating costs; 

2. less maintenance interventions are required; 

3. lower number of redundancies installed on board 

aircraft; 

4. aircraft safety and reliability are improved; 

_____________________ 
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5. any maintenance work can be planned appropriately 

optimizing the necessary actions (limiting downtime 

and related costs and allowing a more effective 

organization of the maintenance and management of 

spare parts warehouses) and limiting the logistical 

difficulties resulting from the manifestation of the fault. 

The research presented in this paper was focused on two 

main objectives. The first is the proposal of a numerical 

algorithm capable to simulate the dynamic behavior of a 

typical electromechanical servomechanism affected by one 

or multiple progressive faults. The developed numerical 

model takes into account dry friction, backlash, coil short 

circuit and rotor static eccentricity. The second consists in 

the development of an innovative fault detection/evaluation 

technique able to identify failure precursors (alerting that 

the system is degrading) and to evaluate the corresponding 

damage entity. The progressive degradation of a system 

component, indeed, does not initially create an unacceptable 

behavior, but only eventually leads to a condition in which 

the whole actuation system operation could be 

compromised. In order to fulfill these two objectives, an 

innovative model-based fault detection and identification 

technique has been developed merging several information 

achieved by means of FFT analysis and proper failure 

precursors, i.e. system parameters whose variations could be 

associated with specific impending failure (Vichare & Pecht 

2006). This technique was tested by means of numerical 

simulations on a typical aircraft primary command EMA, 

modeled in the MATLAB Simulink® simulation 

environment. The proposed method showed an adequate 

robustness, and more confidence was gained in the ability to 

early identify the malfunctioning, with low risk of false 

alarms or missed failures.  

The present work started with an extensive literature review, 

focused both on the most common EMA fault modalities 

and propagation models and on the techniques and 

algorithms allowing their detection and evaluation. Then, 

the numerical models, implemented in MATLAB 

Simulink® and utilized to analyze the fault modalities, were 

described. The first model, described in Section 3, 

represents the typical electromechanical servomechanism, 

and allows simulating the effects due to the four different 

types of progressive faults previously mentioned. This 

model was coupled to the second one (see Section 4), which 

represents the same EMA working in ideal conditions, i.e. 

unaffected by any failure modality. The idea was to detect 

the effects due to progressive faults by comparing the 

performance of the former with the response of the latter, 

utilized as a monitoring model. By means of proper 

algorithms, the obtained results could be later used to timely 

identify the faults and evaluate their magnitudes. In Section 

5, the numerical modeling of the above-mentioned faults 

was discussed in detail, such as their effects on the system 

and the parameters allowing each fault to be detected.  

Finally, Section 6 was focused on generating several feature 

maps for each fault modality with the previously found 

parameters. Then, the obtained maps were utilized for the 

successful evaluation of the damage level affecting the 

EMA. 

2. BACKGROUND 

(a) EMA Faults and Degradations 

EMAs have only recently been applied in aeronautics. 

Therefore, the cumulated flight hours or on-board 

installations of such units are not so much to achieve a 

reliable statistics about the most recurring failures. Gökdere, 

Chiu, Keller & Vian (2005) show that it is possible to 

discern between four main categories of failures: 

1. mechanical or structural failures; 

2. BLDC motor failures; 

3. electronics failures; 

4. sensor failures. 

The present work has been mainly focused on the effects of 

mechanical failures due to progressive wear, which causes 

an increase of backlash and friction, and on two typical 

BLDC motor faults: the coil short-circuits ad the bearing 

wear generating rotor static eccentricity. 

Sensor and electrical components failures are not less 

important than the other ones and their faults are often 

characterized by rather fast temporal evolutions. However, 

considering suitable time scales, it is possible to evaluate 

precursors that can be used to take action (Ginart, Brown, 

Kalgren & Roemer, 2010). Nevertheless, they are not 

considered in this work because their time scales result often 

much shorter than the ones related to above mentioned 

progressive faults. It is the intention of the authors to study 

these types of failure in a next work. 

Dry friction phenomena occur when two surfaces are in 

relative motion: as the friction coefficient increases due to 

wear, reaction torque becomes higher and the motor must 

provide higher torques to actuate the control surface. As 

shown by Borello, Maggiore, Villero and Dalla Vedova 

(2010), increased dry friction, while still not causing the 

seizure of the entire system, reduces the servomechanism 

accuracy and, sometimes, influences the system dynamic 

response generating unexpected behaviors, such as stick-slip 

or limit cycles. 

