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ABSTRACT

There is a growing use of carbon fiber reinforced polymers

(CFRPs) in modern airframes with still a limited understand-

ing of the in-service behavioral characteristics of these struc-

tures. Structural Health Monitoring (SHM) technologies that

use surface-bonded piezoceramic (PZT) transducers to gen-

erate and measure guided waves within these structures have

demonstrated promising damage detection and localization

results and potential for data gathering in data-driven dam-

age prognosis. This paper investigates the development of

a data-driven SHM based damage prognosis system for es-

timating remaining useful life (RUL) of CFRP coupons fol-

lowing damage initiation. A robust and realistic laboratory

data gathering methodology is introduced as a building block

for evaluating the feasibility of data-driven damage prognosis

for in-service aerospace structures. Data are gathered using

a PZT-based SHM system. Using the gathered raw guided

wave signals, a number of time and frequency domain fea-

tures are first extracted which are derived from existing dam-

age imaging and detection algorithms. Then, using various

combinations of the feature sets as inputs to generic data min-

ing algorithms, the paper presents estimates of the predicted

RUL against actual damage diameter progression.

1. INTRODUCTION

Modern operation of aircraft generates vast amounts of ‘op-

erational data’ from on-board aircraft systems and ‘main-

tenance data’ from offline maintenance procedures. Prog-

nostic model development maximizes the potential uses of

these two data sources with the goal of discovering ‘a pri-

ori’ knowledge of component failures and abnormal system
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behavior (Zaluski, Létourneau, Bird, & Yang, 2010). Such

prognostic tools would be invaluable to end-users of these

aircraft in allowing the development of opportunistic and pre-

ventive maintenance procedures designed to cut costs and in-

crease safety. Prognostic modelling would close the loop in

the development of adequate health management systems for

aircraft which are built with the combination of diagnostic,

prognostic, and repair management technologies (Létourneau

et al., 2005).

In any data-driven prognostic model development approach,

data are gathered using a sensory and maintenance network.

In the aerospace domain, data analysis of structural dam-

age is tracked off-line by experienced engineers through non-

destructive inspection (Roemer, Ge, & Liberson, 2005). Data

are therefore collected when a problem is detected and no

information is gathered leading up to the event. Without a

means to gather data prior to a problem, data-driven prog-

nostic model development is impossible. The use of Struc-

tural Health Monitoring (SHM) strategies based on guided

wave propagation for injecting and receiving guided waves,

using lead-zirconate-titanate (PZT) piezoceramic transducers

bonded to aerospace structures for damage detection, is how-

ever increasing. This allows data gathered regularly during

in-service operation of these aircraft to be used in the devel-

opment of data-driven prognostic models and eventual deci-

sion support systems. Currently, however, SHM systems are

not being readily used on in-service aircraft fleets (commer-

cial or military) because the technology has not yet transi-

tioned from research to practice (Chattopadhyay et al., 2012).

Efforts to develop health management systems that include

damage prognosis are limited because gathered data from

SHM systems for real applications are not yet available.

An increasing importance in industry for decision support

systems and condition based monitoring (CBM) through on-
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Figure 1. Overview of the data-driven methodology

board SHM comes from a growing use of composite Car-

bon Fiber Reinforced Polymers (CFRPs) in both military and

civilian aircraft fabrication and production. As these aircraft

are commencing in-service use, there is limited historical data

available for understanding their in-service behavioral char-

acteristics (Soutis, 2005). Damage in aerospace composites

under in-service loading is mainly due to fatigue from stresses

that vary depending on mission loading profiles. Operational

impacts also occur which are less predictable. For CFRP

structures, fatigue and impact damages lead to: fiber break-

age, matrix cracking, delamination, and interface debond-

ing (O’Brien, 2001; Rhymer, Kim, & Roach, 2012). The re-

sult of the initiation of such damage with further use of the

aircraft could have detrimental effects on the overall strength

of the structure. A desire for the aircraft manufacturer, owner,

and user is for the development of on-board SHM systems for

fault detection and eventual failure prediction of the remain-

ing useful life (RUL) of these components to enhance oppor-

tunistic and preventive maintenance procedures with antici-

pated impacts on availability, safety, and cost (Zaluski et al.,

2010).

With no commonly available operational data to build

datasets for data-driven model development, much research

has focused on using Material Testing Systems (MTS) in

laboratory environments for data gathering and on analyti-

cal and Finite Element (FE) models of composite structural

behavior (Liu, Mohanty, & Chattopadhyay, 2009). In labo-

ratory environments, RUL estimations have been presented

that use features created from data gathered using MTS fa-

tigue systems in combination with acoustic emission or PZT-

based SHM systems (Saxena, Goebel, Larrosa, Janapati, &

Roy, 2011). Promising results in predicting remaining fatigue

loading cycles have been demonstrated on composite coupons

but little thought has been put into the types of loading pat-

terns that should be used to mimic real applications (Liu et

al., 2009; Larrosa & Chang, 2011). One must consider what

loading patterns actual aircraft endure in order to develop re-

alistic prognostic models. Furthermore, parameters measured

from the MTS system cannot be used as features in the prog-

nostic model development process because these features are

not available in real applications and vary by composite struc-

ture type.

