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ABSTRACT 

Tool wear is an important factor in determining machining 
productivity. In this paper, tool wear is characterized by 
remaining useful tool life in a turning operation and is 
predicted using spindle power and a random sample path 
method of Bayesian inference. Turning tests are performed 
at different speeds and feed rates using a carbide tool and 
MS309 steel work material. The spindle power and the tool 
flank wear are monitored during cutting; the root mean 
square of the time domain power is found to be sensitive to 
tool wear. Sample root mean square power growth curves 
are generated and the probability of each curve being the 
true growth curve is updated using Bayes’ rule. The updated 
probabilities are used to determine the remaining useful tool 
life. Results show good agreement between the predicted 
tool life and the empirically-determined true remaining life. 
The proposed method takes into account the uncertainty in 
tool life and the growth of the root mean square power at the 
end of tool life and is, therefore, robust and reliable. 

1.  INTRODUCTION 

Tool wear can impose a significant limitation to machining 
productivity, especially in hard-to-machine materials such 
as titanium and super nickel alloys. Although models exist 
for tool life estimation, such as the Taylor tool life equation 
(Taylor, 1906), extended Taylor-type tool life equation 
(Tlusty, 2000), temperature-based tool life models (Quinto, 
1988), and others (Jawahir, Gosh, & Exner, 1995 and Stein, 
Gosh, & Jawahir, 1997), tool wear is widely considered to 
be stochastic and difficult to predict. This is primarily due to 
tool-to-tool performance variations, process variations, and 
factors not included in the models. Incorrect tool life 

estimations directly affect process efficiency. In this work, 
the limitation to machining productivity imposed by tool 
wear is addressed using Bayesian inference techniques. A 
new approach that establishes an estimate of the remaining 
useful life (RUL) for a selected tool based on the time 
domain root mean square (RMS) spindle power during 
machining is described.  

A tool condition monitoring system is used to determine 
when a tool change is necessary. Implementation is 
composed of three steps: 1) identify and extract relevant 
features correlated to tool wear; 2) train the system using 
tool wear experiments; and 3) develop an intelligent 
inference technique for predicting tool wear (Dimla, 2000 
and Prickett, & Johns, 1999). Tool condition monitoring 
systems which rely on mathematical models generally 
requires a significant amount of empirical data and, 
therefore, are challenging to apply in industrial applications 
(Dimla, 2000). Another important limitation to tool 
condition monitoring is the stochastic nature of the sensor 
signal due to non-homogeneities in the workpiece, for 
example (Constantinides, & Bennett, 1987). Therefore, a 
tool condition monitoring system which relies on a 
deterministic threshold value may not be reliable due to the 
uncertainty in the value at the end of tool life. The proposed 
method takes into account both the inherent uncertainty in 
tool life and the threshold value (for the selected sensor) at 
the end of tool life. Research has shown acoustic emission, 
vibration signals, cutting forces (static and dynamic), and 
spindle power/current to be sensitive to tool wear; a review 
of the sensor signals is presented in (Dimla, 2000). In this 
work, spindle power is used for tool condition monitoring 
since it is non-intrusive (Ravindra, Srinivasa, & 
Krishnamurthy, 1993 and Rangawal, & Dornfield, 1990)  
and offers a lower cost alternative to the measurement of 
most other relevant physical quantities. 

Although Bayesian methods have gained popularity in 
recent years, their application to tool condition monitoring 
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has been limited in the literature. Elangovan, 
Ramachandran, and Sugmaran (2010) used a combination of 
Naïve Bayes and Bayes’ network for tool condition 
monitoring in a discrete case. Dey and Stori (2005) used 
Bayesian networks for root cause analysis of process 
variations. Karandikar, Schmitz, and Abbas (2010) used 
Bayesian inference for tool life predictions in pre-process 
planning stage. The primary contribution of this paper is to 
demonstrate and validate a novel random sample path 
method of Bayesian inference for remaining useful tool life 
predictions.  

