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ABSTRACT 

The new second and higher order spectral technique, the 

cross-covariance of complex spectral components, is 

proposed for monitoring damage of structure and machinery 

Normalization of the proposed technique is also developed. 

It is shown by simulation that the proposed technique 

provides effectiveness gain for detecting of damage 

compared to the higher order spectra. 

1. INTRODUCTION 

For monitoring damage of structure and machinery, an input 

excitation (e. g. vibration excitation, acoustical excitation, 

etc.) excites the resonance oscillations of a structure or 

machinery in question and resonance oscillations are 

processed by the higher order spectra (HOS) (Fackrell, 

White, Hammond, and Pinnington, 1995). This approach has 

been widely investigated for stationary and non-stationary 

signals (Kim and Powers, 1979; Fackrell et al, 1995; Collis, 

White, and Hammond, 1998; Schreier and Scharf, 2006; 

Mendel, 1991; Nikias and Mendel,  1993; McCormick and 

Nandi, 1999; Gelman and Petrunin, 2007; Hanssen and 

Scharf, 2003; Rivola and White, 1998; Gelman, White, and 

Hammond, 2005; Hillis, Neild, Drinkwater, and Wilcox, 

2006; Hickey, Worden, Platten, Wright, and Cooper, 2009). 

For diagnosing structure and machinery damage, we propose 

to use the normalized cross-covariance of order 𝑛 between 𝑛 

complex spectral components, 𝑛 = 2, … , 𝑁;  𝑁  is the 

maximum value of the order of the proposed cross-

covariance; there is no limitation on value 𝑁. The necessity 

and the physical sense of this proposition is that if complex 

spectral components have appeared due to damage, these 

components have non-zero cross covariance. Therefore, the 

proposed metric is sensitive to appearance of damage and has 

a clear physical sense. 

The proposed cross-covariance could be defined in both 

continuous and discrete forms and, therefore, it is applicable 

to both continuous-time and discrete-time deterministic and 

stochastic signals. However, because most condition 

monitoring tasks are performed in the digital domain, we will 

highlight below the digital application of the proposed 

technique. 

It can be easily shown that the widely used normalized HOS 

(Collis, White, and Hammond, 1998): i.e. the bicoherence 

and the skewness for the HOS of order 3 and the kurtosis and 

the tricoherence for the HOS of order 4, do not present the 

normalized cross-covariances between three and four 

complex spectral components respectively. It also can be 

shown that in the general case, the normalized HOS of order 

𝑛 also do not present the exact normalized cross-covariances 

between 𝑛  complex spectral components. Therefore, the 

normalized cross- covariance between three, four and 𝑛 

complex spectral components cannot be estimated by these 

traditional normalized HOS. 

In addition, the proposed cross-covariance has an important 

advantage over the HOS: the cross-covariance is more 

flexible that the HOS because it can be used for any selected 

frequency components while the HOS are restricted in 

frequency component selection (Collis, White, and 

Hammond, 1998). 

The advantage of estimating the proposed covariance in the 

frequency domain instead of the time domain is that 

localization of the frequency components of interest (e.g. 

resonance harmonics, etc.) could be performed.  

Thus, the main novelty of this paper is the proposed new 

second and higher order spectral technique: the normalized 

cross-covariance between 𝑛 complex spectral components. 

The purposes of this paper are to:  

 propose the new second and higher order spectral 

technique for structure and machinery health 

monitoring: the normalized cross-covariance of 𝑛 

complex spectral components 

 compare by simulation the proposed technique with the 

normalized HOS.  

_____________________ 
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2. THE NEW HIGHER ORDER SPECTRAL CROSS-

COVARIANCE 

The novel condition monitoring technique proposed here is: 

the normalized cross-covariance of 𝑛  complex spectral 

components. For estimating the proposed technique, the 

same steps should be undertaken as for estimating the HOS 

(Collis, White, and Hammond, 1998): the whole time domain 

signal should be divided into overlapped segments, 𝑚 =
1. . . 𝑀, 𝑀 defines the total number of overlapping segments 

in the signals. Normally, the level of the overlapping is 50%; 

however, for a relatively small number of the non-overlapped 

segments for the whole signal duration (e.g. 10-20) the level 

of the overlapping should be increased (e.g. 60%-80%). 