The mechanical wear could also generate backlash in EMA 

moving parts such as gears, hinges, bearings and especially 

screw actuators. These backlashes, acting on the elements of 

the mechanical transmission, reduce the EMA accuracy and 

can lead to problems of stiffness and controllability of the 

whole actuator, as shown by Borello and Dalla Vedova 

(2006). 
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BLDC motor faults are mainly seen as progressive stator 

coil short-circuits or bearing wear generating rotor static 

eccentricity. As shown by Shashidhara & Raju (2013), there 

is a consensus that 35-40 % of induction motor breakdowns 

could be attributed to the stator winding insulation. Despite 

of the causes, stator winding-related breakdown could be 

segregated into five types: turn-to-turn, coil-to-coil, line-to-

ground, line-to-line, and open-circuit faults. Among the five 

fault modes, turn-to-turn faults (stator turn fault) is 

supposedly the most challenging one as the other forms of 

breakdown are generally the result of turn faults.  

Jeong & Hur (2013) state that a significant part of a stator 

winding-connected failures is induced by the insulation 

failures in multiple turns of a stator coil within one phase. 

This kind of fault, known as a “stator turn fault”, usually 

starts between a few turns belonging to the same phase coil. 

Since into short-circuited coils the voltage remains the same 

and the resistance decreases, a high circulating current 

arises, generating a localized heating in conductor: this 

heating favors the extension of the fault to adjacent coils. If 

this kind of fault is not promptly detected, it could 

propagate and generate phase-phase or phase-neutral 

damages (Jeong & Hur, 2013). 

The static eccentricity of a rotating body consists in a 

misalignment between the rotor rotation axis and the stator 

axis of symmetry. This misalignment is mainly due to 

tolerances and imperfections during motor construction or to 

a gradual increase of wear of the rotor shaft bearings. 

According to Akar, Taskin, Seker and Cankaya (2010), this 

displacement of symmetrical axes could be classified into 

static, dynamic and mixed eccentricities; in this work, only 

the first type of eccentricity will be discussed. One can 

notice that, in case of static eccentricity fault, the motor 

having more than one polar couple generates a periodically 

variable magnetic flux, since the air gap varies during its 

360° degrees turn (Bruzzese & Joksimovic, 2011). 

 
Figure 1. Reference system for the definition of air gap. 

In case of static eccentricity, the air gap changes during a 

spin of the rotor (Figure 1) and its behavior could be 

represented by the function: 

 ����� = �� + 
� ��
��� �1�  

where �� is the clearance between stator and rotor (without 

misalignment) and the second term represents the variation 

of the air gap with  �  related to the misalignment 
� . In 

terms of motor performances, provided torque is lower than 

in nominal conditions, whilst spectral analysis reveals sub-

harmonics increasing for higher eccentricities (Kim, Kim, & 

Hur, 2012). 

(b) Fault Detection/Identification Algorithms 

The fault detection/identification could be achieved by 

means of a proper algorithm (typically applied to a 

numerical model) able to detect the progressive faults and 

predict their evolution. This fact underlines a limit of 

prognostics: it could predict only faults presenting a gradual 

growth and it is not able to detect sudden failures. 

Prognostics algorithms can have several complexity levels, 

from the simplest based on heuristic criteria to the most 

complex involving physical fault models. Developing a 

prognostic algorithm able to identify the precursors of an 

EMA failure and its degradation pattern is thus beneficial 

for anticipating the incoming failure and alerting the 

maintenance crew such to properly schedule the EMA 

replacement. This avoids a servomechanism failure in 

service, thereby ensuring improved equipment availability 

and minimizing the impacts onto the logistic line.  

To this effect, a model based fault detection/evaluation 

technique was developed that fuses several information 

obtained by comparing actual with expected responses of 

the EMA to recognize a degradation and estimate the 

remaining useful life. The choice of the best algorithms able 

to detect and evaluate a particular kind of incipient failure is 

driven by their ability to detect the fault itself, so proper 

tests are needed. The proposed algorithm is based upon: 

1. Fourier spectral analysis (by means of Fast Fourier 

Transform, or FFT); 

2. Correlation coefficient. 

The Fourier Transform (FT) is a mathematical instrument, 

based upon the theory of Fourier series, which has many 

applications in physics and engineering (Welch, 1967). 

Fourier Transform of a function ���� is often calculated by 

means of the Discrete Fourier Transform (called DFT).  

Unlike the typical FT, the DFT requires as input a discrete 

function; this restrains the DFT to the analysis of a function 

on a limited and discrete domain. It must be noted that the 

input values of DFT are finite sequences of real or complex 

numbers, feature that makes it ideal for data processing on 

electronic calculators; in particular, this method is employed 

to analyse the frequencies composing a certain numerical 

signal by means of proper algorithms constituting the FFT 

(as shown by Cardona, Lerusse & Géradin, 1998). In order 

to achieve the spectral analysis of the dynamic response of 

the actuation system to a given command, a dedicated 

numerical algorithm (based upon the FFT MATLAB 

implementation) has been designed. 
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The other instrument used to detect progressive faults or 

wear conditions is the correlation coefficient C. This 

coefficient, as proposed by Borello, Dalla Vedova, Jacazio 

and Sorli, M. (2009) and Dalla Vedova et al. (2010), is 

defined as: 

 � = � 
�
������ 
���� ��  �2�  
where  
�  is the set of observed data and 
�  is the 

theoretical data: in this work, they are respectively the 

results of the model that simulates the actual system and the 

data from the monitoring model. The data considered in the 

two vectors, depending on the case, could concern positions, 

velocities or other physical magnitudes of the system. 