The remainder of the paper is organized as follows. First, an 
overview of Bayesian inference is provided. Second, 
training experiments are described that identify the 
influence of tool wear on spindle power and the 
corresponding tool life. The training experiment data was 
used to determine the prior, or initial beliefs. Third, the 
random sample path method for Bayesian updating is 
described. Fourth, additional experiments are detailed and 
the remaining useful tool life is predicted using the 
measured root mean square power data. Finally, remaining 
useful tool life predictions are compared to the true 
remaining life.  

2. BAYESIAN INFERENCE 

As noted, tool life is considered stochastic and, in general, 
difficult to predict. This is due to many factors such as the 
complex nature of the tool wear phenomenon and tool-to-
tool performance variation. Therefore, tool life should be 
characterized by a probability distribution to incorporate its 
inherent uncertainty. A Bayesian model treats an uncertain 
quantity as a random (or uncertain) variable using a 
probability distribution. It provides a normative and rational 
method for updating beliefs when new information is 
available. Let the prior distribution about an uncertain event, 
A, be P(A); the likelihood of obtaining an experimental 
result B given that event A occurred be P(B|A), and the 
probability of receiving experimental result B (without 
knowing that A has occurred) be P(B). Bayes’ rule is used to 
determine the posterior probability about event A after 
observing the experiment results, P(A|B), as shown in Eq. 1. 

𝑃(𝐴|𝐵) =  𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)

   (1) 

The product of the prior and likelihood function is used to 
calculate the posterior distribution. For multiple 
measurements, the posterior distribution after the first 
measurement, or update, becomes the prior for the second, 
and so on. An important requirement for applying Bayes’ 
rule in this case is selecting the initial probability (prior 
distribution) for the tool life. In general, this initial 
probability: 1) can be constructed from any combination of 
theoretical considerations, previous experimental results, 
and expert opinions; and 2) should be chosen to be as 
informative as possible using the experimenter’s belief. In 

this study, the prior distribution was based on training tool 
life experiments.  

2.1. Training experiments 

The experimental steps followed to collect the tool wear 
data for selected turning operations are described in this 
section. The tool was a carbide insert and the workpiece 
material was MS309 steel. The initial outer diameter of the 
steel workpiece was 174.6 mm. The depth of cut was 4.1 
mm. A single pass was defined as a single cut of length 
139.7 mm with a 63.4 degree chamfer at the end of each cut. 
The spindle speed was varied to maintain constant cutting 
speed with reducing workpiece diameter as additional cuts 
were completed. A digital microscope (60× magnification) 
was used to image the flank and rake surfaces within the 
lathe enclosure to avoid removing the insert from the tool 
holder during the wear testing. The wear status of the tool 
was recorded after each pass and the calibrated digital 
images were used to identify the flank wear width (FWW). 
The spindle power was monitored using a load control PH-
3A Hall effect power meter installed in the electrical cabinet 
of the lathe. As noted, the power sensor is installed remotely 
from the machining location and is non-intrusive in nature. 
Three tests were completed at various cutting speed, V, and 
feed rate, fr, values: {V = 153.6 m/min, fr = 0.51 mm/rev}, 
{V = 192.01 m/min, fr = 0.61 mm/rev} and {V = 230.42 
m/min, fr = 0.51 mm/rev}. Tool life was defined as the time 
required for the flank wear width (FWW) to reach 0.5 mm. 
Figure 1 shows the variation of FWW with the number of 
passes for each test conditions.  

 
Figure 1. Variation of FWW with the number of passes. 

As expected, tool life reduces for higher speeds and feed 
rates. The spindle power was monitored over a 6 second 
cutting interval during a steady-state cutting period in each 
pass. The power features such as root mean square, prms, 
average, pa, standard deviation, pstd, and skewness, pskew, in 
the time domain were calculated to evaluate their variation 
with tool life. The variation in power root mean square, 
average, standard deviation, and skewness as a function of 
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FWW, is shown in Figures 2, 3, 4 and 5, respectively. The 
root means square (RMS) was found to be sensitive tool 
wear. Figure 6 show the variation of RMS power with pass 
number.  