The generic expression of the proposed cross-covariance of 

order 𝑛 based on the Fourier transform is as follows: 

𝑛𝑐𝑜𝑣(𝑓1, 𝑓2, … , 𝑓𝑛−1) =
1

𝑀
∑ {[ ∏ 𝑋𝑚(𝑓𝑗) − �̅�(𝑓𝑗)𝑛

𝑗=1 ]}𝑀
𝑚=1   

      (1) 

where 𝑋𝑚(𝑓𝑗) is the Fourier transform at frequency 𝑓𝑗
 
at 

segment duration 𝑡𝑚 of a signal, 𝑗 =  1, … , 𝑛; * is a symbol 

of the complex conjugate, �̅�(𝑓𝑗) is the mean value of variable 

𝑋(𝑓𝑗). 

The proposed cross-covariance (Eq. (1)) is complex valued, 

estimated by the Fourier transforms of a signal at 𝑛 

frequencies and depends on 𝑛  frequencies. Only in the 

particular case of the zero-mean complex spectral 

components and if 𝑓𝑛  is the accumulated frequency of the 

previous frequencies, i.e. 





1

1

n

j

jn ff , the function (Eq. (1)) 

for order 𝑛, 3 and 4 are the classical un-normalized HOS of 

order 𝑛, the classical bispectrum and the classical trispectrum 

respectively. The classical bispectrum and the classical 

trispectrum that could be presented as follows (Collis, White, 

and Hammond, 1998):  

 

𝑏𝑖𝑠𝑝(𝑓1, 𝑓2) = ∑ 𝑋𝑚(𝑓1)𝑋𝑚(𝑓2)𝑋𝑚
∗ (𝑓1 + 𝑓2)𝑀

𝑚=1   (2) 

 

𝑡𝑟𝑖𝑠𝑝(𝑓1, 𝑓2, 𝑓3) 

= ∑ 𝑋𝑚(𝑓1)𝑋𝑚(𝑓2)𝑋𝑚(𝑓3)𝑋𝑚
∗ (𝑓1 + 𝑓2 + 𝑓3)𝑀

𝑚=1    (3) 

 

The classical bispectrum is a function of two frequency 

variables and whilst the power spectrum includes the 

contribution of each individual frequency component 

independently, the bispectrum analyses the frequency 

interactions between the frequency components at 𝑓1 and 𝑓2. 

The classical trispectrum is a function of three frequency 

variables and the trispectrum analyses the frequency 

interactions between the frequency components at 𝑓1, 𝑓2 and 

𝑓3 . In general, the bispectrum and the trispectrum are 

complex quantities. 

It is seen from equations of the bispectrum and the 

trispectrum, that these estimates are dependent on the spectral 

properties of a signal. Different methods are used to 

normalize the bispectrum and trispectrum in order to remove 

these dependencies. The two well-developed normalization 

methods for the bispectrum are the skewness and the 

bicoherence. Similarly, the two well-developed 

normalization methods for the trispectrum are the kurtosis 

and the tricoherence. 

The bispectrum, the trispectrum and all normalized functions 

of the bispectrum and the trispectrum are complex valued 

functions.  Normally, the magnitude of these functions is 

employed for damage diagnosis; however, the effectiveness 

gain could be obtained if the real and imaginary parts of the 

HOS are employed (Gelman, White, and Hammond, 2005).  

A useful feature of the bicoherence and the tricoherence is 

that these functions are always bounded between 0 and 1. 

Values close to 0 constitute no damage case, while values 

close to unity constitute a severe damage.  

A problem when estimating the trispectrum is to decide how 

to plot it. If only the bicoherence modulus is considered, it is 

a real function of two frequencies and can easily be plotted 

using the three dimensional space, where the tricoherence 

modulus is a function of three frequencies and, therefore, 

requires the four dimensional space to plot it. To achieve this 

plotting, a sphere should be used at each frequency point in 

the four dimensional space. The diameter of the sphere 

represents the tricoherence magnitude.  

It is shown in multiple research works (e.g. Rivola and White, 

1998) that the HOS is more effective for damage detection 

comparing with the second order signal processing 

techniques (e.g. the Fourier transform, the wavelet transform, 

etc.). 

In the general case of the non-zero-mean complex spectral 

components, the proposed functions of order 3 and 4 are not 

the bispectrum and the trispectrum. The physical significance 

of the proposed function is that it provides a measure of the 

cross-covariance between 𝑛 complex spectral components.  

The proposed second and the higher order covariance in the 

frequency domain is an extension of the cross-covariance in 

time domain (Sachs, 1984) for the case of damage diagnosis. 

