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ABSTRACT 

As wind energy proliferates in onshore and offshore 
applications, it has become significantly important to predict 
wind turbine downtime and maintain operation uptime to 
ensure maximal yield. Two types of data systems have been 
widely adopted for monitoring turbine health condition: 
supervisory control and data acquisition (SCADA) and 
condition monitoring system (CMS). Provided that research 
and development have focused on advancing analytical 
techniques based on these systems independently, an 
intelligent model that associates information from both 
systems is necessary and beneficial. In this paper, a 
systematic framework is designed to integrate CMS and 
SCADA data and assess drivetrain degradation over its 
lifecycle. Information reference and advanced feature 
extraction techniques are employed to procure 
heterogeneous health indicators. A pattern recognition 
algorithm is used to model baseline behavior and measure 
deviation of current behavior, where a Self-organizing Map 
(SOM) and minimum quantization error (MQE) method is 
selected to achieve degradation assessment. Eventually, the 
computation and ranking of component contribution to the 
detected degradation offers component-level fault 
localization. When validated and automated by various 
applications, the approach is able to incorporate diverse data 
resources and output actionable information to advise 
predictive maintenance with precise fault information. The 
approach is validated on a 3 MW offshore turbine, where an 
incipient fault is detected well before existing system shuts 
down the unit. A radar chart is used to illustrate the fault 
localization result. 

1. INTRODUCTION 

With the rapid increase in the adoption of wind power for 
renewable energy generation, wind farm development and 
wind capacity installation have seen extensive growth. As 
Global Wind Energy Council (2012) pointed out, global 
capacity has reached 237 GW in 2011 and is projected to 
achieve 759 GW, which is more than three times current 
capacity, by the year of 2020.  

Meadows (2011) shows that a 1975 MW offshore capacity 
has been installed in Europe, whereas a 135 MW capacity is 
available in China; for the United States, the forecast of 
offshore capacity is 10 GW by 2020 and 54 GW by 2030. 
However, availability and reliability of offshore turbines are 
imposing challenges for productive and efficient offshore 
wind farms.  

A comprehensive report by National Renewable Energy 
Laboratory (2010) provided similar insight that: U.S. 
offshore wind power has great potential of supporting a 
considerable percentage of electricity needs; while the 
improvement of reliability through condition monitoring is 
one of major technology trends that will greatly support 
operations and maintenance for turbines both onshore and 
offshore.   

CMS has been an emerging technology for monitoring 
turbine health status and diagnosing component failures. A 
study by LeBlanc and Graves (2011) shows that, the 
application of CMS is rising despite initial doubt of its 
capability. In certain offshore wind farm guidelines, CMS is 
even mandatory for turbine monitoring (GL Renewables 
Certification, 2012). A framework of CMS is provided in 
the study as well, where typical requirements of sensor 
locations are shown. The benefit of adopting CMS is 
discussed and justified, based on failure rates of key 
components and related cost. It proves that, on average, 
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predicting one gearbox failure can clearly justify the budget 
of deploying a CMS on the turbine system. In addition, 
McMilan and Ault (2007) investigated Markov model 
between drivetrain components and quantified revenue and 
risk of condition monitoring, based on reliability data of the 
components. 

As detailed by ISET (2005), CMS utilizes various types of 
communication infrastructure to transfer real time sensor 
data and control information to data centers, where servers 
are used to host and process the data. Another study 
(Amirat, Benbouzid, Al-Ahmar, Bensaker and Turri, 2009) 
also provided a review of data collection schemes for the 
electrical system, blade and drivetrain condition monitoring.  

In literature, much research is being conducted for condition 
monitoring of wind turbines based on data infrastructure.  
Lu, Li, Wu and Yang (2009) gave a diagnosis review of the 
gearbox, bearing generator, power electronics, rotor, blades 
and overall system with condition monitoring techniques 
including vibration, torque, oil debris, temperature, acoustic 
emission and electric current & power analyses. Hameed, 
Hong, Cho, Ahn and Song (2009) provided a related review 
of fault detection methods for global and subsystem levels 
based on CMS. Crabtree, Feng and Tavner (2010) 
developed a multivariate approach that combines vibration 
and oil debris analysis for detecting gearbox failure at an 
early stage. Entezami (2010) proposed an overview and 
approach to connect the control system with turbine 
condition monitoring. Sheng and Veers (2011) described the 
gearbox reliability collaborative research at the National 
Renewable Energy Laboratory, where a fully instrumented 
drivetrain test bed is built for generating lab test data. 

Furthermore, SCADA system is also frequently used for 
monitoring wind turbine condition. Commonly used 
variables in different SCADA systems are shown in Table 1. 