As shown in Figures 2 and 6, the RMS power also depends 
on the speed and feed values. This implies that a large 
number of training experiments would be required to use the 
RMS power values for tool life predictions at different speed 
and feed conditions. To eliminate the dependence of speed 
and feed on the RMS power values, the increment from the 
nominal was considered. The nominal value was determined 
from a measurement during the first pass. Figure 7 shows 
the variation of the increment of RMS power, denoted by 
𝑝𝑟𝑚𝑠𝑖 , as a function of FWW (top) and number of passes 
(bottom) for all cutting conditions. [The additional subscript 
i indicates that the values are calculated as increments from 
the nominal value.] The nominal value is defined as the 
value after the first pass. The purpose for this method is to 
enable the same scale to be used across all feed and speed 
conditions. The method is also employed in commercial tool 
condition monitoring systems. 

 
Figure 2. Variation of RMS power with FWW. 

 

 
Figure 3. Variation of average power with FWW. 

 
Figure 4. Variation of power standard deviation with FWW. 

 
Figure 5. Variation of power skewness with FWW. 

 
Figure 6. Variation of RMS power with the number of 
passes. 

The following observations were made from Figure 7. First, 
the increase in RMS power over the nominal value was 
influenced by FWW. Second, the value of 𝑝𝑟𝑚𝑠𝑖  at the end 
of tool life (FWW = 0.5) was between 300 W and 400 W. 
Finally, 𝑝𝑟𝑚𝑠𝑖  shows a non-linear increase with the number 
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of passes which was best approximated by a second-order fit 
(R2 = 0.75).  

 
Figure 7. Increase in RMS power from the nominal value as 

a function of number of passes (top) and FWW (bottom). 

3. BAYESIAN INFERENCE USING THE RANDOM SAMPLE 
PATH METHOD 

Bayesian inference provides a rigorous mathematical 
framework for belief updating about an unknown variable 
when new information becomes available. In this study, the 
tool remaining useful life was estimated using a random 
sample path method for Bayesian updating. As shown in 
Figure 7, 𝑝𝑟𝑚𝑠𝑖  is sensitive to tool wear and was therefore 
used to perform the Bayesian updating. Although a single 
sensor metric was used in this study, the method can be 
extended to include data from multiple sensors. The 𝑝𝑟𝑚𝑠𝑖  
values increase with FWW and, therefore, the number of 
passes. As noted, the growth in 𝑝𝑟𝑚𝑠𝑖  with the number of 
passes is non-linear and was approximated using a second-
order least squares fit. The random sample path method for 
Bayesian updating proceeds by generating sample 𝑝𝑟𝑚𝑠𝑖  
growth curves, each of which represents the true 𝑝𝑟𝑚𝑠𝑖  
growth curve with some probability. These sample paths 
were used as the prior for Bayesian inference. In this work, 
it was (initially) assumed that each sample curve was 

equally likely to be the true curve. This implies that if N 
sample 𝑝𝑟𝑚𝑠𝑖  growth curves, or sample paths, are generated, 
each represents the true 𝑝𝑟𝑚𝑠𝑖  growth curve with an equal 
prior probability of 1/N. The prior probability of the sample 
paths was updated by applying Bayes’ rule to 𝑝𝑟𝑚𝑠𝑖  
measurements. Uncertain event A is defined as the event 
when path is equal to the true 𝑝𝑟𝑚𝑠𝑖  growth and the 𝑝𝑟𝑚𝑠𝑖  
measurement is the experimental result B. As noted, the 
prior probability that a given path is the true 𝑝𝑟𝑚𝑠𝑖  growth 
curve was assumed to be 1/N before any 𝑝𝑟𝑚𝑠𝑖  measurement 
was completed since each path was considered equally 
likely to be the true 𝑝𝑟𝑚𝑠𝑖  growth curve. The product is 
normalized so that the sum of the probabilities of all sample 
paths is equal to one. 

3.1. Establishing the prior 

There is uncertainty in the growth of 𝑝𝑟𝑚𝑠𝑖  as a function of 
the number of passes and the tool life. The growth was 
approximated using a second-order polynomial shown in 
Eq. 2.  