It is known from the classical statistical analysis (Sachs, 

1984), that the cross-covariance in time domain should be 

normalized in order to avoid the misleading interpretation. 

The proposed cross-covariance in the frequency domain 

should also be normalized. The normalization allows 

avoidance of the misleading interpretation of the proposed 

technique (Eq. (1)) due to variations of the power spectral 

density of a signal: e.g. if power spectral density of a signal 

is amplified for the undamaged case, the un-normalized 

cross-covariance will be increased.  

The standard normalization of the cross-covariance for order 

𝑛, 3 and 4 respectively is employed here as follows: 

 

𝐶(𝑓1, 𝑓2, … , 𝑓𝑛−1) =
𝑛𝑐𝑜𝑣(𝑓1, 𝑓2, … , 𝑓𝑛−1)

√[∏ 𝑣𝑎𝑟 (𝑋(𝑓𝑗))𝑛
𝑗=1 ]
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(4) 

𝑡𝑐𝑜𝑟(𝑓1, 𝑓2) =

1
𝑀

∑ 𝑌𝑚(𝑓1) ∙ 𝑌𝑚(𝑓2)𝑀
𝑚=1 ∙ 𝑌𝑚

∗ (𝑓3)

√𝑣𝑎𝑟[𝑋(𝑓1)] 𝑣𝑎𝑟[𝑋(𝑓2)] 𝑣𝑎𝑟[𝑋(𝑓3)]
 

(5) 

𝑓𝑐𝑜𝑟(𝑓1, 𝑓2, 𝑓3)

=

1
𝑀

∑ 𝑌𝑚(𝑓1) ∙ 𝑌𝑚(𝑓2) ∙ 𝑌𝑚(𝑓3) ∙ 𝑌𝑚
∗𝑀

𝑚=1 (𝑓4)

√𝑣𝑎𝑟[𝑋(𝑓1)] 𝑣𝑎𝑟[𝑋(𝑓2)] 𝑣𝑎𝑟[𝑋(𝑓3)]𝑣𝑎𝑟[𝑋(𝑓4)]
 

 

(6) 

where 𝑣𝑎𝑟 is the symbol of the variance, 

 𝑌𝑚(𝑓𝑖) =  𝑋𝑚(𝑓𝑖) − �̅�(𝑓𝑖);    𝑖 = 1, 2, 3, 4. 
 

In the general case of order 𝑛 , the normalized cross-

covariance (Eq. (4)) differs from the traditional normalized 

double coherence (Bendat and Piersol, 1971) and the 

normalised HOS of order 𝑛 (Collis, White, and Hammond, 

1998).  It can be also seen from Eq. (5-6), that for orders 3 

and 4, the normalized triple and fourth covariances differs 

from the traditional normalized HOS, the bicoherence (Eq. 

7) and skewness (Eq. 8) and the tricoherence (Eq. 9) and 

kurtosis (Eq. 10) respectively that could be presented as 

follows.  

𝑏(𝑓1, 𝑓2)

=
∑ 𝑋𝑚(𝑓1)𝑋𝑚(𝑓2)𝑋𝑚

∗ (𝑓1 + 𝑓2)𝑀
𝑚=1

√∑ |𝑋𝑚(𝑓1)𝑋𝑚(𝑓2)|2𝑀
𝑚=1  √∑ |𝑋𝑚(𝑓1 + 𝑓2)|2𝑀

𝑚=1

 

(7) 

𝑠𝑘(𝑓1, 𝑓2)

=
∑ 𝑋𝑚(𝑓1)𝑋𝑚(𝑓2)𝑋𝑚

∗ (𝑓1 + 𝑓2)𝑀
𝑚=1

√∑ |𝑋𝑚(𝑓1)|2 ∑ |𝑋𝑚(𝑓2)|2 ∑ |𝑋𝑚(𝑓1 + 𝑓2)|2𝑀
𝑚=1

𝑀
𝑚=1  𝑀

𝑚=1  
 

(8)  

𝑡(𝑓1, 𝑓2, 𝑓3)

=
∑ 𝑋𝑚(𝑓1)𝑋𝑚(𝑓2)𝑋𝑚(𝑓3)𝑋𝑚

∗ (𝑓1 + 𝑓2 + 𝑓3)𝑀
𝑚=1

√∑ |𝑋𝑚(𝑓1)𝑋𝑚(𝑓2)𝑋𝑚(𝑓3)|2𝑀
𝑚=1  √∑ |𝑋𝑚(𝑓1 + 𝑓2+𝑓3

)|
2𝑀

𝑚=1

 