Many analytical models are available (Hashin, 1980; Chang

& Chang, 1987; Roebuck, Gorley, & McCartney, 1989; Choi,

1990; Hou, Petrinic, Ruiz, & Hallett, 2000; Nairn, 2000;

O’Brien, 2001; Beaumont, Diamant, & Shercliff, 2006) for

understanding damage propagation and the transition from

matrix micro-cracks to delamination. In practice, validation

of structural components using such models is time consum-

ing and complex and many assumptions for simplification are

made when estimating fatigue (Liu et al., 2009). FE models

exist to evaluate impact damage size and depth in aluminum

sandwich structures (Nguyen, Jacombs, Thomson, Hachen-

berg, & Scott, 2005) but none, to the authors’ knowledge,

have been validated and used for RUL prediction. SHM al-

lows a straight-forward data-driven implementation for dam-

age prognosis which in turn provides a practical solution to

difficulties faced in physics-based modelling (M. Chiachio,

Chiachio, Saxena, Rus, & Goebel, 2013; J. Chiachio, Chia-

chio, Saxena, Rus, & Goebel, 2013).

To address these issues, this work presents a novel data-

driven approach for estimating RUL for CFRP aerospace

grade coupons exposed to low energy drop-weight impacts.

The approach relies on a PZT-based SHM systems instru-

mented onto CFRP coupons in a pitch and catch configura-

tion. Data are acquired from guided wave signals generated

and received in the coupons and later pre-processed to de-

fine a feature set. Observations in the feature set are divided
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Figure 2. Schematic (a) and picture (b) of the experimental setup of a CFRP aerospace grade composite coupon. The picture
shows the coupon inside the drop-weight impact system.

into training and testing datasets where several generic super-

vised learning algorithms are applied to the data to estimate

RUL. The laboratory data is gathered using a methodology

designed as a foundation to build upon for simulating real

world operating conditions. The purpose of this first step is

to evaluate and demonstrate the feasibility of assessing struc-

tural damage using damage prognosis.

2. DATA-DRIVEN PROGNOSTIC MODEL DEVELOPMENT

METHODOLOGY

There is an emerging use of data-driven based damage prog-

nosis in the aerospace domain with the onset of an increasing

use of composite structural components. In order to demon-

strate the feasibility of damage prognosis for RUL predic-

tion in aerospace grade composite structures following im-

pact events a thorough, robust, and realistic laboratory data

gathering procedure must be considered. This methodology

consists of three major steps: data generation and process-

ing, feature generation, and modelling and evaluation follow-

ing operational data gathering. The defined data-driven based

methodology can be extrapolated into experiments for devel-

oping prognostic models to predict damage degradation or

RUL in aerospace structures. This section, together with Fig.

1, describes the details for each of the different stages in the

methodology along with observed challenges.

2.1. Data generation and processing

In the present project, destructive testing using a drop-weight

impact system is used to investigate damage prognosis for es-

timating RUL. By defining a critical damage size, the RUL

is predicted in remaining number of impacts (RNI) from

the critical impact point which is estimated for the critical

damage size (≃ 7.1 mm). Although somewhat arbitrary in

this work, the critical damage size is estimated from non-

destructive inspection measurements following a series of

impacts over the entire sample size of CFRP coupons used

in this work. Important considerations for the methodology

must be made because following destructive impacts, data

cannot be re-collected. Due to the high cost of destruc-

tive testing in aerospace structures, CFRP aerospace grade

coupons instead of real aerospace structures are used for op-

erational data gathering. The maintenance database however

cannot be created until established maintenance procedures

are defined and developed for such CFRPs. Structural fabri-

cation and instrumentation and damage initiation procedures

are first described in this section followed by a description for

data gathering and processing.

2.1.1. Structural fabrication and instrumentation

A CFRP aerospace grade sheet is fabricated using the facili-

ties at the National Research Council of Canada (NRC) Insti-

tute for Aerospace Research (IAR) in Ottawa, Ontario. The

sheet is fabricated using pre-preg fibre layers autoclave cured

inside a vacuum bag while keeping the tolerance on the ply

orientation for the fabrication process below 0.5o. Follow-

ing autoclave curing, the CFRP sheet is cut into 9 individ-

ual coupons of size 10.16 cm by 15.24 cm using a diamond

saw. The composite layup and mechanical properties of the

coupons are presented in Table 1.