𝑝𝑟𝑚𝑠𝑖 = 𝑎 × 𝑡2 + 𝑏 × 𝑡 + 𝑐  (2) 

where a, b, and c are the second order polynomial 
coefficients and t is time in number of passes. This prior 
incorporated uncertainty (represented mathematically using 
the standard deviation) in the measurement due to both 
noise and the uncertainty in the second-order assumption. 
The combined measurement uncertainty level was set at 10 
W. The prior random 𝑝𝑟𝑚𝑠𝑖  growth curves were generated 
using three points (for the second-order polynomial): one 
point at the end of the first pass, a second at the end of life, 
and a third intermediate point after the initial wear-in 
portion of the overall wear behavior. Note that the prior 
sample paths generation is based on the training 
experiments alone; therefore, a second order polynomial 
was found to fit the training data. In cases where additional 
data or expert information is available, empirical models or 
alternative statistical methods can be used to generate prior 
sample paths.  

For the first point, the increment over the nominal value at 
the end of the first pass was assumed to follow a normal 
distribution with a mean of 0 W and a standard deviation of 
10 W, N(0,10), where N denotes a normal distribution and 
the numbers in the parenthesis identify the mean and 
standard deviation, respectively. For the second point, the 
𝑝𝑟𝑚𝑠𝑖value at the end of tool life, pt, was assumed to be 
between 300 W and 400 W with equal probability, U(300, 
400), where U denotes a uniform distribution and the 
numbers in the parenthesis give the minimum and maximum 
values, respectively. Additionally, the uncertainty in tool 
life, denoted by tlife , identified by the limiting FWW at some 
number of passes was incorporated by assuming a normal 
distribution. Note that the tool life distribution is a function 
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of the speed and feed rate values. To illustrate, the tool life 
at {153.6 m/min, 0.51 mm/rev} was assumed to be normally 
distributed with a mean of 31 passes (which was the tool life 
observed in the training experiment) with a standard 
deviation of 2 passes, N(31,2). For the third point, the 𝑝𝑟𝑚𝑠𝑖  
value at the end of the initial wear-in stage, defined by a 
FWW of 0.25 mm, was assumed to be equally likely 
between 20 W and 100 W, U(20, 100). The time at the end 
of the initial wear stage was assumed to be uniformly 
distributed between 0.2 and 0.6 times the tool life value, 
denoted by tlife×U(0.2,0.6). The initial wear time and the 
𝑝𝑟𝑚𝑠𝑖  values corresponding to the initial wear can be 
determined by the user from the data provided in Figure 7. 
Table 1 summarizes the distributions for the points used to 
fit the second order polynomial.  

Table 1. Distributions for the points used to fit the second 
order polynomial.  

Point # t 𝑝𝑟𝑚𝑠𝑖  
1 0 N(0,10) 
2 N(31,2) U(300, 400) 
3 tlife×U(0.2,0.6) U(20, 100) 

 

The sample paths were generated as follows. First, random 
samples were drawn for the initial 𝑝𝑟𝑚𝑠𝑖  value, the 𝑝𝑟𝑚𝑠𝑖  
value at the end of initial wear value, and the 𝑝𝑟𝑚𝑠𝑖  value at 
the end of tool life from the prior distributions. Next, 
random samples were drawn for the number of passes at the 
end of initial wear stage and end of tool life from the prior 
distributions. The time for the initial 𝑝𝑟𝑚𝑠𝑖  was one pass. A 
second-order least squares fit was performed for the three 
values of 𝑝𝑟𝑚𝑠𝑖  and number of passes. The procedure was 
repeated for 1×104 sample curves. An alternate method for 
generating the sample paths is to specify distributions for 
the second-order fit coefficients, for example. Figure 8 
shows 10 sample curves for {153.6 m/min, 0.51 mm/rev} 
with a distribution of tlife taken as N(31,2). Note that the 
values of 𝑝𝑟𝑚𝑠𝑖can be negative as the values are expressed 
as increment over the nominal value. The negative 
𝑝𝑟𝑚𝑠𝑖values imply that the prms curves shown in Figure 6 
need not be monotonically increasing due to random noise 
and uncertainty in the measurements.  Figure 9 shows the 
prior cumulative distribution function (cdf) for 𝑝𝑟𝑚𝑠𝑖  as a 
function of the number of passes using the second-order 
model. The prior cdf gives the probability, P(𝑝𝑟𝑚𝑠𝑖 ), that 
𝑝𝑟𝑚𝑠𝑖  will be less than the selected value as a function of the 
number of passes. This is the gray scale value in Figure 9. 
Note that since tlife is dependent on the speed and feed 
values, the prior generated is specific to the {153.6 m/min, 
0.51 mm/rev} test condition. For different cutting 
conditions, the tlife distribution will change, which, in turn, 
will change the prior cdf. The remaining distributions for 
the initial 𝑝𝑟𝑚𝑠𝑖  value, the 𝑝𝑟𝑚𝑠𝑖  value at the end of initial 