The data representing the dynamic response of the actual 

system (fault sensitive) are compared with the results 

provided by the monitoring system (that simulates ideal 

conditions, since no progressive faults are considered): the 

more the fault is considerable, the more the results obtained 

from the simulated actual system differ from the theoretical 

data. Then, the analysis is aimed to identify a certain 

physical magnitude, which is sensitive to the occurring 

fault, and to correlate its variations to the fault growth. In 

order to be useful for the prognostic analysis, this 

correlation should have a monotonic trend as the 

corresponding fault increases and be easily detectable. To 

this purpose, the authors have defined another dedicated 

numerical algorithm (developed in MATLAB environment) 

implementation (2). 

3. ACTUATION SYSTEM NUMERICAL MODEL 

 

Figure 2. EMA scheme. 

As shown in Figure 2, a typical electromechanical actuator 

used in a primary flight control system is composed by: 

1. an actuator control electronics (ACE) that closes the 

feedback loop comparing the commanded position 

(FBW) with the actual one, elaborates the corrective 

actions and generates the reference current (����); 

2. a Power Drive Electronics (PDE) that regulates the 

three-phase electrical power; 

3. an electrical motor, often BLDC type; 

4. a gear reducer having the function to decrease the 

motor (angular) velocity (called RPM) and increase its 

torque at values suitable for the user
1
; 

5. a system that transforms rotary motion into linear 

motion: ball screws or roller screws are usually 

preferred to acme screws since they, having a higher 

efficiency, perform the conversion with lower friction; 

6. a network of sensors used to close the feedback rings 

(current, angular speed and position) that control the 

whole actuation system (called RVDT). 

As previously stated, the primary goal of the research is the 

proposal of a technique able to identify symptoms alerting 

that an EMA is degrading: therefore, in order to assess the 

robustness of this technique, a suitable simulation test 

environment has been developed. The proposed numerical 

model, reported in Figure 3, is consistent with the EMA 

architecture shown in Figure 2 and has been implemented in 

the MATLAB/Simulink® environment. The model is also 

able to simulate the effects due to conversion from analogic 

to digital of the feedback signals (ADC), electrical noise 

acting on the signal lines and position transducers affected 

by electrical offset. It is composed by six different 

subsystems that will be briefly described in the followings. 

 
Figure 3. Proposed EMA block diagram. 

(a) Com 

An input block that generates the different position 

commands. It is possible to provide several types of input 

command, such as ramp, step or sinusoid. 

(b) ACE 

A subsystem that, as shown by Todić, Miloš and Pavišić 

(2013), simulates the Actuator Control Electronics unit 

closing the feedback loops and generating as output the 

reference current ���� . 

(c) BLDC EM Model 

This subsystem simulates a brushless direct current (BLDC) 

electric motor: It consists of the power drive electronics and 

the trapezoidal BLDC electromagnetic model, that evaluates 

the torque developed by the electrical motor as a function of 

the voltages generated by the three-phase electrical power 

regulator. 

                                                           
1 The RPM or torque variations are obviously related to the gear ratio of 

the mechanical reducer. The output torque (downstream the reducer) is 

also affected by efficiency of the mechanical transmission.
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Figure 4. BLDC EM Model block diagram. 

Figure 4 shows the numerical simulation algorithm that 

implements the BLDC motor electromagnetic model. It is 

composed by three blocks representing the reference current 

generator, the three-phase pulse-width modulation (PWM) 

inverter system and the BLDC motor electromagnetic 

model. This model has been developed according to the 

mathematical models and the assumption proposed by 

Çunkas and Aydoğdu(2010) and Halvaei Niasar, Moghbelli 

and Vahedi (2009). 

The trapezoidal counter-electromotive force (or back-EMF) 

and the electrical current waveforms of the three-phase 

BLDC motor, evolving as a function of rotor position (��), 

are shown in Figure 5. 

 

Figure 5. Phase back-EMF and current waveforms of a 

three-phase BLDC motor. 

The abovementioned trapezoidal back-EMFs ��, ��, and �� 

can be expressed as a function of the corresponding electric 

rotor position as reported in (3). 

The Reference Current generator determines the motor 

reference phase currents (����,�, ����,�, ����,�) by considering 

the reference current amplitude (����), which is calculated 

depending on the rotor position; in line with (3), the phase 

currents are modeled as shown in Table 1. 