Following fabrication, instrumentation of the CFRP coupons

is performed. Two 5 mm diameter with 0.5 mm thickness

PZT transducers (Physik Instrumente R©) are bonded 10 cm

apart in a pitch and catch configuration to the surface of the

CFRP coupons using epoxy. The properties of the PZT trans-

ducers and the epoxy adhesive are outlined in Table 2. Damp-

ing tape at the plate edges is used to prevent edge reflections

of guided wave signals.
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Plies Dimensions Orientation Thickness Eq. Young’s Eq. Poisson’s
(mm) modulus (GPa) ratio

16 10.16cm x 15.24cm [0,90]8 2.45±0.01 74.5±8.6 0.33±0.01

Table 1. CFRP coupon properties

Item Material Thickness Young’s Poisson’s Density

(mm) modulus (GPa) ratio (kg/m3)
Plain weave fibers (uni-dir) ACG MTM45-1 GA045 0.15 61.5 0.3 1180
PZT PZT 5A 0.5 65.0 0.31 7750
Bonding layer Epoxy 0.1 3.5 0.3 1100

Table 2. Properties of the CFRP layers, PZT transducer, and bonding layer.

2.1.2. Damage initiation

Following instrumentation, coupons are placed individually

into a drop-weight impact system for damage initiation. Two

steel shims are placed on the upper and lower sides of the

coupons and clamped using 5 quick clamps onto the impact

system frame. Data acquisition described in the next section,

is repeated for each coupon to define the operational database.

The experimental setup of the plate is presented in Fig. 2.

ASTM standard ’D7136/D7136M-05’ (ASTM, 2007) pro-

vides guidelines for impacting CFRPs using a drop-weight

impact system such that damage including dents/depressions,

splits/cracks, combined splits/delaminations, and combined

large cracks with fibre breakage can be reproduced. For the

thickness of the coupons used in this work, the standard dic-

tates that an impact energy of 16.7J will induce all of the de-

scribed failure modes. In other words, following an impact of

this magnitude, the coupon would be deemed damaged and

would require repair or replacement. For successful develop-

ment of data-driven data mining prognostic models, the ob-

jective is to measure and produce data features that show pro-

gressive changes far away from a failure point. This would

allow more time for fleet managers to schedule and perform

opportunistic maintenance. Therefore, impacting the com-

posite coupons using the standardized energy would not pro-

duce any useful data as the coupons would be too severely

damaged (Guida, Marulo, Meo, & Russo, 2012) and there

would be no justification for damage prognosis.

In reality, sudden impacts do occur which can only be de-

tected and assessed but a more realistic application for dam-

age prognosis in the aerospace domain would be for predic-

tion of RUL after the onset of lower energy impacts from

sources such as accidental tool drops or runway debris im-

pacts from take-off and landing (2-3 J, 3-5 m/s) (Tomblin et

al., August 1999). These impacts cause barely visible im-

pact damage (BVID) which commonly occurs from constant

maintenance and operation of the aircraft. Accumulations of

BVID in similar proximities on the airframe surface can even-

tually lead to severe damage (Rhymer et al., 2012). There-

fore, in this work, damage is applied in the form of 5J impacts

to each composite coupon to replicate BVID. Actual dam-

age size and depth is measured following each impact using a

non-destructive phased array ultrasonic testing tool (Olympus

OMNIScan MX2) (gold standard) (Olympus, 2013). These

types of damage investigated herein are excellent candidates

for RUL estimation as they are pertinent and common.

2.1.3. Data gathering

Guided wave PZT based SHM systems are being explored in

current research and show promise in damage detection, lo-

calization, and material characterization for aerospace struc-

tures and are ideal candidates for in-situ data generation and

gathering (Giurgiutiu & Bao, 2004; Quaegebeur, Masson,

Langlois-Demers, & Micheau, 2010; Saxena et al., 2011; Os-

tiguy, Quaegebeur, Mulligan, Masson, & Elkoun, 2012). Be-

fore implementing such a system for structural assessment,

key considerations must be made for transducer signal gen-

eration and acquisition parameters. In this case, the acquired

data must be useful for features to be developed for later use

in damage prognosis. For signal generation using guided

wave propagation, a burst function must be selected with

an appropriate amplitude, frequency, number of cycles, and

duration (Staszewski, Mahzan, & Traynor, 2009). Features

may be developed by investigating time, frequency, disper-

sive, and correlation aspects of the acquired signals following

generation. Some of these features may be sensitive to dif-

ferent frequency ranges which vary by material. Therefore,

in this study, considerations made for parameter selection are

based on damage analysis and material characterization tech-

niques (Giurgiutiu & Bao, 2004; Quaegebeur et al., 2010;

Ostiguy et al., 2012).

For guided wave pitch and catch measurements a broad-

band frequency range is covered with fine steps between

each frequency such that a diverse amount of data are gath-

ered (Quaegebeur, Masson, Micheau, & Mrad, 2012) in or-

der to develop new features not found in literature. The sub-

band generation technique (Quaegebeur et al., 2012) is used

to determine the transfer function between the transmitting

and receiving transducers. To do this, an impulse excitation

signal which is decomposed over 11 sub-bands over a fre-

quency range below 1 MHz is transmitted using a generat-

ing PZT and received by the acquisition PZT. The signals

are amplified using a UA-8400 amplification system (Pro-

duitson). Baseline guided wave measurements are taken be-

fore the impact sequence such that pristine and damage sig-
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Figure 3. Example of a time domain signal without damage (a) and with damage (c). The difference between the undamaged
and damaged time signals is shown in (e). The amplitude part of the frequency domain transfer function representation of the
time domain signals without damage (b) and with damage (d). The difference between the undamaged and damaged frequency
domain signals is shown in (f). All signals are normalized to the baseline.

nals can be later compared. Post-processing of the measured

impulse response is performed using windowing and recon-

struction filters to determine the transfer function. The input

signal voltage burst is generated using an HP 33120A gen-

erator with a sampling frequency of 15 MHz. The output of

the measurement circuit is acquired using a high impedance

National Instruments PCI-5105 12-bit DAQ board configured

through a custom LabVIEW interface. The generated sig-

nals are recorded at a fixed sampling frequency of 6 MHz and

averaged 1000 times in order to increase SNR and low-pass

filtered at 1.5 MHz.