Category Variable Examples 
Ambient Temperature, wind direction, wind speed 
Blades Pitch angle 
Controller Hub temperature, Ground temperature. 
Gear Gear bearing temperature, oil temperature 
Generator Bearing temperature, rotation speed 
Grid Production voltage, current, power factor 
Hydraulic Hydraulic oil temperature 
Nacelle Direction, temperature 
Production Average power, accumulated power 
Rotor Rotation speed 
System Logs of active alarms, turbine state 
Hour 
Counter Service hours 

Table 1. Commonly Used SCADA Variables 

In a study by Qiu, Feng, Tavner, Richardson, Erdos and 
Chen (2012), SCADA data from an onshore turbine is used 
for alarm analysis and probability-based reliability 
modeling. SCADA data is also suitable for evaluating 
turbine power generation performance, which is 
complicated by the dynamic environment parameters and 
operation conditions (Lapira, Siegel, Zhao, Brisset, Su, 
Wang, AbuAli and Lee, 2011).  

In most of the available literature, CMS and SCADA 
systems are used separately for condition monitoring 
purposes, mainly due to the issue of data availability in 
certain research activities. Moreover, the majority of tools 
and techniques are developed and validated on lab-scale test 
beds. To address such issues, a degradation assessment 
framework is proposed to integrate CMS data and SCADA 
variables for the evaluation of drivetrain degradation. 
Although usually used for a different purpose than a CMS, 
SCADA provides operational information that can assist the 
screening and processing of CMS data. In addition, some 
SCADA systems can provide variables that can serve as 
health indicators of drivetrain components. Previous 
research, including Qiue et al. (2009) and Edwin, Theo, 
Henk, Luc, Xiang and Simon (2008), show that SCADA 
variables can be used for fault detection at early stage, 
especially through analyzing temperature measurement from 
drivetrain components. The framework is eventually 
validated with an offshore turbine drivetrain. 
 
The remainder of the paper is organized as following: 
Section 2 describes the methodology of integrating SCADA 
system data and CMS data, extracting and selecting 
features, assessing drivetrain degradation and identifying 
fault location; Section 3 demonstrates an application of the 
methodology in monitoring the drivetrain for a 3 MW 
offshore turbine, as well as a monitoring platform prototype 
with visualization tools; Section 4 discusses the conclusion 
of presented work, and plan for future development and 
validation; acknowledgement and references ensue as the 
last portion of paper. 

2. METHODOLOGY 

The overall framework integrates selected information from 
both SCADA and CMS systems, provides global 
degradation assessment of the drivetrain, and identifies 
faulty component(s) when fault detection is determined to 
be positive. The systematic methodology is shown in Figure 
1. 

SCADA variables that are related with wind turbine 
operation are initially used to assist in deciding if individual 
CMS data instances can represent the true degradation 
condition for drivetrain. CMS data from all sensors in 
retained instances are then processed by a set of feature 
extraction tools, while SCADA variables that indicate 
drivetrain conditions are selected. CMS features and 
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SCADA variables are then concatenated and input to a 
degradation assessment method, to evaluate how the overall 
condition differs from a baseline. When degradation is 
significant and fault detection is confirmed, the location of 
the fault is decided based on each component’s contribution 
to the overall degradation. Eventually, the analytical results 
are visually presented.  

 
Figure 1. The integrated framework for drivetrain 

degradation assessment and fault localization 

The rationale and techniques for each step are described as 
follows. 

2.1. CMS Instance Selection 

In applications of condition monitoring systems for wind 
turbines, it is a common practice to configure the sampling 
scheme as a routine program, so that several seconds or 
minutes worth of vibration waveforms with high sampling 
frequency from all instrumented sensors are acquired and 
stored at certain time instances throughout a day. This 
strategy is due to the limitation of proper infrastructure for 
data acquisition and transferring, and the concern of 
computational capacity for large-scale wind farms. In a few 
cases, vibration data is processed and only its features will 
be archived for further investigation; nevertheless the 
feature extraction is usually still time-based with a static 
period.  

For a condition monitoring system that utilizes multiple 
accelerometers to measure the vibratory behavior of the 
drivetrain, it is important to decipher the quality of vibration 
data before actually processing the data. If the instance of 
data waveforms does not characterize the drivetrain's true 
health at the time of acquisition, including such instance in 
later analysis will generate false health information and 

affect decision making for maintenance. With rule-based 
criteria learned from wind farm operation and the control 
mechanism, irrelevant CMS data instances should be 
discarded based on SCADA measurements and only 
meaningful instances are kept for subsequent analysis. For 
example, if it is detected that the rotor speed has been zero 
for certain duration and there has been no rotation for the 
drivetrain, CMS data instance collected within this duration 
is determined to not contain vibration information that can 
be used for degradation assessment. Such instances should 
be rejected prior to further analysis. 

2.2. SCADA Variable Selection 

For majority of SCADA systems, some variables, measured 
by sensors within close proximity to the drivetrain, are also 
incorporated. They are valuable additional indicators for 
deciding the degradation condition of the drivetrain and its 
components, and sometimes can provide incipient failure 
detection with superior performance (Feng, Qiu, Crabtree, 
Long and Tavner, 2011). Examples of these variables 
include temperature readings of the rotor, gearbox and 
generator, as well as the gearbox oil pressure. 