wear value, and the 𝑝𝑟𝑚𝑠𝑖  value at the end of tool life and 
the time at the end of the initial wear stage are independent 
of the speed and feed values. To illustrate, Figure 10 shows 
the cdf of 𝑝𝑟𝑚𝑠𝑖at 20 passes. From Figure 10, the probability 
that 𝑝𝑟𝑚𝑠𝑖  is less than 220 after 20 passes is 1, whereas the 
probability that 𝑝𝑟𝑚𝑠𝑖  is less than 110 after 20 passes is 0.53.  

 
Figure 8. 10 sample 𝑝𝑟𝑚𝑠𝑖  growth curves. 

 
Figure 9. Prior cdf of 𝑝𝑟𝑚𝑠𝑖  using the second-order model. 
The gray scale color bar denotes the probability that 𝑝𝑟𝑚𝑠𝑖  

will be less than the selected value. 

 
Figure 10. Prior cdf of 𝑝𝑟𝑚𝑠𝑖  at 20 passes. 
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3.2. Likelihood 

The probability of the sample 𝑝𝑟𝑚𝑠𝑖  growth curves was 
updated using 𝑝𝑟𝑚𝑠𝑖  measurements and Bayes’ rule. The 
likelihood function incorporates the uncertainty in the 𝑝𝑟𝑚𝑠𝑖  
measurement and the assumed second-order model. The 
likelihood is selected as Gaussian as a consequence of the 
central limit theorem. A non-normalized Gaussian 
distribution was used as the likelihood in this study. See Eq. 
3: 

𝑙 =  𝑒
−(𝑝−𝑝𝑚)2

𝑘 ,    (3) 

where l is the likelihood value, pm is the measured 𝑝𝑟𝑚𝑠𝑖  
value, p is the 𝑝𝑟𝑚𝑠𝑖  value for a sample curve at the 
experimental spindle speed, and k depends on the tool wear 
uncertainty. Because the likelihood function is expressed as 
a non-normalized normal distribution, k = 2σ2, where σ is 
the standard deviation of 𝑝𝑟𝑚𝑠𝑖; it represents the uncertainty 
in the 𝑝𝑟𝑚𝑠𝑖  measurement and the assumed second-order 
model. The likelihood function describes how likely it is 
that the 𝑝𝑟𝑚𝑠𝑖  measurement result would be obtained at a 
particular number of passes, given that the sample 𝑝𝑟𝑚𝑠𝑖  
growth curve is the true curve. If the 𝑝𝑟𝑚𝑠𝑖  growth curve 
value is near the measurement result, then the likelihood 
value is high. Otherwise, it is low. The likelihood function 
can be interpreted as assigning weights from 0 to 1 to the 
sample curves; 0 implying not likely at all and 1 implying 
most likely. An increased uncertainty (higher σ) widens the 
likelihood function so that comparatively higher weights are 
assigned to sample curves further from the experimental 
result. Subsequently, larger uncertainty yields a more 
conservative estimate of tool life. 

3.3. Bayesian updating 

According to Bayes’ rule, the posterior probability is the 
normalized product of the prior and likelihood. The prior 
probability for each path is 1×10-4 and the likelihood value 
is determined using Eq. 3; the value of σ was taken as 10 W. 
The updated probabilities of the sample paths, calculated as 
the product of the prior and likelihood and normalized such 
that the sum of all probabilities of all sample paths is equal 
to unity, were used to determine the posterior 𝑝𝑟𝑚𝑠𝑖cdf.  To 
illustrate, consider an increment measurement of pm = 70 W 
at 15 passes. Figure 11 shows the likelihood function for 
this result with σ = 10 W. Figure 12 shows the updated cdf 
of the 𝑝𝑟𝑚𝑠𝑖  curves given pm = 70 W at 15 passes. Note that 
the updated probabilities of the sample growth curves were 
used to calculate the posterior cdf. There is uncertainty in 
the value of 𝑝𝑟𝑚𝑠𝑖  at the end of tool life. Recall that it was 
assumed that the 𝑝𝑟𝑚𝑠𝑖  value at the end of tool life was 
equally likely to be between 300 W and 400 W. The cdf 
value at a selected 𝑝𝑟𝑚𝑠𝑖  value gives the probability of FWW 
being less than the critical FWW (0.5 mm), which is defined 