2.1.4. Data pre-processing

Data-driven damage prognosis models require as input a

dataset which is composed of instances of vectors of attribute

values. The attributes and their respective values are extracted

from the operational and maintenance databases obtained for

specific applications. In the case of composite structures in

aircraft, historical databases are not yet available. To build a

historical database in this case, considerations must be made

for selecting an appropriate SHM system that can provide in-

situ and regular monitoring of the aircraft structure during

future applications for in-service operation.

In order to use supervised learning algorithms, data must be

pre-processed. This involves the addition of problem identifi-

cation and index attributes to the gathered operational data.

Problems separated by problem identification numbers are

created by applying the data gathering procedure to inde-

pendent aerospace structures. With an attribute for identi-

fying each problem, the data are split into training and test-

ing datasets. For each of the training problems, an index at-

tribute is added to each instance for supervised learning. The

index attribute associates a number to each instance within

each problem in sequential order where the failure point is

generally labeled ’-1’ and the furthest point from the prob-

lem is ’-N’, where N is the total number of instances within

a problem. In model training, the index attribute is used to

train the predictive model for each individual observation. In

model testing, testing data is inputted into the trained models

and the index attribute for each observation is estimated. The

predicted index for each instance in the testing dataset is com-

pared to the actual index by replacing the index attribute for

each instance. Depending on the quality and structure of the

gathered data, data labelling can be performed at this stage or

later, following feature generation.

2.2. Feature generation

Features are generated from raw data measurements using

data transformations to improve the initial, as measured, rep-

resentation (Zaluski et al., 2010). This is done by augment-

ing the initial representation with new features created us-

ing methods from process physics, signal processing, time-

domain and frequency analysis, wave dispersion and correla-

tion, and constructive induction. Different and more complex

features can then be extrapolated from these findings. Once

a feature set is defined, attribute evaluation tools (Hall, 2000;

5
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Figure 4. Method for extracting the one sample instance of the dispersion feature from a measured pitch and catch signal.

Kira & Rendell, 1992) and domain knowledge can be used

to remove redundant or irrelevant features to optimize model

development and reduce computation time.

Guided wave measurements are used to build a feature set

with instances for each of the 9 coupons. A total of 151 pa-

rameters are extracted based on time and frequency domain

signals. An example of guided wave signals obtained using

sub-band generation are provided in Fig. 3, with (c and d)

and without (a and b) coupon damage showing the time and

frequency domain representations. The difference between

the undamaged and damage signal is shown in Fig. 3 (e) for

the time domain and frequency domain in Fig. 3 (f). From

the difference between the signals alone, slight differences

can be observed. Therefore, both domains are considered in

the feature extraction process. Once features are extracted,

they are assembled into a database with the addition of prob-

lem identification and index attributes. Based on the problem

identification attribute the database is separated into training

and testing datasets. Each type of features generated for the

two domains are described in the following and summarized

in Tab. 3.

2.2.1. Time domain features

In this section, features extracted from time domain represen-

tation of signals are described. This includes a feature that

uses the root mean square (RMS) of the time domain signal,

a feature that exploits wave dispersion commonly found in

SHM, and finally a wave correlation feature.

Root Mean Square feature

The RMS of reconstructed broadband signals initially gener-

ated and measured in a pitch and catch configuration where a

hole is increasingly grown in the path between the two trans-

ducers has shown to increase linearly in (Quaegebeur et al.,

2012) for experiments on aluminum plates. Although numer-

ous impact damages will not perforate the CFRP plates as a

hole, a dent with increasing diameter will be produced. As

the penetration depth increases, generation and reflections of

guided wave modes should become more prominent and ef-

fects on the measured signal RMS should also be observed.

With a significance reported in the signal RMS, the mean, me-

dian, standard deviation, variance, minimum, and maximum

are also calculated and plotted against the respective impact

number. A total of 7 parameters are therefore extracted in this

step.

Wave dispersion feature

Wave dispersion commonly occurs in SHM when generating

and measuring guided wave bursts. Depending on material

properties, when frequencies that compose a generated wave

burst do not propagate with the same velocity, the measured

wave burst becomes stretched in time. This phenomena de-

pends on material characteristics. Generally most algorithms

used in damage imaging are implemented in conditions such

that dispersion is avoided. These algorithms depend on the

Time of Flight (ToF) of a series of measured wave bursts

which is not easily measured accurately in the presence of

dispersion. In this work, an attempt to exploit dispersion as

a feature is presented. The approach for calculating the dis-

persion feature presented in Fig. 4 is similar to that of ob-

taining the Minimum Resolvable Distance (MRD) parameter

presented in (Wilcox, Lowe, & Cawley, 2001).