A heuristic method is used to select SCADA variables based 
on variable name and measurement location. Given that 
SCADA data is typically recorded more frequently than 
CMS data in wind power applications, SCADA records are 
selected only when a retained CMS instance exists at 
matching time interval.  

2.3. CMS Data Feature Extraction 

For health assessment and diagnosis, values of SCADA 
variables can be directly used as health indicators, whereas 
for CMS data features are normally computed to reduce its 
dimension and obtain representative indicators. A toolbox of 
signal processing techniques for vibration-based wind 
turbine monitoring has been designed and developed 
(Siegel, Zhao, Lapira, AbuAli and Lee, 2013), to extract 
features corresponding with key drivetrain components such 
as bearings, shafts, and gears respectively. 

2.3.1. Time Domain Features 

Time domain features provide statistical measures of a 
variable. Three commonly used features for vibration 
analysis are root mean square (RMS), kurtosis and crest 
factor (Lebold, MacClintic, Campbell, Byington and 
Maynard, 2000). For a data vector 𝑋! , 𝑖 = 1,2,3…𝑁, these 
features are defined as: 

𝑅𝑀𝑆 =
𝑋!!!

!!!
𝑁

 (1) 
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𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝑋! − 𝑋 !!

!!!

𝑁
𝑋! − 𝑋 !!

!!!

𝑁

!

 (2) 

𝐶𝑟𝑒𝑠𝑡  𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑚𝑎𝑥 𝑋! 𝑅𝑀𝑆 (3) 

RMS is calculated as the vector’s Euclidean norm, divided 
by the square root of vector length, as shown in Eq. (1). It 
represents the magnitude, or energy, of the vibration signal. 
A high RMS value can indicate indefinite or severe 
damages. Kurtosis, computed as Eq. (2), is the ratio between 
the vector’s fourth moment about the mean and square of its 
second moment about the mean. It is essentially a measure 
of signal peakedness, which normally increases when 
damage causes impulses and unevenness in data. Crest 
factor can be used to detect high-amplitude impacts, when 
such impacts generate large signal impulse and increase the 
ratio between maximum value and RMS of the signal 
indicated by Eq. (3). 

2.3.2. Spectral Kurtosis Filtering 

To monitor damages in a complex mechanical system like a 
drivetrain, it is necessary to detect impulsive vibration 
behavior stimulated by defective gears or bearings. Time 
domain features of raw data can fulfill the task to a certain 
degree, but the impulsive behavior is often obscured by 
additive noise from irrelevant vibration resources. 
Therefore, band-pass filters in the frequency domain are 
applied to preserve the most impulsive frequency content 
and de-noise the signal. 

Spectral kurtosis filtering (SKF) is a technique to optimize 
the configuration of band-pass filter for noise reduction. 
Based on time-frequency analysis results, it adopts the 
kurtosis computation from the time domain analysis to seek 
the most impulsive frequency band. 

As developed by Antoni (2006) for non-stationary signal 
analysis, the short-time Fourier transform (STFT) of the 
signal is first calculated and denoted as 𝐻 𝑡, 𝑓 . For each 
frequency index decided by the STFT, the kurtosis of its 
amplitude over discrete time is calculated as Eq. (4): 

𝑆𝐾! 𝑓 =
𝐻!(𝑡, 𝑓)
𝐻!(𝑡, 𝑓) ! − 2 (4) 

A statistical threshold 𝑆! is computed (Antoni and Randall, 
2006) to decide the significance of spectral kurtosis given 
level of significance 𝛼: 

𝑆! = 𝑢!!!
2
𝐾

 (5) 

where 𝑢!!! is the quantile with significance level 𝛼, and 𝐾 
is the number of time windows in STFT analysis.  If the SK 
value for certain frequency is higher than the threshold, a 

Wiener filter is multiplied with the frequency spectrum of 
the original signal, where the multiplier is square root of the 
SK value. Therefore, the frequency content that is originally 
impulsive with high SK level is further amplified, whereas 
the other content is attenuated. The signal is eventually 
transformed back to a time series for extracting time domain 
features. 

An example for effect of spectral kurtosis filtering is shown 
in Figure 2, where filtered data (bottom plot in red) 
apparently accentuate impulsive behavior more than raw 
data (top plot in blue). To quantify the difference, time 
domain kurtosis values before and after the filtering are 5 
and 20.4 respectively; crest factors are 6.1 and 16.3 
respectively.  

 
Figure 2. An example of spectral kurtosis filtering result 

Spectral kurtosis filtering discovers the inherent dynamics 
of vibration spectrum, and automatically de-noises the 
signal without prior knowledge or visual inspection for band 
selection. In research with similar objectives, Barszcz and 
Randall (2009) previously investigated using spectral 
kurtosis for tooth crack detection in wind turbine planetary 
gears. 