As proposed by Hua and Zhiyong (2008), the PWM current 

control block simulates the inverter behavior comparing the 

reference phase currents ( ����,� ,  ����,� , ����,� ) with the 

motor’s actual phase currents (��, ��, ��). Indeed, this block 

diagram does not implement the structure and the real 

operation of the three-phase PWM inverter. Its behavior is 

simulated by means of a relay block, having proper 

thresholds (set by user), for each phase. The output of this 

subsystem is a rotating voltage vector having three 120-

degree displacement components, one for each phase, 

representing the corresponding phase voltages !�� , !��and !��. 

 

�� =

"#
##
##
##
##
$ %6'( ) �* +0 - �* - (6.

           '                                     %(6 - �* - 5(6 )
0 %6'( ) �* + 6'                  %5(6 - �* - 7(6 )
     0'                                    %7(6 - �* - 11(6 )
%6'( ) �* 0 12'                  %11(6 - �* - 2() 23

33
33
33
33
4

 

�� =

"#
##
##
##
##
$ 0'                                        +0 - �* - (2.

%6'( ) �* 0 4'                       %(2 - �* - 5(6 )
        '                                %5(6 - �* - 9(6 )

0 %6'( ) �* + 10'                       %9(6 - �* - 11(6 )
           '                  %11(6 - �* - 2() 23

33
33
33
33
4

 

�� =

"#
##
##
##
#$        '                                     +0 - �* - (6.

0 %6'( ) �* + 2'                +(6 - �* - (2.
     0'                                  %(2 - �* - 7(6 )
%6'( ) �* 0 8'                  %7(6 - �* - 9(6 )

        '                                    %9(6 - �* - 2()23
33
33
33
34

 

�3� 

As happens for the ����calculation, at a same instant a phase 

has a positive value, another has a negative value having the 

same modulus of the positive one and the remaining one 

must be null (the proposed model realizes this last statement 

only on a mean value). 

The EM Model calculates the three-phase currents (�� , �� , ��) and the developed mechanical torque 9� as a function of 

the PWM three phase voltages ( !�� , !�� , !�� ) and the 

effective rotor velocity �:� . The considered BLDC motor 

has a three-phase winding topology with star connection: it 

has three resistive (R) – inductive (L) branches on which a 

back-EMF
2
 acts. 

Table 1 Reference Currents of BLDC Motor 

Rotor Position 

(Degree) 

Reference Currents 

(A) 

 ����,� ����,�  ����,�  

0-30 0 0�;�< �;�< 

30-90 �;�< 0�;�< 0 

90-150 �;�< 0 0�;�< 

150-210 0 �;�< 0�;�< 

210-270 0�;�< �;�< 0 

270-330 0�;�< 0 �;�< 

330-360 0 0�;�< �;�< 

                                                           
2 In nominal conditions (no fault considered) the back-EMF acting e.g. on 

the phase “a” is a function of the rotor position �� having the amplitude 

of ��==�·�:�, that =� is back-EMF constant of the considered phase. In 

case of BLDC fault (such as coil short-circuits or static eccentricity), the 

back-EMF constants may be suitably modified by means of three 

functions ��>� (one for each motor phase) properly designed in order to 

simulate the effects of these faults. 
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According to Halvaei Niasar et al. (2009), the back-EMF 

phase voltages are implemented by using Simulink look-up 

table functions. It must be noted that the three back-EMF 

constants =�,? (one for each of the three branches) may also 

take into account some possible BLDC faults (like partial 

coil short circuit or rotor static eccentricity) by modifying 

the parameters of the function ��>�: these values, multiplied 

by the effective rotor velocity  �:� , provide the 

corresponding real back-EMF values. In order to calculate 

the value of the three phase currents ( �� ,  �� , �� ), it is 

necessary to evaluate the differential voltage acting on each 

phase. As shown in Figure 6, the proposed model considers 

the three-phase currents in terms of the line-to-line voltages 

(i.e. the differential voltage between two of the three 

phases). These differential voltages (@!�� , @!�� , @!��) are 

calculated as difference between the corresponding line-to-

line values of voltage (!�� , !�� , !��) and back-EMF (��� , ���, ���). 

Once the line-to-line differential voltages have been 

calculated, it is possible to derive the three phase currents 

(��, �� , ��) according to the relations reported in (4) and (5): 

 A�� = �B 0 �C�� = �� 0 �B�� = �C 0 ��
D �4�  

 
"#
##
#$@!�� = !�� 0 ��� = EFF�B + GFF ��B��

@!�� = !�� 0 ��� = EFF�� + GFF �����
@!�� = !�� 0 ��� = EFF�C + GFF ��C�� 23

33
34 �5�  

in which resistance LLL and inductance RLL values are twice 

those of the phase, because calculations involve two 

branches; the three phase currents are obtained as simple 

difference between the corresponding line-to-line currents. 

 

Figure 6. Schematic of voltage and current parameters in 

three-phase BLDC motor. 

Since phase currents are known, total motor torque can be 

computed; the sum of the three phase currents, multiplied by 

their respective back-EMF constants =�,?  gives the 

corresponding value of the total motor torque 9�. 

