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ABSTRACT 

Bearing defect diagnosis is traditionally done using the 

demodulation/enveloping technology. Diagnosis is mostly 

based on the spectrum of the squared envelope signal. In 

literature, the use of the higher order spectra (HOS) has 

shown to have a tremendous potential for vibration based 

diagnostics. In this paper we implemented and 

experimentally validated the higher order spectra based on 

the envelope analysis for the diagnosis of ball bearing 

defects. The implemented technology employs the spectral 

kurtosis to obtain a frequency band for the demodulation 

and the third order normalized spectra, i.e. the bicoherence 

for diagnosis of bearing fault. The high effectiveness of the 

diagnostics of the implemented technology has been 

experimentally revealed and compared with that of well-

known demodulation/enveloping technology. 

1. INTRODUCTION 

Diagnostics and prognostics of the rolling element bearing 

has been widely researched, e.g. works of McFadden and 

Smith (1984), Tandon and Choudhury (1999), Randall and 

Antoni (2011), Wang, Youn, and Hu (2012), Camci,  

Medjaher, Zerhouni, and Nectoux (2012), Hu, Youn, and 

Wang (2012), and Medjaher, Camci, and Zerhouni (2012). 

The demodulation/enveloping based methods have a long 

history of successful application for the bearing damage 

diagnosis (McFadden & Smith, 1984; Tandon & 

Choudhury, 1999; Randall & Antoni, 2011). Every time 

defect passes through a rolling element an impact occurs 

and an impulse response is generated. This short duration 

impact causes resonance of associated rolling element or 

even of the machine, which manifests through modulation 

by bearing characteristic defect frequency.The main purpose 

of demodulation/enveloping technique is to find the 

modulating (carrier) frequency, which is believed to be 

related to excited resonance frequency. Then the signal is 

band-pass filtered around the modulating (carrier) frequency 

and shifted to the DC. The main challenge in application of 

this method lies in efficiently detecting or filtering out 

frequency band/range for demodulation. The one of the 

approach was to find resonance from its broadband present 

in high frequency region of the spectrum (McFadden & 

Smith, 1984), however, this need historical data of healthy 

bearing for comparison purpose (Sawalhi & Randall, 2004). 

Furthermore, presence of high amplitude interference, e.g. 

shaft rotation frequency and its harmonics, gear mesh 

frequencies, etc. may make detection of low amplitude 

resonance difficult. Enveloping based on wavelets has 

shown to have excellent adaptability for successful 

application for bearing fault diagnosis (Nikolaou & 

Antoniadis, 2002). The spectral kurtosis (SK) has become 

widely applied tool for selection of demodulation band since 

last decade (Randall & Antoni, 2011; Sawalhi & Randall, 

2004; Antoni, 2006; Wang & Liang, 2011). Compared to 

wavelets, the SK is computationally fast and could easily be 

incorporated into portable instrument for on-field 

applications. The final diagnosis is based on the spectrum of 

the squared envelope. Appearance of particular bearing 

characteristic defect frequency and its harmonics in the 

spectrum would tell the type of bearing defect, i.e. cage 

defect, race defect, or rolling element (ball or roller) defect. 

 

In this study we performed higher order spectral analysis of 

the squared envelope obtained using the SK based optimal 

de-noising (Wiener) filter. The use of higher order spectra 

(HOS) is widely investigated for damage diagnosis and 

classification (Howard, 1997; Jiang, Liu, Li, & Tang, 2011; 

Gelman, White, & Hammond, 2005). The use of 

bicoherence for bearing condition monitoring has been 

demonstrated by Li, Ma, and Hwang (1996) and Yang, 

Stronach, and MacConnell (2002) using the raw vibration 

signal. They inputted bicoherence features in linear 
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discriminant classifier (Li et al, 1996) and artificial neural 

networks (Yang et al, 2002) respectively. The present work 

differs from the past works in the following three ways: 

(1) The amplitude envelope signal is used for HOS 

calculation 

(2) The HOS calculation performed around bearing 

characteristic frequency only. Thus, the implemented 

method is computationally fast 

(3) A comparison is made with the classical 

demodulation/enveloping method based on the envelope 

spectrum. A diagnostic feature from squared envelope 

spectra is obtained and compared with the normalized 

higher order spectral feature using a statistical 

effectiveness measure, the Fisher criterion (Webb, 

2003). 