2.3.3. Envelope Analysis 

As rolling element bearings and gear wheels rotate around 
their shafts in the gearbox system, bearing damages and 
gear defects often cause multiple impacts per each 
revolution and excite the resonant vibration of the entire 
structure. In vibration data, it results in an amplitude 
modulation phenomenon, where the structural resonance is 
the high-frequency carrier wave and the component fault 
frequency is the low-frequency envelope that modulates the 
waveform in time domain. 
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In frequency domain, modulation behavior is represented 
with concentrated high-amplitude peaks around resonance 
frequency where fault frequencies exist as sidebands spaced 
on both sides of resonance. To extract signatures related 
with specific faults, demodulation is performed with 
following steps: 

• A band-pass filter is designed to filter vibration data 
around the excited resonance frequency. The design 
could be achieved by modal analysis, observation of 
spectrum for collected vibration data, or 
aforementioned spectral kurtosis filtering technique. 

• Envelope analysis of data that is processed with the 
band-pass filter. A frequently used method is Empirical 
Mode Decomposition (EMD), which is an iterative 
filtering process shown as Figure 3 (Peng, Tse and Chu, 
2005). 

 
Figure 3. Empirical Mode Decomposition (EMD) process 

• The method of extracting envelopes with local extrema 
has disadvantages of possible overshoots and 
breakpoints when a cubic spline is applied. To 
overcome such disadvantages, a Hilbert transform 
method is adopted (Liu, Riemenschneider and Xu, 
2006) to find the upper envelope of signal 𝑥 𝑡 , by 
finding the principal value (PV) 𝑦 𝑡  with Eq. (6) first, 
and analytic signal 𝑧 𝑡  with Eq. (7). The envelope is 
eventually the absolute value of analytic signal 𝑧 𝑡 . 

𝑦 𝑡 =
1
𝜋
𝑃𝑉

𝑥 𝜏
𝑡 − 𝜏

𝑑𝜏
!

!!
 (6) 

𝑧 𝑡 = 𝑥 𝑡 + 𝑖𝑦 𝑡  (7) 

• After finding the envelope of band-pass filtered data 
with Hilbert transform, several feature extraction 
methods can be used to further analyze the envelope as 
signature of component defects. For example, bearing 
fault frequencies including ball pass frequency inner-
race (BPFI), ball pass frequency outer-race (BPFO), 
ball fault frequency (BFF) and fundamental train 
frequency (FTF) for faults on bearing inner race, outer 
race, roller element and cage respectively. Furthermore, 
time domain statistics can also be indicators for defects, 
such as RMS and crest factor.  

2.3.4. Wavelet Energy Analysis 

The use of wavelets for time-frequency analysis as a method 
for automated feature extraction has seen a growing interest 
in the area of condition monitoring (Peng and Chu, 2004). 
For CMS vibration analysis, the focus is how to use wavelet 
analysis for feature extraction, and thus the discussion on 
the background of time-frequency analysis and continuous 
wavelet transform is omitted here. The wavelet 
decomposition and the wavelet packet decomposition are 
the more commonly used algorithms for feature extraction 
purposes, particularly in wind turbine monitoring area as 
well (Yang, Tavner and Wilkinson, 2008). The wavelet 
decomposition applies a filtering operation in which the 
signal is divided into an approximation signal (low 
frequency) and a detail signal (high frequency).  The 
approximation signal consists of frequency content from 0 
to approximately 1/4 of the Nyquist frequency (𝐹!"#), while 
the detail signal consists of frequency content from 1/4 of 
the Nyquist frequency to 1/2 of the Nyquist frequency.  This 
represents the decomposition at the first level, and the 
approximation signal is further decomposed to a specified 
number of levels.  The selection of the mother wavelet 
influences the filtering result, wherein higher coefficients 
and values can be obtained when the mother wavelet 
function is a closer match to the original signal (Jiang, Tang, 
Qin and Liu, 2011).   

In general, the frequency content at level 𝑛  for the 
approximation signal is given by Eq. (8) and the frequency 
content for the detail signal at level 𝑛 is given by Eq. (9). 

0 ≤ 𝑓 ≤
𝐹!"#
2!!!

 (8) 

𝐹!"#
2!!!
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Figure 4. Wavelet Decomposition Diagram (Level 4) 

An example wavelet decomposition diagram for level 4 is 
illustrated in Figure 4, where the approximation signal at 
each level is further decomposed.  The wavelet 
decomposition only decomposes approximation signals, 
while the wavelet packet decomposition decomposes both 
approximation and detail signals.   