However, this value is limited by means of a Simulink 

Saturation block in order to take in account the operating 

limitations of the real system, due to the characteristics of 

the different components constituting the actuator himself. 

It must be noted that, in order to validate the just illustrated 

numerical model, the dynamic response developed by the 

aforesaid system under certain operating conditions (control 

input, boundary conditions and entities of different faults) 

was compared with data obtained from literature. 

In particular, the back-EMF and phase currents waveforms, 

related to different values of the rotor angular velocity, and 

the dynamic responses of the BLDC motor, caused by 

various command inputs, have been compared with 

corresponding cases available in literature (Lee & Ehsani, 

2003), highlighting a satisfactory compliance between 

simulations and literature data. 

(d) EMA Dynamic Model 

This subsystem models the EMA mechanical behavior, by 

means of a 2-degree of freedom dynamical system. As 

shown in Figure 7, it consists of two non-linear second 

order dynamic models linked together by means of a 

stiffness. The first dynamic system is related to the group 

including motor and gears (BLDC Motor block), while the 

second one represents the final user (USER block), i.e. the 

aircraft command surface controlled by the EMA. They are 

linked together through an instantaneous model simulating 

the elastic reaction 9���H  due to shaft stiffness, the 

Mechanical Transmission block. 

 

Figure 7: EMA Dynamic Models block diagram. 

This type of simulation algorithm, widely explained by 

Borello and Dalla Vedova (2012), is also able to simulate 

the effects of the dry friction forces developed in rotor 

bearings, gear reducer, hinges and screw actuators; in 

particular, the frictional torque is calculated by means of the 

numerical model proposed by Borello et al. (2009). 

 

Figure 8: Mechanical Transmission block diagram. 
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Figure 9: Monitoring Model block diagram.

The Mechanical Transmission subsystem shown in Figure 8 

simulates the behavior of the transmission shaft that links 

together the gear-motor assembly and the final user, 

calculating the corresponding reaction torque  9���H . This 

value is modeled as a function of  ��  , �I  (respectively 

motor and user position) and the transmission shaft 

stiffness  JK� , and takes into account the effects of the 

mechanical backlashes. 

(e) TR 

Simulates the aerodynamic torque, acting on the moving 

surface controlled by the actuator. 

(f) Monitor 

Represents an ideal EMA: it is used as a monitoring system. 

It is discussed more in detail in the following section. 

4. RELATED MONITORING MODEL 

The above Simulink model, as explained in the previous 

section, is able to simulate the dynamic behavior of an 

actual electromechanical servomechanism. It takes into 

account the effects due to command inputs, environmental 

boundary conditions and several faults. So it allows 

simulating the dynamic response of the real system, in order 

to evaluate the effects due to different faults and, 

consequently, to develop different diagnostic and prognostic 

monitoring strategies. In order to conceive a smart system 

able to identify and evaluate the progressive faults, it is 

necessary to compare its dynamic behavior with the 

response provided by an ideal system operating in nominal 

conditions (i.e. the effects due to faults are neglected). 

To this purpose, a second numerical model, dedicated to 

monitoring operations, has been developed. As shown in 

Figure 9, the Monitoring Model Controller represents a 

simplified and more compact version of the proposed EMA 

numerical model, having the same logical and functional 

structure. This model, with respect to the detailed one, 

provides similar, although less detailed, performance, with 

the advantage to reduce computational effort and time. The 

Controller calculates the output reference current ����  as a 

function of the motor angular position  �� , the motor 

angular velocity �:� and the commanded position ��L. 

In order to simplify the electromagnetic numerical model, 

the three-phase BLDC motor has been modeled as an 

equivalent single-phase electromagnetic motor and the 

driving torque  9�  is directly obtained multiplying the 

current by a torque constant M�.  

The difference between reference (����) and actual currents 

(��N) enters a SIGN block that returns the corresponding 

phase supply voltage O! P�;(respectively, when reference 

current is higher than actual current or vice versa). These 

values, decreased of back-EMF, allow calculating (by 

means of a transfer function modeling the resistive-

inductive circuit) the actual phase current  ��N  used in 

feedback for motor torque computation  9� . A saturation 

block is provided to take into account the corresponding 

torque limits. In the aim to simplify the actuator mechanical 

model, the gear/motor-user assembly has been degraded to a 

1 degree of freedom (d.o.f.) non-linear second order 

dynamic system. All the effects due to system inertias, 

transmission shaft stiffness, backlashes and friction torques 

have been neglected. Moreover, the inertial and viscous 

terms have been reduced to the same shaft. 

5. NON-LINEAR BEHAVIORS AND FAULTS EFFECTS 

In order to recognize the effects produced by a fault on the 

dynamic behavior of the considered actuation system, the 

dynamic responses generated under such conditions need to 

be compared with those recorded in nominal conditions 

(NC). Nominal conditions are set considering the system 

under proper values of dry friction torque and mechanical 

backlash, while phase short circuit and rotor static 

eccentricity are not occurring. 