2. EXPERIMENTAL SETUP 

The bearing test rig has a coupled VSD (variable speed 

drive) motor driving a shaft supported on three identical 

bearings (FK UCP203). Table 1 lists the test bearing 

geometric dimensions and the defect frequencies. Figure 1 

shows the test rig under consideration. The VSD drive 

provides 20-60 Hz supply frequency. The test rig has 

provision for inducing load at the non-drive end (NDE) 

through misalignment.  

Number of balls 8 

Bore diameter 17 mm 

Outside diameter 40 mm 

Ball diameter 6.75 mm 

Ball pass frequency,  

inner race, BPFI 
4.95*fr 

Ball pass frequency,  

outer race, BPFO 
3.05*fr 

Ball spin frequency, BSF 1.99*fr 

Fundamental train frequency,  

FTF 
0.382*fr 

Table 1. Test bearing specifications and frequencies 

Tests were conducted at full speed and full load condition. 

The full speed and full load condition corresponds to 60 Hz 

supply frequency and 196 N resultant radial load. The 

misalignment radial load was induced though using pre-

machined shims at the non-drive end (NDE). The 

measurement of the resultant radial load was done in a 

separate test. The experiment starts with all rotational 

components at rest. The motor was then made to rotate at set 

rotational speed of through the VSD. Experiments were 

conducted first with the healthy bearing and then with the 

defective bearings. The test bearing was placed on the non-

drive end (NDE). The drive end (DE) and middle bearings 

were never changed during experiments. Bearings with 

inner race defect, outer race defect and cage defect were 

tested in the sequence at the same operating speed and load. 

Although the VSD set rotational frequency was 60 Hz, the 

actual speed of rotation was found to be 59 Hz. Figure 2 

show pictures of the defective bearings. The defect sizes are 

show in the Table 2. 

 

 

Figure 1. The bearing test-rig 

 
(a) Inner race defect 

 
(b) Outer race defect 

 
(c) Cage defect 

Figure 2. Bearing defects 
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Vibration signal was captured from a unidirectional 

accelerometer (amplitude response: 0.5 – 5 kHz (± 5%); 

sensitivity: 5.21 pC/ms
2
; resonance frequency: 25 kHz) 

placed along vertical direction on the test bearing housing. 

Active antialiasing filter (cut-off frequency = 13.5 kHz) was 

used before capturing the digitized data. A speed reference 

signal (1 pulse per shaft revolution) was also captured 

synchronously. The data acquisition was done at 40 kHz in 

order to provide necessary bandwidth for channel recording. 

 

Inner race 

defect 

0.8mm circumferential length and 

0.2mm deep 

Outer race 

defect 

1.6mm circumferential length and 

0.2mm deep 

Cage defect 3 sequential rivets removed  

Table 2. Bearing defect size 

3. HOS ANALYSIS BASED ON ENVELOPE  

3.1. The Diagnostic Feature from HOS of Defect 

Frequency 

The HOS of order 3 (i.e. n = 3), known as bispectrum, is 

well-known to ascertain the nonlinear phase coupling 

between fundamental defect frequency and their harmonics 

(Gelman, Lapena, & Thompson, 2009). In practice, the 

normalized bispectrum, i.e. bicoherence is used (Collis, 

White, & Hammond, 1998). The generalized bicoherence 

can be written as,  

 

          
               

        
 
   

                
  

                 
  

   

   (1) 

 

Where Xm(fi) and Xm(fj)  are the Discrete Fourier Transforms 

(DFTs) of the m
th

 segment of the signal xm(t) at frequency fi 

and fj respectively, M is the total number of segments, * 

indicates complex conjugate. Presence of defect is revealed 

through strong coupling between fundamental defect 

frequency and its harmonics, resulting in the bicoherence 

value, i.e.           , almost equal to 1. The no-defect on the 

other hand has almost no coupling and revealed through a 

low value (almost equal to 0) of bicoherence. In this study, 

frequency up to 3
rd

 harmonic of the bearing defect 

frequency is considered. i.e. fi, fj = f, 2f, 3f. where, f is the 

bearing defect frequency. As evident from Eq. (1) presence 

of at least second harmonic (i.e. 2f) of the fundamental 

defect frequency is necessary for bicoherence technology to 

work. In most practical cases, i.e. nonlinear systems, this is 

not the problem. However, the cases where higher 

harmonics are not evident, the bicoherence technology will 

not work. 