Mechanical fault signatures for bearing, shaft, and gear 
components create amplitude and frequency modulation 
effects. In addition, these faults can excite the structural 
resonances of the system.  Monitoring the vibration changes 
in different frequency bands from a baseline state is a way 
to monitor the overall health state of the drivetrain.  The 
energy extracted at each node of the wavelet decomposition 
is used for monitoring the changes in the vibration in 
different frequency bands.  The wavelet decomposition 
energy at each node can be calculated using Eq. (10), which 
consists of the squared summation of the coefficients at that 
particular node for the 𝑁 coefficients.  The wavelet energy 
vibration feature is a normalized frequency band vibration 
value, in which the vibration at each node is normalized by 
the total energy in the vibration signal and the feature is 
given as a percentage value.  An example calculation of the 
wavelet energy feature for the approximation signal for a 
level 4 decomposition is provided in Eq. (11).  In this 
equation, the coefficients for the approximation signal are 
denoted as 𝑤!!, and the detail coefficients are denoted as 
𝑤!!, 𝑤!!, 𝑤!!, and 𝑤!! respectively.  For this example of 
level 4 decomposition, 5 wavelet features would be 
extracted, since a feature would be extracted at each level 
for the detail signals, and a feature is extracted for the level 
4 approximation signal.   

𝐸𝑛𝑒𝑟𝑔𝑦  𝐴! = 𝑤!!!!
!

!!!
 (10) 

100× 𝑤!!!

𝑤!!! + 𝑤!!! + 𝑤!!! + 𝑤!!! + 𝑤!!!
 (11) 

2.4. Drivetrain Overall Degradation Assessment 

Upon the completion of SCADA variable selection and 
CMS feature extraction, the set of features from all sensors 
and selected SCADA variables are used to evaluate 
drivetrain degradation as explained in subsequent sections 
of the paper. Degradation assessment estimates present 
drivetrain condition by comparing a feature distribution 
model with a known healthy condition as the baseline 
model. As operation conditions change for the wind turbine, 
the drivetrain work regime varies over time and affects its 
response even under comparable health condition. 
Therefore, the features are assumed to comprise 
distributions from multiple models, and a modeling method 
that can learn and represent data with a mixture model is 
preferred. 

Moreover, a distance metric is used to quantify degradation 
by measuring the dissimilarity between present features and 
the baseline. A threshold can be defined as an unacceptable 
level for the distance, and fault detection can be confirmed 
when the distance measure exceeds the threshold. 

In this study, a Self-organizing Maps (SOM) approach is 
used for degradation assessment (Kohonen, 1990). Being a 
type of artificial neural network, SOM is able to 
automatically discover signal patterns and organize signals 
to create spatial separation between clusters. When used for 
unsupervised learning tasks where the data labels are not 
available for classification, SOM can cluster data instances 
so that inter-cluster distance is high and intra-cluster 
distance is low.  

To train a SOM, a 2D map is initialized with 𝑚 neurons 
corresponding with 𝑛 input vectors 𝑥: 

𝑥 = 𝑥!, 𝑥!, . . . , 𝑥! ! (12) 

Each neuron has a weight vector that has the same 
dimension 𝑛 of an input vector: 

𝑤! = 𝑤!!,𝑤!!,… ,𝑤!"
!
, 𝑗 = 1,2,… ,𝑚 (13) 

For each of the input vectors, the Euclidean distance 
between the particular input vector and all weight vectors 
are calculated. The weight vector with smallest distance, 
hence highest similarity is chosen as the Best Matching Unit 
(BMU), 𝑤!, for that input vector, as shown in Eq. (14). 

𝑥! − 𝑤! = min
!

𝑥! − 𝑤!  (14) 

After the first iteration of finding the BMUs, the values of 
weight vectors are updated so that each BMU is 
topologically closer to the input vector. The updated is 
computed as Eq. (15): 

𝑤! 𝑡 + 1 = 𝑤! 𝑡 + 𝛼 𝑡 ℎ!,!! 𝑡 𝑥 − 𝑤! 𝑡  (15) 

Vibration Signal

cA1 cD1

cA2 cD2

cD3cA3

cA4 cD4
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where 𝑡 denotes the iteration step; ℎ!,!!  denotes the 
topological neighborhood kernel centered around the BMU, 
which is typically chosen as Gaussian function; and 𝛼 𝑡  
denotes the learning rate, which is monotonically decreasing 
with the training iteration. Through this competitive 
learning process where weight vectors that are closer to 
input space get updated with higher weight, the map of 
weight vectors eventually converge to a certain number of 
clusters. 

Minimum quantization error (MQE) is the distance metric 
for SOM method (Yu and Wang, 2009), computed as the 
Euclidean distance between an input vector and its BMU, as 
shown in Eq. (16). Therefore the training of SOM can be 
viewed as the process of minimizing the average MQE for 
input vectors and achieving the optimal map structure. For a 
testing process, where the present degradation condition is 
assessed, features are used as input vectors for the trained 
map as they are collected. The MQE value is calculated for 
each feature vector against its BMU in the trained SOM 
map, which can be found in the “codebook” of the SOM. 
The larger the MQE value is, the more severe the 
degradation is.  