as the end of tool life. The probability that the tool FWW is 
less than the critical FWW is denoted by pf. Each 𝑝𝑟𝑚𝑠𝑖  
value has a probability distribution of FWW being less than 
the critical FWW. To illustrate, Figure 13 shows the 
probability of FWW being less that critical FWW at pt = 300 
W and pt = 400 W. Recall that pt denotes the 𝑝𝑟𝑚𝑠𝑖  value at 
the end of tool life. The 95% RUL implies that there is a 
0.05 probability of FWW exceeding the critical FWW value. 
Each pt value will have a different 95% value which will 
increase with the value selected.  

 
Figure 11. Likelihood function for pm = 70 W and σ = 10 W. 

 
Figure 12. Posterior cdf of 𝑝𝑟𝑚𝑠𝑖  given pm = 70 W at 15 
passes.  

From Figure 13, the 95% tool life value at pt = 300 W is 
25.5 passes; it is 28.9 passes at pt = 400 W. Note that the 
measurement is completed at 15 passes; therefore, the 95% 
RUL values were 10.5 passes and 13.9 passes at  pt = 300 W 
and pt = 400 W, respectively. Since it was assumed that it is 
equally likely that the prms value is between 300 W and 400 
W when the tool fails, the expected RUL was calculated as 
the average value from all the threshold values. For 
example, if only 300 W and 400 W values were considered, 
the 95% RUL was 12.2 passes. The Bayesian updating 
procedure for RUL predictions is summarized as follows. 
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First, training experiments were performed to observe and 
identify trends in the power signals as a function of 
machining time and tool wear. Second, random sample 
power RMS growth curves were generated based on the 
training experiments. Although a second order polynomial 
model was used in this study, alternative methods such as 
using model parameter distributions can be used. Third, a 
prior probability was assigned for each sample growth curve 
to be the true curve. In this study, each sample path was 
assumed to be equally likely to be the true path a priori. 
Fourth, the prior remaining life was calculated based on the 
prior probabilities of sample curves. Fifth, power RMS was 
measured during machining and a likelihood value was 
assigned for all sample paths based on the measurement. 
Sixth, the posterior probabilities of the sample growth 
curves were calculated using Bayes’ rule. Finally, the 
posterior remaining life was calculated using posterior 
probabilities of the sample paths. The posterior probabilities 
become prior for the next update and so on. The updating 
procedure is repeated for multiple measurements using the 
procedure described.  

 
Figure 13. Probability of FWW being less that critical FWW 
at 𝑝𝑟𝑚𝑠𝑖  = 300 W and 𝑝𝑟𝑚𝑠𝑖  = 400 W. 

4. RUL PREDICTIONS  

Bayesian inference using a random sample path approach 
was used to predict remaining useful tool life for new test 
conditions: {V =192.01 /min, fr = 0.51 mm/rev}. Two tool 
life tests were performed. Note that the speed, feed 
combination is different than the training experiments. The 
procedure for the tests was the same as described previously 
and the other operating parameters were the same as for the 
training experiment. The FWW and prms were measured after 
every pass. For subsequent passes, prms was calculated as an 
increment over the nominal value measured at the first pass. 
The first step in applying Bayesian inference is to determine 
the prior. Recall that the distribution for the initial 𝑝𝑟𝑚𝑠𝑖  
value was N(0,10), the 𝑝𝑟𝑚𝑠𝑖  value at the end of initial wear 
value was U(20,100), the 𝑝𝑟𝑚𝑠𝑖  value at the end of tool life 