3.2. Feature from Squared Envelope Spectrum 

The diagnostic feature in the form of bicoherence of the 

bearing defect frequency is calculated using Eq. (1). For 

comparison purpose, a defect frequency feature is obtained 

from the squared envelope spectrum. The defect frequency 

feature is the ratio of summation of spectral amplitude at 

bearing defect frequency and its harmonics to the 

surrounding background vibration minus one.  

        
       
  
   

      
  
    

     (2) 

Where, Xm(fi) is the spectral amplitude at frequency fi. Xn(fi) 

is the mean background vibration around fi. fi = f, 2f, 3f. 

where, f is the characteristic frequency of bearing defect and 

its harmonics. Nh is the number of harmonics. As mentioned 

in Section 3.1, Nh = 3 is considered. The estimation of Xn is 

done within (fi - 0.25*fshaft] and (fi + 0.25*fshaft]. Figure 3 is a 

sample spectrum of the squared envelope graphically 

showing  Xm and Xn at defect frequency, fi = f, for inner race 

defect at full speed shaft rotation, fshaft = 57.95Hz. The 

calculation details for the same are provided in Section 3.4.    

  

Figure 3. Squared Envelope Spectrum 

3.3. Procedure for Bicoherence Feature Calculation 

Following steps should be undertaken to calculate 

bicoherence feature of Eq. (1).  Figure 4 shows the flow 

chart of the same. 

 

Step 1: Perform angular resampling of the raw vibration 

signal to compensate for slight fluctuation of the shaft 

rotation speed.  

Step 2: Divide the angular resampled signal x(t) into 

overlapping blocks xν(t) by the external window he(t); ν = 1, 

..., V, V defines the total number of blocks xν(t), T is the time 

center of the external window. The external window he(t) 

could be of any type, i.e. rectangular, Hamming, 

Chebyshev, etc. The overlap of the external window should 
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be adapted to adjust the variations in the signal. For 

example, signal with fast variation in speed need higher 

level of overlapping along with the shorter window size. 

The signal under consideration was collected at steady 

speed and load condition, therefore, overlap of the external 

window is not a critical parameter. Since the acquired single 

is of limited time length, we used high level of external 

overlapping in order to increase feature value statistics. In 

this study we used rectangular external window of length 

100 sec and 30 sec, and overlap of 99% and 90% 

respectively for bicoherence and defect frequency feature 

calculations.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Procedure for Feature Calculation 

Step 3: Identify resonant frequency bands using the spectral 

kurtosis (SK) based optimal denoising (Wiener) filter from 

xν(t). The procedure for obtaining SK based de-noising filter 

is widely report (Randall & Antoni, 2011; Sawalhi & 

Randall, 2004; Antoni, 2006), therefor, related discussion 

omitted here. For the test-rig and experiment conditions 

under consideration, it was observed that the impulse 

response duration due to defect impact is shorter than the 

time between impacts, i.e. damping of the test-rig is high. 

To find the most suitable SK parameters, we have used a 

procedure similar to the kurtogram. In this we observe the 

kurtosis value over several realizations of the signal, i.e. 

xν(t) at different window sizes and thresholds. A window 

length of 1/10 times the duration between impacts, which 

corresponds to a frequency resolution of 10 times the 

bearing characteristic defect frequency, found the most 

suitable for the spectral kurtosis calculation. The 

significance threshold of 1% was used to obtain the Wiener 

filter from the spectral kurtosis. Comparison of sample 

spectral kurtosis plot in Figure 5 clearly shows the 

frequency bands (around 5, 10 and 15 kHz) excited by the 

inner race defect. 