𝑀𝑄𝐸 = 𝑥 − 𝑤!"#  (16) 

2.5. Fault Localization 

As drivetrain degradation grows and becomes significant, 
the MQE value is expected to exceed its prescribed 
threshold and trigger an alarm for fault. It is desirable to 
locate the fault at component level, so that specific advice 
can be provided for deciding which component is at a more 
critical condition and needs to be repaired. 

With SOM-MQE technique being used, fault localization is 
achieved by computing MQE contribution of features and 
variables from each component. MQE is essentially the 
Euclidean norm of the vector subtraction between an input 
vector and its BMU, as shown in Eq. (17), where 𝑒! is the 
difference for the 𝑖th feature among all 𝑘 features.  

𝑀𝑄𝐸 = 𝑒!! + 𝑒!! +⋯+ 𝑒!! (17) 

The features can be grouped by drivetrain components 
based on their contextual information. CMS vibration 
features are grouped based on location of the sensor that 
generated the feature, whereas SCADA variables are 
grouped based on variable names. For each component, its 
contribution to MQE value is calculated as Eq. (18), where 
𝑒! are features of the same component. 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
𝑒!!

𝑀𝑄𝐸!
 (18) 

3. CASE STUDY 

To further validate and implement the aforementioned 
methodology, a case study based on an offshore wind 
turbine is conducted. 

3.1. Description of Turbine and Data 

The test bed is a 3 MW wind turbine. A split torque, three-
stage planetary gearbox is used to connect the rotor and the 
generator on the drivetrain. Schematics of the drivetrain, as 
well as locations of vibration sensors, are shown in Figure 5. 

 
Figure 5. Schematics of test bed drivetrain 

The first two stages each consist of a sun gear, planetary 
gears, a planet carrier and a ring gear, whereas the third 
stage is a parallel stage with a pair of gears and an output 
pinion. The input shaft of the gearbox drives ring gear of the 
first stage and planet carrier of the second stage 
simultaneously with identical rotation speed. For the first 
stage, planet carrier does not rotate, thus planetary gears 
only rotate on their own axes without rolling relative with 
its sun gear. The sun gear, driven by the ring gear through 
rotation of planetary gears, connects with the ring gear of 
the second stage. Therefore all of ring gear, planetary gears 
and planetary carrier rotate for the second stage, to drive the 
rotation of its sun gear. Then the sun gear of second stage 
connects with the third stage, and outputs rotation that 
drives the generator. Parameters of the gears are listed in 
Table 2, where CW means the rotation is clockwise and 
CCW means counterclockwise. The computation of overall 
gear ratio results in 76.64, which is the nominal ratio 
between rotation speeds of generator and rotor shaft. 

Stage Gear No. Of Tooth Rotation Direction 

1st  
Sun 66 CW 
Planet (8) 37 CW 
Ring 142 CCW 

2nd  
Sun 30 CCW 
Planet (4) 62 CCW 
Ring 154 CW 

3rd  Input 116 CCW 
Pinion 26 CW 

Table 2. List of known gear parameters 

In total, eight (8) accelerometers are installed along the 
drivetrain (Figure 5), with two on the main bearing, four on 

Generator

Axial
Low-freq.
Sensor

Radial
Low-freq.
Sensor

Radial
Sensor

Radial
Sensor

Radial
Sensor

Axial
Sensor

Radial
Sensor

Radial
Sensor

Main
Bearing Stage 1 Stage 2 Stage 3

Split Torque Gearbox
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the gearbox and two on generator. The sampling rate is 6250 
Hz for all sensors. 

The condition monitoring system is configured to collect 
vibration data from all accelerometers synchronously once 
per day at midnight, with a few exceptions that data is 
collected at a different time of the day or data is collected 
more than once per day. Data duration for all eight channels 
of each collected instance is around 85 seconds.  

SCADA data is also available for the turbine unit, where 
statistics of mean, standard deviation, maximum and 
minimum for over a hundred variables are recorded every 
ten (10) minutes. The total duration of both CMS and 
SCADA data is fifteen (15) months. MATLAB® is used for 
developing all techniques described in previous Section and 
generating results for this case study. 

3.2. Analysis and Results 

A filtering algorithm (Grubbs, 1969) that detects outlier 
observations in a time series is used to reject drastic outliers 
for each SCADA variable in advance. In this algorithm, the 
null hypothesis is defined as there is no outlier in a 
distribution, whereas alternative hypothesis is defined as 
there is at lease one outlier in the distribution. For any given 
sample of the distribution, 𝑋!, a Grubbs’ test statistics 𝐺 is 
generated as Eq. (19), where 𝑋 is the distribution’s mean 
value and 𝜎 is the distribution’s standard deviation. 

𝐺 = 𝑋 − 𝑋! 𝜎 (19) 

A critical value 𝑍 is computed as shown in Eq. (20), where 
𝑁 is distribution sample size and 𝑡 is critical value of the t-
distribution with 𝑁 − 2 degrees of freedom and 𝛼 2𝑁  of 
significance level. If 𝐺 > 𝑍 , 𝑋!  is determined to be an 
outlier and null hypothesis is rejected. 