(a) Non-linear Behaviors in Nominal Conditions 

Firstly, the proposed EMA model has been tested with 

several simulations in nominal conditions (NC). The aim 

was to verify that the proposed numerical model is capable 

to replicate the most common non-linear phenomena 

occurring during the operating conditions of a real EMA. 

These tests have been performed considering many types of 

input command.  
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A step command input (Figure 10) generates a dynamical 

response that, in NC (having proper values of dry friction 

torque and mechanical backlash and neglecting any phase 

short circuit or rotor static eccentricity), it allows to evaluate 

the dynamic response in transient (e.g. possible overshoots 

and related dynamic attenuation, settling time, steady state 

error). Another feature noticeable in the same graph is the 

presence of the saturations and the position errors due to 

frictions. These non-linear effects can be visible since the 

authors’ model integrates the dry friction algorithm in a 

dynamic system able to take into account also the hard stops 

effects and their mutual interactions. This model proofs to 

be capable to discern between static and dynamic friction 

conditions and to evaluate their effects on the system. 

 
Figure 10. Example of system dynamic behavior in 

condition of step position command. 

The ramp response analysis reveals that the proposed model 

is also able to simulate both a high-slope ramp response 

(Figure 11) and a stick-slip phenomenon (Figure 12). The 

first case underlines the limits of the actuator in terms of 

maximum speed, while the latter shows what occurs when 

the ramp slope is lower enough to emphasize the frictional 

effects. Furthermore, the model allows evaluating the 

incipient motion resolution of the servomechanism, i.e. the 

smallest command value producing an actuator’s response.  

 
Figure 11. Example of system dynamic behavior in 

condition of high slope ramp command. 

 
Figure 12. Example of system dynamic behavior in 

condition of very low slope ramp command. 

At the same way, several periodic inputs have been 

examined confirming the model ability to simulate the 

behavior of the real actuation system and its sensitivity to 

nonlinear effects, command inputs (in terms dynamic 

response related to amplitude and frequency input) and 

external loads. The most interesting results are provided by 

FFT analysis performed on positions and velocities of motor 

and user. The algorithm employed to perform this task 

correctly records the most important spectral contribution of 

the analyzed magnitudes as a function of the corresponding 

command frequency. If the given command has amplitude 

or a frequency too wide to be properly followed by the 

servomechanism, this analysis also records odd multiple 

harmonics of the command frequency (which typically 

appear if signals distortions have half-wave symmetry). 

(b) Transmission Faults 

Checked the compliance of the proposed numerical model 

in NC, several analysis have been performed considering the 

four possible fault types. Firstly, the effects of wear 

conditions (friction and backlash) have been evaluated. 

Frictions acting on the mechanical components of the EMA 

are simulated by means of a proper algorithm, proposed by 

Borello & Dalla Vedova (2012). These routines are directly 

integrated into the corresponding Simulink dynamic models 

of gear motor and user in order to constitute a self-contained 

subsystem able to describe the effects produced by friction 

torques on the dynamic behavior of a generic solid 

mechanical moving element. In this manner, the numerical 

model is able to simulate correctly many of typical coulomb 

friction’s effects as well as their interactions with the 

eventual mechanical ends of travel. It must be noted that in 

this work the considered friction torque values (referred as 

CFR in Figures 15-17) are always expressed as a percentage 

of the maximum motor torque. 

The effects of the mechanical transmission backlash, 

according to Borello & Dalla Vedova (2014), are simulated 

by the “Backlash” Simulink block (Mathworks, 2007), 
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localized downstream the gear reducer (as shown in Figure 

8) so as to decouple the dynamics of the gear-motor from 

that of the user. 

The high-slope ramp command provides significant results: 

1. In terms of FFT analysis on velocities, the fundamental 

frequency recorded in nominal conditions is around 

2040 Hz. This value slightly decreases as frictional 

effects increase, since angular velocity is reduced by 

friction. The amplitude related to this frequency 

monotonically increases with friction and increasing 

non-monotonic multiple harmonics arise (the second 

and the third ones have been recorded during FFT 

analysis). Backlash is not detected with FFT algorithm; 

2. The investigation on the correlation coefficients reveals 

that on user position and velocity a negligible increase 

with friction has been found, while a definite 

decreasing monotonic trend can be recorded for motor 

torque. The same analysis performed on backlash has 

not provided any employable data, from a prognostic 

point of view. The correlation coefficient for reference 

current is always 1 for a ramp input, since the actuator 

follows a velocity regime and this fact is independent 

from the kind of fault implemented on the model. 

Further analysis concern the sinusoidal response (the input 

has a frequency of 20 Hz and amplitude of 0.001 rad): 

1. FFT analysis cannot detect nor friction nor backlash, 

since only the command frequency prevails; 

2. All the correlation coefficients generally show 

negligible variations (≤ 1%), regardless of changes in 

command frequency or amplitude. The exceptions are 

motor torque and reference current, which show similar 

monotonic, decreasing trends as friction grows: this is 

due to the higher torque needed to follow the command. 