For bearings with high speed and low damping, the impact 

duration is longer than the time between impacts, thus 

causing the so called “smearing effect”, which can affect the 

quality of the proposed feature. As mentioned by reviewers 

and showed by Randall and Antoni (2011), the Minimum 

Entropy Deconvolution (MED) can reduce the smearing 

effect. The MED should be included just before the SK 

calculation in the procedure shown in Figure 4. 

 

(a) No damage 

 

(b) Inner race defect 

Figure 5. Spectral kurtosis over few realizations 

Step 1: Angular Resampling 

Step 2: Signal segmentation  

using external window, he(t) 

Step 3: SK calculation – Wiener filter 

– Frequency band identification 

Step 4: Noise addition 

Step 5: Demodulation/Enveloping 

Step 6: Envelope segmentation  

using internal window, hk(t) 

Step 7: Bicoherence  

feature calculation: 
 

 -- DFT of xm(t) 

 --             of xm(t) 

 --           for all 

    frequency pairs 
 -- Single cumulative 

    feature 

Step 7: Defect frequency 

feature calculation: 
 

 -- PSD of envelope of  

     signal xνn(t) 
 --  Xm and Xn for all 

    frequency pairs 

 -- Single cumulative 

    feature 
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Step 4: Add white Gaussian noise to the signal xν(t) to 

obtain xνn(t). Although, the noise addition can never 

substitute the complexity and the nonlinearity observed in 

on-field applications, to some extent it relates to them. First 

the signal power was measured and then white Gaussian 

noise of prescribed signal to noise ratio (SNR) was added. 

The SNRs of 10dB, 5dB, and -5dB are considered. It is 

important to note that this step is optional not the 

requirement of the technology. 

Step 5: Obtain envelope (i.e. squared) signal after 

demodulating signal xνn(t) in frequency band identified in 

step #3 above.  

Step 6: Divide the squared envelope signal into overlapping 

segments xm(t) by the internal window hk(t), m = 1, ... , M, M 

defines the total number of segments xm(t) in the time block. 

The internal window hk(t) and internal overlap could be 

different from the external window he(t) and external 

overlap. It is important to note that the requirement on the 

frequency resolution governs the internal window length. 

The Hamming internal window of 5 sec (frequency 

resolution = 0.2Hz) with overlap of 66 % is used in this 

study. Figure 6 graphically illustrates the internal windows 

inside a rectangular external window. 

 

Figure 6. Illustration of internal and external windows 

 

Step 7: Calculate bicoherence feature (Eq. 1) using the 

following steps. 

 Compute DFT of segment xm(t) and obtain Xm(f). 

 Compute numerator and denominator around fi±fi and 

fj±fj. It may be noted that f accounts for slight 

smearing of defect frequency due to random slippage of 

rolling element between races. The f is considered to 

be 0.6% of the frequency concerned. The             is 

the ratio of maximum of numerator and maximum of 

denominator obtained within fi±fi and fj±fj.  

 Repeat above steps for m = 1, …, M and obtain the 

statistical estimate of the bicoherence by averaging over 

M segments.  

 Repeat above steps for all frequency pairs of interest, i.e. 

fi, fj = f, 2f, 3f. The diagnostic feature is the cumulative 

sum of            for all frequency pairs.  

3.4. Procedure for Defect Frequency Feature Calculation 

The procedure to calculate defect frequency feature of Eq. 

(2) is quite similar to the bicoherence feature calculation. In 

the following we will only show steps different from 

bicoherence feature calculation either in calculation or 

parameters. 

Step 2: The rectangular external window of 30 sec with 

overlap of 90% is used.  

Step 6: The Hamming internal window of 5 sec (frequency 

resolution = 0.2Hz) with overlap of 50 % is used. 

Step 7: Calculate the defect frequency feature (Eq. 2) using 

the following steps. 

 Obtain the averaged power spectral density (PSD) of the 

squared envelope signal for time block xνn(t) using 

internal windowing and overlapping parameters 

mentioned in step #6.  

 Obtain Xm through maximum amplitude search around 

defect frequency fi ± fi. The fi is 0.6% of the 

frequency concerned, i.e. fi.  