𝑍 =
𝑁 − 1
𝑁

𝑡!

𝑁 − 2 + 𝑡!
 (20) 

For each SCADA variable, its maximum and minimum 
values are tested with a significance level of 0.05, and 
rejected if they are determined to be outliers. Extrema 
values of the filtered distribution will be tested repeatedly 
until no outlier is detected. 

SCADA records with apparent timestamp error are rejected 
as well. 

For each available CMS data instance, a SCADA record 
with a matching timestamp is selected as the reference for 
deciding whether the CMS instance should be discarded or 
kept. In the case when there is no SCADA record with exact 
same timestamp for a particular CMS instance since data 
sampling between the two systems may not be synchronized 
in most instances, the first SCADA record sampled right 
after the CMS instance is chosen as the reference. 

Four variables in reference SCADA records are then 
examined with following rules: 

• Rotor speed average [rpm] is higher than 0; 
• Generator speed average [rpm] is higher than 0; 
• Average active power [kw] is higher than 0; 
• Average wind speed [m/s] is higher than cut-in wind 

speed, which in this case is 2. 
The corresponding CMS instance is retained when the 
drivetrain is operational, which is indicated, in most cases, 
by all four aforementioned rules being met.  

Reference SCADA records of retained CMS instances are 
kept for future analysis. In these records, four variables are 
selected for degradation assessment: 

• Rotor bearing temperature average; 
• Gearbox stage 1 temperature average; 
• Gearbox stage 2 temperature average; 
• Gearbox stage 3 temperature average. 
The selected temperature readings are then subtracted by the 
variable Environment temperature average, to offset the 
seasonal effect on the absolute reading of the variables. 

For feature extraction of each channel of CMS vibration 
data, four categories of features are extracted: 

• RMS, kurtosis and crest factor are time domain 
features; 

• Spectral kurtosis is used to filter vibration waveform, 
with a beforehand STFT of window size 256 samples 
and 80 percent of overlap. RMS, peak-to-peak and 
kurtosis values are extracted from the filtered time 
domain signal; 

• Envelope analysis is used to demodulate the signal 
around resonance frequencies, where resonance 
frequency is often found at the interval between 1000 
Hz and 1600 Hz. Five features are extracted from the 
demodulated signal: RMS of envelope, RMS of band-
pass filtered data, maximum peak of envelope spectrum 
in low frequency range, frequency index of the peak, 
and crest factor of envelope spectrum. In this specific 
case study, bearing configuration parameters that are 
indispensable for bearing fault frequency calculation 
are not available. Therefore fault frequencies are not 
considered in this example. 

• Wavelet energy analysis is conducted with Daubechies 
4 wavelet, and five features, including four energy 
bands for four levels of detail signal and one energy 
band for level 4 approximation signal, are extracted. 

In this case study, features are extracted only from sensor 1 
to sensor 6 since the gearbox system is of higher interest 
and it is more suitable to study analytical methods that are 
specific for the generator independently.  
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In total, 96 CMS features are extracted with 16 features per 
each accelerometer. With selected SCADA variables, 100 
health indicators are included in SOM-MQE calculation for 
degradation assessment. For this case study, a Monte Carlo 
based statistical method is (Bechhoefer, He & Dempsey, 
2011) adopted to generate a threshold for triggering fault 
detection when MQE value exceeds the threshold. To be 
conservative and avoid users’ disbelief due to false alarms, a 
probability of false alarm (PFA) is set as 10-6. Gaussian 
distribution and Rayleigh distribution are fit with the first 30 
MQE instances , where Rayleigh distribution has a lower 
negative log likelihood value and is a better fit for the 
instances. The same test is conducted for varying number of 
instances (25 – 35) and Rayleigh distribution consistently 
outperforms Gaussian distribution, therefore the distribution 
is assumed to be Rayleigh in this case. Threshold values are 
calculated based on the different numbers of training 
instances, and the average is taken to be the eventual 
threshold.  

The reminder of the historical data is used for testing the 
SOM model. Each instance is input to the trained SOM, to 
generate a MQE value. Eventually, the trend of MQE (in 
dB) progression over time is shown in Figure 6. 

 
Figure 6. SOM-MQE result for degradation assessment 

As observed from the SOM-MQE result, there is a short 
duration in the middle of the history when MQE value 
noticeably exceeded the MQE threshold. Due to data 
confidentiality issue, the exact dates cannot be revealed. 
However, it can be found from SCADA variable Average 
active power [kW] that the turbine unit was producing zero 
power for a two-week duration. It was probably triggered by 
simply monitoring the level of SCADA variables and 
pausing the turbine operation due to certain alerts. 