This trend, clearer for friction and less remarked for 

backlash, is similar for both the wear effects. 

(c) BLDC Faults 

Then, the effects of BLDC faults on the performances of the 

servomechanism have been evaluated, considering coil 

short-circuit and rotor static eccentricity. These faults, 

according to Kim, Kim and Hur (2012), have been modeled 

by means of simplified numerical algorithms simulating 

their effects on the electrical characteristics of the BLDC 

motor (e.g. winding resistance, inductance and back-EMF). 

In particular, since both the faults affect the magnetic 

coupling between stator and rotor, the authors have defined 

an algorithm that simulates these effect modifying values 

and angular modulations of the back-EMF coefficients
3
: 

                                                           
3 The proposed algorithm, implemented in the BLDC EM Model block 

diagram, acts on the three back-EMF constants Ce,i (one for each branch) 

modulating their trapezoidal reference values Ke,ias a function of coil 

short circuit percentage, static rotor eccentricity ζ and angular position ��. 

 =�,?  = J�,?  ∙ ��,?  ∙ �1 + R ∙ ��
����� �6� 
The so obtained constants (=�,�, =�,�, =�,�) are then used to 

calculate the corresponding counter-electromotive forces 

(�� , �� , �� ) and to evaluate the mechanical couples (��,� , ��,�, ��,�) generated by the three motor phases. It must be 

noted that BLDC faults could be included in the simulation 

by modifying the values of the back-EMF constants =�,?. In 

particular, the parameters of the function  ��>�  can be 

changed: these values, multiplied by the effective rotor 

velocity  �:� , provide the corresponding real back-EMF 

values. A typical behavior of the system undergoing BLDC 

faults is the rise of sub-harmonics on the spectra of angular 

velocities. This phenomenon is clearly recorded with the 

FFT analysis on the high-slope ramp command:  

1. 1/3 and 2/3 multiple of the fundamental harmonic are 

related to short-circuits; as shown in Fig. 13, the 1/3 

harmonic provides the most important contribution in 

terms of amplitude when the fault ratio is above 0.02; 

2. 1/6 and 1/2 multiple harmonics concern the rotor static 

eccentricity. In this case, as show in Fig. 14, the 1/6 

harmonic is the prevailing term for misalignments 

higher than 1%. 

 

Figure 13. Rotor angular speed FFT analysis for high slope 

ramp command in case of progressive coil short-circuit. 

 

Figure 14. Rotor angular speed FFT analysis for high slope 

ramp command in case of progressive rotor eccentricity. 
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These sub-harmonic values could be explained by means of: 

 ���S,� ≅ 2 ∗ V ∗ W �7�  
where ��  is the fundamental frequency recorded by FFT 

motor velocity analysis, �S,�  is the motor velocity in Hz, 

p=4 is the number of polar couples, n=3 is the number of 

phases. For sub-harmonics induced by coil faults, it is clear 

that they arise due to differences in the n motor phases, so 

the spectral analysis detects significant contributions 

at ?
X ∙ ��,   Y = 1, . . , W. The rotor static eccentricity, instead, 

is represented on the spectrum as combined by a sub-

harmonic related to the number of polar couples p (i.e. the 

1/6 sub-harmonic, for this motor) and the 1/2 sub-harmonic. 

The latter represents the effect of the eccentricity on a 

certain polar couple. In both cases, the sub-harmonic 

amplitudes show a monotonic trend: this result allows the 

detection of a possible BLDC fault with a simple 

observation of FFT spectra. In terms of correlation 

coefficient, only the motor torque shows monotonic trends 

for both the faults.  

The sinusoidal command provides the following results: 

1. As for wear detection, the FFT analysis fails due to the 

predominance of the command frequency; 

2. Significant results are provided by the analysis on 

correlation coefficients C and a significantly decreasing 

monotonic trend can be recognized in reference current 

for progressive coil faults. 

Finally, the open-loop step response has been evaluated: all 

the analyzed magnitudes show monotonic trends in terms of 

correlation coefficients for both faults, but the variations are 

not significant enough to be employed in prognostics.  

6. FAULT MAPS 

After the analysis performed on a single progressive fault, 

this work focuses on the effects due to the simultaneous 

presence of different kinds of faults acting on the system. To 

the purpose to achieve a timely identification and evaluation 

of these growing degradations, the authors developed a new 

faults detection/identification technique based on fault maps 

(FMs). A fault map constitutes the graphical representation 

of how a system-representative parameter varies as a 

function of two different types of faults. In other words, if 

the measurement of the real system parameter is available, 

this instrument allows supposing which extent a certain 

couple of faults has on the actuator. More exactly, a fault 

map displays the first fault MB  on x-axis and the 

representative parameter [B on y-axis. Each map represents 

a set of curves [B = ��MB� that are parameterized with the 

second fault M�. A proper choice of [B is crucial in order to 

obtain a useful fault map. In the first place, this parameter 

should be a function of both MB and  M�  and be highly 

sensitive to changes in fault levels.  