Using the impulse response obtained from post-processing

measured signals using the sub-band generation tech-

nique (Quaegebeur et al., 2012), output signals for frequen-

cies between 25 kHz - 800 kHz at steps of 25 kHz (32 fre-

6
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Figure 5. Method for extracting the one sample instance of the correlation feature from one range of the frequency domain
transfer function.

quencies) are generated using synthetically constructed wave

bursts. The maximum amplitude over the entire signal is then

selected using a peak detection algorithm. Two peaks before

and after the maximum peak are determined with amplitudes

that are less that 20 dB of the maximum peak. The purpose

of this is to isolate the first reception of the propagated wave

bursts. The time difference between the outer peak is then

calculated. The time difference is plotted for each frequency

against the respective impact number for a total of 32 features.

Wave correlation feature

Extraction of the wave correlation feature set from time do-

main signals is presented in Fig. 5. Time domain signals

are first bandpass filtered according to 5 frequency ranges

namely: low frequency (10 kHz - 200 kHz) and below PZT

resonance frequency (200 kHz - 400 kHz) constituting the

low frequency range (Fig. 5), PZT resonance frequency (400

kHz - 600 kHz), and above PZT resonance frequency (600

kHz - 800 kHz) and high frequency (800 kHz - 1010 kHz)

constituting the high frequency range (Fig. 5). The maximum

cross-correlation of each frequency range is calculated with

respect to the baseline acquired prior to destructive testing.

A buffer is used to store the maximum correlation result ob-

tained by cross-correlating all impacts with the baseline for

each frequency range. The RMS, mean, median, standard de-

viation, variance, maximum, and minimum of all maximum

correlation values for each frequency range is calculated for

a total of 35 features.

2.2.2. Frequency domain features

In this section, features extracted from the frequency domain

representation of signals are described. This includes a fea-

ture that uses the Power Spectral Density (PSD) of the fre-

quency domain signal and features that exploit the amplitude

and phase of the transfer function for guided wave signals

propagating in the coupons.

Power Spectral Density feature

The PSD is investigated based on features used in (Larrosa

& Chang, 2011). The PSD is calculated from the recon-

structed broadband signals initially generated and measured

in a pitch and catch configuration. Then, the RMS, mean, me-

dian, standard deviation, variance, minimum, and maximum

of the PSD are calculated and plotted against the respective

impact number. Another 7 parameters are therefore extracted

in this step.

Transfer function feature

The transfer function in the frequency domain can be ex-

tracted using the sub-band generation technique when used

in pitch and catch (Quaegebeur et al., 2012). This pro-

vides an amplitude and phase relationship for frequencies

below 1 MHz. Based on observation and results reported

in (Mulligan, Quaegebeur, Ostiguy, Masson, & Létourneau,

2013), five frequency ranges of the transfer function are iso-

lated for feature extraction based on transducer resonance fre-

quency: low frequency (< 200 kHz), below PZT resonance

frequency (200 kHz - 400 kHz), PZT resonance frequency

(400 kHz - 600 kHz), above PZT resonance frequency (600

kHz - 800 kHz), and high frequency (> 800 kHz). For each

frequency range the RMS, mean, median, standard devia-

tion, variance, minimum, and maximum of the amplitude and

phase are calculated and plotted against the respective impact

number for a total of 70 parameters.

7
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A summary of the total number of time and frequency domain

parameters is shown in Tab. 3. For prognostic model develop-

ment, a total of 151 parameters are used which are generated

solely from guided wave signals.

Domain Feature Total
Time RMS 7

Wave dispersion 32
Wave correlation 35

Frequency PSD 7
Transfer function 70

Total 151

Table 3. Summary of parameters extracted from the raw
guided wave signals used in the prognostic model develop-
ment process.

2.3. Modelling and evaluation

Following data gathering and processing, and feature gener-

ation, any supervised learning algorithm can be applied to

create prognostic models. Prognostic models are created and

evaluated using training and testing datasets respectively. Of-

ten an iterative process by which features are added and re-

moved is used to optimize model accuracy and reduce the

feature set to remove redundant or irrelevant features. By

comparing the results of each model, statistical analysis of

model performance is conducted by comparing the predicted

index to the actual index. In this case the index corresponds

to the remaining number of impacts (RNI). Main statistics

including: mean, standard deviation, and mean square error

(MSE) of the error between the predicted and actual RNI are

also calculated to evaluate the robustness of each model.