In comparison, the MQE excess occurred about five days 
before the operation pause. The result shows that SOM-
MQE is capable of detecting drivetrain anomaly at an early 
stage. 

After the wind turbine resumes operation, the SOM model is 
re-trained since there might have been component 
replacement and drivetrain behavior should be compared 
with a new baseline. As shown in Figure 6, the new SOM 
model has a new MQE threshold for fault detection as well.  

For fault localization, features are grouped based on sensor 
locations in the schematics and SCADA variable names. 
The components here are denoted as component 1, 2, 3 and 
4, where actual component names are omitted as proprietary 
information. When MQE exceeds its threshold and fault is 
detected, the contribution of MQE increase is calculated for 
each component based on Eq. (18), which results in 0.9, 
0.05, 0.02 and 0.03 for the occurrence of the major 
downtime. Therefore the critical component in this case is 
decided to be component 1.  

A radar chart is created to view component criticality 
simultaneously (Figure 7). In this chart, each axis represents 
the contribution of each component to MQE abnormality. 
The closer the data point is to the center, the smaller the 
contribution is.  

 
Figure 7. Radar chart for fault localization 

3.3. Visualization 

To apply the developed tools for large-scale wind farms, a 
monitoring platform prototype is established for data 
management, visualization, analysis and fault reporting. The 
software modules include a) main interface, which directs 
user to different analytical modules: b) data organization, 
which sorts data instances and convert them to a compatible 
format; c) signal visualization and filtering, which provides 
visual observation of raw signal and configuration of data 
filtering; d) feature extraction, which enables feature 
configuration and extraction for various feature types, as 
well as SCADA variable selection; and e) degradation 
assessment and fault localization. The main module is able 
to invoke any other modules for particular tasks, and results 
from a former module are archived so that a latter module 
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can use them as input. When the analytical methods are 
improved and validated with more turbine units and data, 
the platform can operate in a systematic manner to analyze 
raw SCADA and CMS data and to provide users with direct 
health degradation information.  

4. CONCLUSION AND FUTURE WORK 

In this paper, an integrated methodology of degradation 
assessment and fault localization for wind turbine drivetrain 
components is presented. The result of the methodology is 
achieved by combining input from SCADA system and 
CMS, and validated with a planetary gearbox system of an 
offshore wind turbine. 

Besides using selected SCADA variables, a few feature 
extraction methods are employed to extract health indicators 
from CMS vibration data. The methods include time domain 
features, spectral kurtosis filtering, envelope analysis and 
wavelet energy analysis. A Self-organizing Map and 
minimum quantization error approach is adopted to evaluate 
the degradation condition of drivetrain, and contribution 
calculation is used to decide the location of defect on the 
drivetrain. In the case study, an incipient defect is detected 
and located before detection by the existing system, 
indicating the potential of predictive monitoring with the 
presented methods. 

In terms of future work, there are a few items to be 
considered for improving the methods and applications 

• Regarding wavelet transform for feature extraction, the 
selection of mother wavelet function is crucial for 
obtaining the optimal decomposition results. Rather 
than depending on experience, preference or visual 
inspection, an intelligent method can be designed and 
validated for monitoring either onshore or offshore 
turbine drivetrains. In literature, there has been 
interesting and valuable investigation for reference 
(Rafiee, Tse, Harifi and Sadeghi, 2009). 

• There are other multimodal methods that are applicable 
for degradation assessment. For example, Gaussian 
mixture model (GMM) estimates data distribution as 
linear combination of multivariate Gaussian distribution 
components. A L2 distance metric can be used to 
measure degradation.  

• In the case study, rotation speed for CMS vibration data 
is missing. As a result, there are some techniques that 
could not be evaluated on the test bed, such as time 
synchronous average, especially for the variable speed 
transmission system of wind turbines (Zhang, Wen and 
Wu, 2012). If rotational speed can be made available in 
the future, perhaps through a tachometer signal, more 
in-depth analysis can be conducted to investigate fault 
diagnosis methods. 

• As bearing specifications are not available for the 
presented case study, bearing failure frequencies are not 

inspected and potential bearing faults are not explored. 
Adding bearing-specific knowledge in the future will 
enable bearing diagnosis for different stages of 
drivetrain with given sensors. 

• The CMS instance selection method, which is proposed 
and implemented in this paper, can be incorporated 
with control of data sampling for CMS. CMS can refer 
to SCADA variables to evaluate if certain time duration 
is suitable for vibration data acquisition. An adaptive 
sampling mechanism can be developed to ensure CMS 
data quality, improve computation efficiency, and 
enhance degradation model accuracy. 
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APPENDIX 

Screenshots of software modules discussed in Section 3.3 
are included in this appendix. 

 

a) Main interface 
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b) Data organization module 

 

c) CMS data visualization module 

 

d) SCADA variable filtering module 

 

e) CMS feature extraction module 
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f) Degradation assessment and fault localization module 

Figure 8. Prototype of wind farm monitoring platform 
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