In particular, its dependence from the two kinds of fault 

should be monotonic, i.e. the curves plotted on the maps 

should not intersect. The last feature is the most important, 

since it allows detecting a specific area on the map 

containing all the possible fault levels. However, the 

proposed prognostic technique, in order to identify the 

system conditions with high enough accuracy, requires more 

than one of these maps for a specific couple of faults. When 

several maps are employed, it is important that they are 

independent from each other. Independent maps can be 

obtained when the actuator undergoes different command 

inputs: in this way, the parameter represented on each map 

is a magnitude that is not related to the others. By using 

three independent maps, i.e. representing three different 

parameters  [B , [�  and  [C , an accurate area containing the 

possible faults is identified. The considered inputs are: 

1. A sinusoidal input with a frequency of 20 Hz and an 

amplitude of  0.001 rad; 

2. A high-slope ramp command at 10 rad/s; 

3. A step command with an amplitude of 0.005 rad, with 

the actuator in open-loop configuration. 

By using the results found during the single fault analysis to 

find the most suitable parameter for the map drawing, all the 

possible fault combinations have been investigated. It must 

be noted that, in many cases, the FMs were not suitable for 

prognostics; for few couples there were not enough 

independent maps (as for the couple coil short circuit - rotor 

static eccentricity, with only two employable maps). 

A couple on which the method has been successfully tested 

was the friction – coil fault couple, allowing to obtain more 

independent maps. Among these, three were chosen to apply 

the FMs method (MB= friction, M�= coil fault ratio). The first 

map (Figure 15) concerns correlation coefficient C for 

reference current, [B , obtained with sinusoidal input. The 

second map (Figure 16) represents the correlation 

coefficient C for user position, [� , when a step input is 

given to the open-loop system (OL). The last map (Figure 

17) shows the response to a high-slope ramp input in terms 

of the correlation coefficient for user velocity, [C. After the 

maps have been obtained, they can be employed for the 

proposed procedure, which is now explained in detail.  

Firstly, the numerical model is simulated as affected by a 

known level of both friction and coil fault ratio, considering 

the three different command inputs: this step provides the 

parameters [B, [� and [C. As these values will be employed 

on the fault maps, a certain statistical dispersion, equal to O5% of the maximum variation between the curves of each 

map, is taken into account. Then, the first map is employed 

with the entering value of [B  and an initial large area 

containing the possible fault levels for MB  and M�  is 

obtained. These two intervals are inserted on the second 

map, which requires also the value  [� : their intersection 

provides narrower intervals of the two kinds of fault.  



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

11 

The procedure applied on the third map (on which [C is 

considered) is the same seen for the second one. This 

method have been successfully employed on a number of 

combinations of friction and coil fault ratio, always resulting 

on an enough accurate detection of the fault levels acting on 

the actuator. 

 

Figure 15. Correlation coefficient C fault map related to 

reference current – Sinusoidal input. 

 

Figure 16. Correlation coefficient C fault map related to 

user position – OL Step input. 

 

Figure 17. Correlation coefficient C fault map related to 

user velocity – High slope ramp input 

 

Figure 18. Example of application of Fault Maps 

The example shown in Figure 18 is referring to a friction 

torque equal to four times the nominal value (4 · ^�), a 4% 

of the coil fault ratio and a rotor static eccentricity ratio 

equal to 0.05: the X represented the supposed fault level. 

It must be noted that the correlation coefficients considered 

are not significantly sensitive to the variations induced in 

the system by low levels of backlash or rotor static 

eccentricity; so, the levels of friction and coil short-circuit 

could be properly recognized neglecting their effects. 

7. CONCLUSIONS 

This work focuses on the research of system-representative 

parameters, which are suitable for prognostic activities, and 

on the development of a technique, allowing a prompt 

detection of gradually increasing faults on aircraft actuators. 

The study has been performed on a numeric test bench 

(simulating a real EMA actuator) that implements four kinds 

of progressive faults: dry friction, mechanical backlash, 

turn-to-turn coil short circuit and rotor static eccentricity.  

This numerical model, by proper simplifications, was then 

reduced, obtaining the corresponding monitoring model. 

The proposed fault detection/identification algorithm has 

been developed mixing the information derived from the 

spectral analysis of signals (performed by means of the FFT 

algorithm) and by direct comparison between EMA and 

monitoring model (through the correlation coefficient  � ). 

By means of these tools suitable failure precursors, useful 

for early recognition and quantification of the damage, have 

been identified. On the base of the so obtained results, 

proper fault maps have been drawn to perform the analysis 

of combined faults. This method has been successfully 

applied to many different combinations of considered 

progressive faults, guaranteeing always an enough accurate 

detection and estimation of their levels. 
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