With 151 total features, initial reduction of the feature set

is performed using the attribute selection tool in the Weka

suite of machine learning algorithms to reduce the size of the

feature set for model training and testing (Witten & Frank,

2005). The attribute selector requires the addition of a class

variable which is labelled as ‘1’ for observations close to the

failure point and ‘0’ otherwise. Therefore, 7 impacts closest

to the failure point are selected to be labelled as the damage

size becomes severe at this point (depth = 0.45-0.55 mm,

diameter = 4-7 mm). A wrapper subset attribute evaluator

using a ‘Naive Bayes’ classifier is selected with the search

functions: best first, genetic algorithm, greedy stepwise, rank

search, random search, and exhaustive search. These algo-

rithms provide a starting point to define a good feature set for

model training and testing. Domain knowledge is also used

to add and remove features that are neglected or suggested

from the attribute selectors. A number of new input feature

sets can therefore be defined at this stage.

After the feature sets are assembled into a database, 5 of the

9 problems (plates) are used for model training and the other

4 are used for testing. Then, a Leave One Batch Out (LOBO)

cross-validation technique is applied using the best feature

set where each problem is chosen individually to test the

model trained by the other problems (8 training, 1 testing) in

a round-robin fashion. LOBO is used to assess the variability

between the gathered datasets (training and testing) processed

by each model and to test model performance when smaller

datasets are used (Zaluski et al., 2010). Four generic regres-

sion based models are used in this work: sequential min-

imal optimization (SMO) support vector machine, multiple

perceptron artificial neural network (ANN), linear regression

(LR), and least mean square (LMS). Based on the results of

the attribute selection step, feature subsets can be extracted

from the global feature set database and used for training

and testing each model. In order to iterate the data-driven

model prognostic model development process to obtain ac-

curate prognostic models using feature subsets, an automated

system named EBM3 (Environment for Building Models for

Machinery Maintenance) is used and presented in (Zaluski et

al., 2010). In addition to speeding up execution, the EBM3

system allows the research team to maximize reuse of soft-

ware components and experimental methodologies between

applications (Zaluski et al., 2010). Over 200 experiments in

EBM3 are performed using the two split configuration and

various feature subsets. The goal of each experiment is to ob-

tain the best prediction results while minimizing the required

number of features. In this case, good estimation results are

obtained using only 11 features of the original 151. The con-

sistency for model training and testing of the feature subsets

yielding the best model is later evaluated using LOBO.

3. PROGNOSTIC MODEL EXPERIMENTAL RESULTS

3.1. Model performance

When selecting and separating training and testing datasets,

one assumes that the same model evaluation results can be ob-

tained for any combination. In other words, any combination

of problem (plate) pairs used for training and testing datasets

should provide the same results. In reality, some datasets are

more robust than others in that similar tendencies are found

within the data. If data leading up to a problem (plate) event

behaved in a similar manner in every case, structural RNI pre-

diction would be easy. Cross-validation provides a sense of

the similarities between each dataset and tests model perfor-

mance when smaller datasets are used. The cross-validation

results are provided in remaining number of impacts in Tab.

4 for each regression estimation where N is the number of

instances within a 25 impact range including baseline mea-

surements (Nmax=26).

Model evaluation results outlined in Tab. 4 show the ANN

model having the lowest average variability between datasets

(designated by low standard deviations). An average error

of approximately 6 - 7 impacts is observed with this model

and an average MSE of 63 with 25.1 instances within the 26

impact range (including baseline). The SMO, linear regres-

sion, and LMS models show larger variability, error, and MSE

8
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Dataset SMO ANN LR LMS
Err±std MSE N Err±std MSE N Err±std MSE N Err±std MSE N

1 5.4±2.6 35 26 4.6±3.0 29 26 5.4±2.6 35 26 8.0±14.9 86 26
2 5.4±3.3 40 26 6.3±3.6 52 26 4.6±3.2 32 26 5.7±6.3 70 26
3 7.0±4.1 66 26 6.4±3.8 55 26 7.9±4.5 82 26 8.0±6.1 100 26
4 3.2±2.8 18 26 5.6±3.8 45 19 3.2±2.2 15 22 2.9±2.6 15 15
4 3.2±2.8 18 26 5.6±3.8 45 19 3.2±2.2 15 22 2.9±2.6 15 15
5 15.4±35.6 1457 25 11.2±6.8 169 26 9.6±23.2 608 25 41.5±96.1 10611 26
6 20.1±47.2 2543 26 4.8±4.2 40 25 49.7±141.0 1581 26 134.8±393.8 166811 24
7 5.2±3.3 37 26 4.9±3.4 35 26 4.7±3.1 31 26 5.3±3.6 40 25
8 6.5±3.9 57 26 7.4±5.1 81 26 6.5±4.1 58 26 6.6±7.6 130 26
9 6.7±3.6 57 26 6.9±4.1 64 26 6.6±4.2 60 25 6.6±5.8 76 23
Avg. 8.3±11.8 479 25.9 6.5±4.2 63 25.1 10.9±9.8 278 25.3 24.4±59.6 19771 24.1

Table 4. Model evaluation for RNI estimates on test data for the SMO, ANN, LR, and LMS regression algorithms using LOBO.

overall. In all cases where large MSE is found, the final two

observations closest to the failure point have large estimation

errors. This indicates that the SMO, LR, and LMS models

may perform optimally at estimating the RNI farther away

from the failure point. In a next step, this may be useful when

performing data clustering (Chen, Han, & Yu, 1996).