was U(300,400), and the distribution for the end of initial 
wear stage was tlife×U(0.2,0.6), as described in Section 3.1. 
As noted, these distributions are independent of the speed 
and feed conditions as seen from the training data. The 
distribution of tool life is dependent on the speed and feed 
values and must be modified. As shown in training 
experiments, the tool life for {V = 153.6 /min, fr = 0.51 
mm/rev} was found to be 31 passes and {V = 230.42 /min, 
fr = 0.51 mm/rev} was found to be 11 passes (see Figure 1). 
Although tool life reduces exponentially with cutting speed, 
the tool life at {V =192.01 /min, fr = 0.51 mm/rev} was 
assumed to be normally distributed with a mean of 19 
passes and a standard deviation of 2 passes, N(21,2), using 
linear interpolation. The variance of the distribution takes 
into account the uncertainty in the linear approximation. 
Figure 14 shows the prior cdf of 𝑝𝑟𝑚𝑠𝑖  at {V =192.01 /min, 
fr = 0.51 mm/rev}. Figures 15 and 16 display FWW and 
𝑝𝑟𝑚𝑠𝑖  as a function of the number of passes for the first test, 
respectively. The tool life was found to be 16 passes.  

 

 
Figure 14. Prior cdf of 𝑝𝑟𝑚𝑠𝑖  at {V =192.01 /min, fr = 0.51 

mm/rev}. 

 
Figure 15. Variation in FWW with the number of passes. 
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Figure 16.  Variation in 𝑝𝑟𝑚𝑠𝑖  with the number of passes. 

The values of 𝑝𝑟𝑚𝑠𝑖  shown in Figure 16 were used to update 
the prior probabilities of sample paths. The value of σ was 
assumed to be 10 W. The updated probabilities of sample 
paths were used to calculate the posterior cdf of 𝑝𝑟𝑚𝑠𝑖 . From 
the updated probabilities of the sample 𝑝𝑟𝑚𝑠𝑖   growth 
curves, the RUL of the tool before the FWW reaches the 
critical value was calculated. As noted, a 95% RUL estimate 
implies that there is a 0.05 probability of the tool wear 
exceeding the critical FWW limit of 0.5 mm. Each 𝑝𝑟𝑚𝑠𝑖  
measurement updates the RUL estimates. For the 
predictions, the pt values were discretized into 101 levels 
between 300 W and 400 W and the RUL estimate was taken 
as the average value.  

Figure 17 shows the posterior cdf of 𝑝𝑟𝑚𝑠𝑖 . Figure 18 shows 
the 95% RUL of the tool after each measurement and the 
true remaining life calculated from the observed tool life 
value (16 passes). The 95% RUL predicts a tool life of -1.6 
passes at the end of tool life. A negative RUL estimate 
implies that the tool is past the end of tool life by 1.6 passes. 
The initial 95% RUL prediction is not conservative due to 
the uncertainty in the 𝑝𝑟𝑚𝑠𝑖  second-order growth model in 
the prior distribution. The estimate approaches the true life 
and over predicts in the range of 7 to 10 passes. This is 
because 𝑝𝑟𝑚𝑠𝑖  values decrease from pass number 7 to pass 
number 10. These assign a higher likelihood to sample paths 
predicting a tool life greater than 20 passes. However, 
subsequent measurements greater than 100 W reduce the 
RUL predictions to a conservative value. The final estimate 
is conservative as the 𝑝𝑟𝑚𝑠𝑖  at the end of tool life is 437.2 
W. Recall that it was assumed that the 𝑝𝑟𝑚𝑠𝑖  value at the end 
of tool life was equally likely to be between 300 W to 400 
W. Additional testing was completed using the same 
procedure as previously described. Figures 19 and 20 show 
FWW and 𝑝𝑟𝑚𝑠𝑖  as a function of the number of passes for 
the second test, respectively. The tool life was found to be 
17 passes. Again, the prms value was measured after each 
pass and the increment over the nominal value was 

considered after the first pass. The measured 𝑝𝑟𝑚𝑠𝑖  values 
were used to update the prior probabilities of the sample 
𝑝𝑟𝑚𝑠𝑖  growth curves and estimate the 95% RUL. Figure 21 
shows the posterior cdf 𝑝𝑟𝑚𝑠𝑖 . Figure 22 shows RUL 
predictions for the second test. The 95% RUL predict a tool 
life of -3.7 passes at the end of tool life. The predictions are 
conservative due to 𝑝𝑟𝑚𝑠𝑖  values being greater than 300 W 
at the end of 13th pass (FWW = 0.355 mm). 