 (9) 

𝑘(𝑓1, 𝑓2, 𝑓3) = 

∑ 𝑋𝑚(𝑓1)𝑋𝑚(𝑓2)𝑋𝑚(𝑓3)𝑋𝑚
∗ (𝑓1 + 𝑓2 + 𝑓3)𝑀

𝑚=1

√∑ |𝑋𝑚(𝑓1)|2 ∑ |𝑋𝑚(𝑓2)|2 ∑ |𝑋𝑚(𝑓3)|2 ∑ |𝑋𝑚(𝑓1 + 𝑓2 + 𝑓3)|2𝑀
𝑚=1

𝑀
𝑚=1

𝑀
𝑚=1

𝑀
𝑚=1  

 

(10) 

This difference remains even for the zero-mean spectral 

components and if 𝑓𝑛  is the accumulated frequency of the 

previous frequencies, i.e. 





1

1

n

j

jn ff . 

The proposed technique can be also used for non-stationary 

signals by employing the appropriate time-frequency 

transforms (e. g. the chirp-Wigner transform (Gelman, 2007) 

and the short time chirp-Fourier transform (Gelman and 

Ottley, 2006; etc.). This can be done by substituting the 

appropriate time-frequency transforms for the Fourier 

transform in Eq. (1), (4) – (6).   

If the proposed normalized technique is being applied to 

monitor damaged/undamaged systems, the desirable 

technique ranges are as follows: magnitude values closed to 

0 (i. e, no cross-covariance between the selected frequency 

components) constitute no damage case, while magnitude 

values closed to unity (i.e. high cross-covariance between the 

selected frequency components) constitute a severe damage. 

 

3. THE NUMERICAL SIMULATION 

To demonstrate that the proposed technique can effectively 

detect structure/machinery damage and to compare them with 

the traditional HOS, a simulation test with system with and 

without damage was performed.  

An input random cosine excitation with constant amplitude, 

random initial phase and linearly changed instantaneous 

frequency in time (i.e. the chirp signal) has been passed via 

the following nonlinear (bilinear) system: 

{
 𝑥 ̈ + 2ℎ�̇� +  𝜔𝑠

2𝑥 = 𝐴𝑐𝑜𝑠Ω(𝑡),   𝑥 ≥ 0

𝑥 ̈ + 2ℎ�̇� +  𝜔𝑐
2𝑥 = 𝐴𝑐𝑜𝑠Ω(𝑡),   𝑥 < 0

                          (11) 

where 𝑥 =  𝑋/𝑚 , 𝑋  is the displacement; ℎ = 𝑐/2𝑚 , ℎ  is 

damping; 𝜔𝑠 =  √𝑘𝑠/𝑚, 𝜔𝑐 =  √𝑘𝑐/𝑚 , 𝑚  and 𝑐  are the 

mass and damping coefficient respectively, 𝑘𝑠 and 𝑘𝑐 are the 

stiffness for positive displacement and the stiffness for 

negative displacement respectively, 𝐴 =  𝐴1/𝑚 , 𝐴1  is the 

constant amplitude of the input signal, Ω(𝑡) =  ∫ 𝜔(𝑡)𝑑𝑡 , 

Ω(𝑡) is the instantaneous phase, 𝜔(𝑡)is the linearly changed 

angular frequency.  

Equation (11) describes the system both with and without 

damage. For the system without damage, the stiffness for 

positive displacement and the stiffness for negative 

displacement are the same in Equation (11). For the system 

with damage, the stiffness for positive displacement and the 

stiffness for negative displacement are different in Equation 

(11); the level of damage severity is characterized by the 

stiffness ratio 𝑘∗ = (𝑘𝑐 −  𝑘𝑠)/𝑘𝑐. 

The bilinear system (11) is widely used in applications, e.g. 

for investigation of damage of offshore structures: free-

hanging risers, tension leg platforms and suspended loads 

(Hsu, 1975; Patel, Brown and Witz, 1986; Thomson and 

Stewart, 1986), articulated loading towers, constrained by a 

connection to a massive tanker or vessels moored against 

fenders (Jefferys and Patel, 1982), oscillating parts with 

clearances and motion limiting stops (Narsiavas, 1990), 
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gearboxes (Gelman, 2007), gas turbine blades (Gelman and 

Gorpinich, 2000) and composite materials (Brush and 

Adams, 2010). 