3.2. Model results

In order to associate a number of impacts to a critical dam-

age size (failure threshold), the non-destructive phased ar-

ray ultrasonic testing tool is used following each destructive

impact to measure damage diameter versus impact number.

Fig. 6 presents an experimental damage size versus number

of impacts curve obtained by taking an average of all non-

destructive phase array ultrasonic measurements for the train-

ing and testing coupons. A failure threshold is defined at im-

pact number 25 corresponding to a damage diameter of ≃ 7.1

mm. In a real application, this threshold point is defined from

analytical and experimental tests on the material. Model es-

timates using the testing dataset in remaining number of im-

pacts are associated with a corresponding damage size based

on the experimental damage size measurements for each test-

ing plate and plotted in Fig. 6 with the average experimen-

tal damage size versus impact number measurements. From

the figure, for an impact number lower than 5, the linear re-

gression through the damage size estimation points suggests

that damage exists prior to detection by the ultrasonic testing

tool. Overall however, both the experimental damage size

measurements and damage size estimation points increase

linearly towards the failure threshold as the impact number

increases. The damage size estimation model however is un-

derestimating damage size shown by the slope of the regres-

sion fit to the damage size estimation points which increases

at a slower rate than that of the experimental damage size

measurements. This is caused by estimation errors between

15 and 20 impacts as features extracted from the guided wave

signals must suffer from a reduced sensitivity in this range.

The model results for estimated RNI plotted against actual

RNI are presented in Fig. 7. The ANN algorithm is eval-

uated using the testing dataset composed of a subset of 11

features from the original 151 including: time domain sig-

nal mean, low PZT frequency range mean, low PZT res-

onance frequency range median, PZT resonance frequency

range median and standard deviation, high PZT resonance

frequency range maximum, high PZT resonance frequency

phase mean and variance, variance of the PSD, and the low

frequency range correlation variance. The model is capable

of estimating RNI within a 30 impact range for all instances

in the training and testing datasets. In Fig. 7 the slope of the

linear regression fit for points within a 25 impact window is

0.51 with an intercept of 9.6. A slope close to unity with an

intercept at 0 in training would represent an ideal model. If

the model is then tested using a testing dataset demonstrat-

ing similar tendencies found in the training dataset, the pre-

diction should match the actual parameter of interest (in this

case RNIs) for all instances. In reality however, it is difficult

to create testing datasets without variation from the training

dataset in the data-driven approach. The slope of the linear

regression fitted to the model results using the testing dataset

is 5% lower than in the training case. This means that the

model is over estimating the RNIs and a failure is detected

by the model sooner than it actually occurs. In a real appli-

cation, this would increase costs as maintenance procedures

would be initiated before being necessary. In other words,

structural components would be over maintained (Zaluski et

al., 2010; Létourneau et al., 2005). Looking at the points

close to the failure point, the model does however succeed

at estimating the RNIs within range. This indicates that with

more problems (plates), a larger number of points could con-

verge in this area. This would potentially increase the slope

of the linear regression fit while reducing the intercept across

the ordinate. Performance assessment based on model error

indicates a RNI estimation error for training of 3.7±3.2 and

8.4±6.7 for testing and a MSE value of 24 for training and of

114 for testing.

Combining previous results leads to a more useful represen-

tation of RNI versus damage diameter, presented in Fig. 8.

RUL in remaining number of impacts (RNI) is obtained by

subtracting each estimated diameter for each impact number

shown in Fig. 6 from the failure threshold (≃ 7.1 mm) and

9
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Figure 6. Estimated damage diameter versus impact number compared to experimental measurements made using the non-
destructive phased array ultrasonic testing tool following each destructive impact.
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Figure 7. Estimated RNI versus actual RNI using results from the ANN model evaluated using the testing dataset.

plotting RNI (as units for RUL) versus damage diameter. To

summarize, in a real implementation of the predictive model:

1. Each observation containing a feature set obtained using

guided wave data is evaluated by the model.

2. The result (in RNIs) is associated to a corresponding

damage diameter using an average of the experimental

damage size measurements gathered after each impact

for each plate.

3. Using a pre-defined failure threshold, the estimated dam-

age size diameter is subtracted and RNI is plotted versus

damage size.

4. By constructing a plot of RNIs versus damage diame-

ter, RUL can be predicted by tracing a linear regression

through the points. Note that in order to plot a linear

regression, at least two points are required. As the num-

ber of points increases, the prediction accuracy also in-

creases.