 
Figure 17. Posterior cdf of 𝑝𝑟𝑚𝑠𝑖 . 

 
Figure 18. RUL predictions comparison with the true 
remaining life. 

 
Figure 19. Variation in FWW with the number of passes. 
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Figure 20.  Variation in 𝑝𝑟𝑚𝑠𝑖  with the number of passes. 

 
Figure 21. Posterior cdf of 𝑝𝑟𝑚𝑠𝑖 . 

 
Figure 22. RUL predictions. 

The advantage of the method is that the prior estimates on 
the threshold values and tool life can be continuously 
updated based on observed experimental evidence. For 
example, for the second test the 𝑝𝑟𝑚𝑠𝑖value can be assumed 
to be equally likely between 400 W and 500 W at the end of 
tool life. To illustrate, the RUL predictions were repeated 

assuming that 𝑝𝑟𝑚𝑠𝑖  value to be equally likely between 400 
W and 500 W based on the results of the first test. The RUL 
predictions estimate a tool life of -2.2 passes at the end of 
tool life as compared to -3.7 passes (see Figure 22). Figure 
23 compares the two results. In general, the predictions are 
better if the tool life occurs at the 𝑝𝑟𝑚𝑠𝑖  value within the 
interval considered, which can be updated for subsequent 
tests. The sample prior curves can be generated using the 
updated values for every test. This would improve the 
predictions for subsequent tests. Future work will focus on 
improving the prior by using experimental result data from 
tests. The proposed method takes into account the 
uncertainty in the threshold value and the tool life as 
opposed to a deterministic threshold value of 𝑝𝑟𝑚𝑠𝑖  which 
will result in an erroneous alarm for a worn tool obtained 
from a single outlier measurement (Karandikar, McLeay, 
Turner, & Schmitz, 2013).  

 
Figure 23. RUL predictions for different distributions of 

𝑝𝑟𝑚𝑠𝑖at the end of tool life. 

5. CONCLUSIONS  

A random sample path method of Bayesian updating for 
predicting remaining useful tool life was presented. The root 
mean square of the time domain spindle power was found to 
be sensitive to tool wear. Random sample growth curves for 
the root mean square power were generated and the 
probability of each representing the true curve was updated 
using measurements. The updated probabilities of the 
sample curves were used to predict the remaining useful tool 
life. The method offers many advantages. First, it 
incorporates uncertainties in tool life and the power sensor 
value at the end of tool life. Therefore, the method is robust 
to outlier points and more reliable than methods that rely on 
a deterministic threshold sensor value. The method 
incorporates prior information and does not require a large 
training data set. The prior information can also be 
improved after each test. Second, the method is 
computationally inexpensive and can be incorporated for 
real-time predictions. To illustrate, using Matlab™ on an 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

10 

Intel i5 processor, the computation described here takes 1 
second. An alternative method for Bayesian inference is to 
update the distribution of the model coefficients (in this 
case, coefficients of the second order polynomial used to 
generate the sample paths). However, the method requires 
sampling from posterior joint distributions in case of non-
conjugate distributions, which may be computationally 
expensive. Without the loss of generality, the random 
sample path method described is applicable for any non-
conjugate likelihood such as triangular distribution. Future 
work will try to compare and quantify various Bayesian 
updating methods for remaining useful life predictions.  
Third, the remaining useful life percentile (e.g., 95%) can 
consider user preferences and applications. For example, in 
an application using expensive parts/tooling, the user can 
select a conservative RUL percentile (say 99%). On the 
other hand, for low cost applications, such as roughing, the 
user can select a low percentile (say 90%). The optimum 
percentile can be calculated using an expected cost 
formulation.  The risk preferences of the user (risk neutral or 
risk averse) can also be incorporated. Future work will 
explore the optimum percentile calculations using decision 
theory principles.  
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