System (11) describes various damage types: e.g. the 

“breathing” fatigue crack in structures and turbo machinery 

blades (Gelman and Gorpinich, 2000), pitting in gearboxes 

(Gelman, 2007) and damage in composite materials (Brush 

and Adams, 2010), etc. 

Comprehensive statistics of signals were simulated in order 

to perform the estimation of technique effectiveness. The 

initial phase of the each simulated signal has been taken 

randomly and is uniformly distributed in the range [0;  2].  

Because the considered excitation is transient, with variable 

instantaneous frequency, the output signal of system (11) is 

also transient, with variable instantaneous frequency. It is 

well-known that the classical Fourier transform is not 

effective for processing of the transient signals; therefore, the 

chirp Fourier transform (Gelman and Ottley, 2006) that is 

suitable for the chirp signals is employed for damage 

detection.  

The non-stationary random cosine vibration excitation 

excites the resonance oscillations of a system. 300 signals 

from system without damage (i.e. stiffness ratio is 0) and 300 

signals from system with damage (i.e. stiffness ratio is non-

zero) were tested for damage detection. The resonance 

frequencies of the systems with and without damage are 14.1 

Hz and 13.9 Hz respectively, the chirp rate of  the transient 

excitation is 0.15Hz/s, the stiffness ratio that is characterized 

the relative damage size is 0.05 (i.e. the relative damage size 

is 5%). 

The proposed normalised cross-covariance of order 3 and the 

bicoherence based on the chirp-Fourier transform of the 

system resonance oscillations have been employed for 

damage detection. The cross-covariance of the fundamental, 

the second and the third harmonics of system resonance 

oscillations and the bicoherence at the fundamental and 

second harmonics of system resonance oscillations have been 

employed.  

The following parameters have been used for estimating the 

cross-covariance of order 3 and the bicoherence in the 

expressions 5 and 7 respectively: in order to provide reatively 

good frequency resolution of the transform (i.e. 3.7Hz). the 

segment size is selected as 0.27s, the whole duration of the 

resonance area of the simulated signals is 5s It can be 

estimated from the selected parameters that the number of 

non-overlapped segments on the whole signal duration is 

relatively small: i.e. 18. Therefore, segment overlapping was 

selected as 60%. The cosine type window, the Hamming 

window (Oppenheim, Schafer, and Buck, 1999) is applied for 

each segment; the sampling frequency is 3600Hz.  

Division of the whole time domain signal into overlapped 

segments is shown in Fig.1.  

 

Figure 1. Division of time domain signal into overlapped 

segments. 

The comparative effectiveness of damage detection has been 

estimated by the Fisher criteria (Young and Fu, 1986). The 

Fisher criteria for detection effectiveness are 373 and 260 for 

the proposed technique and the bicoherence respectively for 

the selected relative damage size of 5%. The effectiveness 

comparison involves only one metric, the Fisher criterion; 

therefore, false alarm and missed detection rates are not 

estimated for this comparison.  

It is known (Young and Fu, 1986) that a diagnostic feature 

with higher values of the Fisher criterion provides better 

detection effectiveness. The effectiveness gain was estimated 

as the ratio of the Fisher criterion for the proposed technique 

to the Fisher criterion for the bicoherence. 

Thus, the proposed technique provides effectiveness gain 

1.43 times in comparison with the bicoherence for the relative 

damage size of 5% and, therefore, is more effective for 

damage detection. 

4. CONCLUSIONS 

1. The new higher order spectral technique, the normalized 

cross-covariance of 𝑛 complex spectral components, is 

proposed for the first time in worldwide terms for 

monitoring damage in structures and machinery. 

Normalization of the proposed technique is also 

developed. 

2. The proposed technique differs from the classical higher 

order spectral techniques. The proposed un-normalised 

spectral cross-covariance coincides with the classical 

un-normalised higher order spectra only for the 

particular case of the zero mean spectral components. 

The normalised spectral cross-covariance differs from 

the classical higher order spectral techniques even for 

the particular case of the zero mean spectral components. 
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3. It is shown preliminarly by one set of simulation that the 

proposed technique, the third order covariance provides 

effectiveness gain 1.43 times for damage detection in 

comparison with the bicoherence. Further 

simulations/experiments should be performed to 

confirm this preliminary result. 

4. The proposed technique could be extended for 

monitoring of damage of structure and machinery for 

non-stationary conditions by employing the appropriate 

time-frequency transforms in Eq. (1), (4)-(6). 

The proposed technique could be used in mechanical and 

electrical engineering, telecommunication, underwater 

acoustics, etc. 
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