4. DISCUSSION

To summarize, using a data-driven approach for estimat-

ing RNI following the initiation of impact damage in

CFRP aerospace structures, desirable model performance is

10
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Figure 8. Predicted RUL in remaining number of impacts (RNI) versus damage diameter compared to experimental measure-
ments made using the non-destructive phased array ultrasonic testing tool following each impact.

achieved based on operational data gathered in a laboratory

environment. Key considerations are presented in this pa-

per for defining a robust and realistic laboratory data acqui-

sition and damage initiation methodology. This is an impor-

tant foundation to build upon such that new features relevant

to damage prognosis can be explored before higher scale at-

tempts are made on real aircraft. Evidently guided wave mea-

surements using SHM technologies while used in-service are

subject to variations induced by temperature (Konstantinidis,

Wilcox, & Drinkwater, 2007; Croxford, Moll, Wilcox, &

Michael, 2010), hydrostatic pressure (Croxford et al., 2010),

impact damages themselves among other factors. In fact,

damage has been shown in (Mulligan, Ostiguy, Masson, Elk-

oun, & Quaegebeur, 2011; Mulligan, Masson, Létourneau,

& Quaegebeur, 2011; Mulligan, Quaegebeur, Masson, &

Létourneau, 2012; Mulligan, Quaegebeur, Masson, Brault, &

Yang, 2013) to significantly influence guided wave signals by

degradation to the bonding layer between the transducer and

the structural surface. Compensation strategies for tempera-

ture have been proposed in (Croxford et al., 2010). A sig-

nal correction factor (SCF) has been proposed in (Mulligan,

Quaegebeur, Masson, et al., 2013) to compensate for bonding

layer degradation based on transducer electrical admittance

measurements demonstrated in (Park, Park, Yun, & Farrar,

2009) as a potential bonding layer degradation assessment

metric. With a robust foundation for a data gathering method-

ology by which data are acquired with consistent damages

that mimic potential in-service damages, investigations into

these variations are now possible by building on the current

methodology.

Four types of features including time and frequency domain,

wave dispersion and correlation features are presented in this

work. Although the best results used only a combination

of time domain, frequency domain, and correlation features,

those results including wave dispersion features were not far

off with slopes and intercepts of the predicted versus actual

RNI within 5% while correctly estimating remaining impact

numbers within range for most instances. Variations between

the estimation, prediction, and measurement results are likely

related to variability between the data gathered from the test-

ing plates which is indicated in the cross-validation. These

uncertainties in part can be attributed to bonding layer degra-

dation of the transducers due to the initiation of impacts.

Damage initiation using drop-weight impacts has been shown

to induce transducer bonding layer degradation (Mulligan,

Quaegebeur, Ostiguy, et al., 2013; Mulligan, Quaegebeur,

Masson, et al., 2013). Bonding layer degradation in any

amount influences the amplitude and phase of guided wave

bursts measured in a pitch and catch configuration. Changes

to the amplitude and phase of a guided wave burst can drasti-

cally influence wave amplitude, phase, dispersion and corre-

lation. Variability is introduced through comparison of these

features with baseline measurements made prior to damage

initiation which are not influenced by impact damage.

Another cause for low model performance could be that data

clustering is not used in this work. Clustering is commonly

used in data-driven damage prognosis where instances of the

feature set can be grouped into similar categories. In this

work, based on the loading pattern, instances could be sep-

arated into 4 sections based on damage severity. Clustering

has demonstrated that some features are more sensitive in

some categories more than others (Chen et al., 1996). Per-
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haps, the wave dispersion features could perform better in

assessing certain severities of damage than others. Further-

more, model evaluation has shown that some models may be

more appropriate for estimating RUL further from the critical

damage size. Using clustering, these models could only be

applied to such observations.

With these considerations in mind, a number of questions re-

main to be answered in this domain. However, promising

results demonstrating that impact damage is predictable are

shown in this work. To overcome the aleatory uncertainty in

the training process, the addition of more and different prob-

lems, features, clustering, and data correction techniques, is

required.

5. CONCLUSION

In this work, a novel data-driven approach for estimating RNI

and damage size for CFRP aerospace grade coupons exposed

to drop-weight impact damage is presented. The approach

relies on a PZT based SHM system instrumented onto the

CFRP coupons in a pitch and catch configuration for data

acquisition. Time and frequency domain data are acquired

for training and testing several generic regression based ma-

chine learning models on several CFRP coupons over a spec-

ified loading pattern. The laboratory data is gathered using a

methodology designed as a foundation to build upon for sim-

ulating real world operating conditions. The purpose of this

first step is to evaluate the feasibility of assessing structural

damage using damage prognosis.

In future work, signal correction presented in (Mulligan,

Quaegebeur, Masson, et al., 2013) will be applied to the data

gathered data to compensate for bonding layer degradation in-

duced by the impact damage. This will assure that only struc-

tural damage is being assessed not to include damage to the

PZT SHM system. The acquisition of data for new problems

will reduce the variability observed in the cross-validation

step of this work while hopefully improve results of the pre-

dicted versus actual RUL estimating resulting adding confi-

dence for eventual testing on in-service aircraft.

The ultimate goal of building upon this work is to determine if

there exists a feature set capable of revealing damage tenden-

cies prior to detection using a non-destructive phased array

ultrasonic testing system and to determine if data mining and

machine learning combined with SHM provide equivalent or

more accurate measures of damage compared to ultrasonic

systems.
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