 Compute background vibration level Xn around defect 

frequency. The estimation of Xn is done within (fi - 

0.25*fshaft] and (fi + 0.25*fshaft].  The fi is the frequency at 

which maximum Xm was found. 

 Repeat above two steps for Nh harmonics and compute 

the defect frequency feature using Eq. (2).  Nh = 3 is 

used in this study. 

It is possible to identify more than one resonant frequency 

band in step #3 for defective bearing. The steps #5 to #7 are 

repeated for each frequency band and the bicoherence and 

the defect frequency will be a cumulative sum of the feature 

value obtained for each band. In cases where the spectral 

kurtosis does not find a frequency band, e.g. healthy 

bearing, a feature value of zero is assigned. 

 

4. APPLICATION OF HOS TECHNOLOGY FOR BEARING 

DEFECT DIAGNOSIS  

Figures 7 and 8 compare enveloping technology and 3
rd

 

order HOS (i.e. bicoherence) technology through defect 

frequency and bicoherence features for three different signal 

to noise ratios, i.e. SNR = 10dB, 5dB, and -5dB. It can be 

seen that with increase in noise level the value of defect 

frequency feature and its variance decreases. The decrease 

in variance results into a clearer separation between healthy 

and defective condition. The fluctuation of the defect 

frequency feature for damage case is due to presence of 

unknown nonlinearity and/or nonstationarity.  
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(a) 

 

(b) 

 

(c) 

Figure 7. Defect frequency for inner race defect; (a) SNR = 

10dB, (b) SNR = 5dB, (c) SNR = -5dB 

 

(a) 

 

(b) 

 

(c) 

Figure 8. Bicoherence feature for inner race defect; (a) SNR 

= 10dB, (b) SNR = 5dB, (c) SNR = -5dB 
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For bicoherence, the feature value more or less remains the 

same at different noise levels for the defective bearing. This 

endorses the fact of insensitiveness of bicoherence to the 

noise. The higher level of noise can suppress the low level 

of coupling between defect frequency and their harmonics 

that could possibly exists for healthy bearing. This is 

manifested by decrease in bicoherence feature with increase 

in noise level for the healthy bearing. 

As can be seen from Figures 7 and 8, both the methods (i.e. 

defect frequency feature and bicoherence feature) show a 

clear separation between no-defect and defect case. A 

simple threshold would tell the faulty states (i.e. no-defect 

and defect) apart for both the methods. So, it is necessary to 

quantify the separation between two faulty states. This has 

been done by using a statistical measure in the form of 

Fisher criterion. The Fisher criterion (Eq. 3) is defined 

(Webb, 2003) as the square of the mean difference divided 

by the variance sum.  

 

      
          

  
      

     (3) 

 

where µ and  are respectively the mean and standard 

deviation of the features, suffixes D and ND refer to the 

damaged and undamaged conditions. 

The defect frequency feature (Eq. 2) has high value of mean 

difference (Figure 7), whereas, the bicoherence feature 

(Figure 8) has low value of variance. Since the Fisher 

criterion captures both these aspects, it is best suited for the 

study presented here. 

The Fisher criterion (shown above each figure) increases 

with increase in noise level for both defect frequency and 

bicoherence feature. The Fisher criterion for bicoherence is 

always high, i.e. 12 to 17 times, compared to that of defect 

frequency feature. 

Figures 9 and 10 show the defect frequency and bicoherence 

feature for outer race and cage defect for the same speed and 

load condition of the test. Instead of comparing features at 

different noise levels, the noise level at which the best 

separation between healthy and defective condition 

achieved for both bicoherence and enveloping technologies 

are shown. The signal to noise ratios (SNRs) of 5dB and -

5dB were found best for defect frequency feature and 

bicoherence feature respectively for Figures 9 and 10.  

Similar to the inner race defect, the separation between 

faulty cases is present for other SNR values too but with 

slightly lower Fisher criterion value. For outer race and cage 

defects too, the Fisher criterion for bicoherence technology 

is always higher compared to the enveloping technology. 

Table 3 presents a ready comparison of Fisher criterion for 

both the methods. 

 

 

Defect 

Fisher criterion  
Gain 

FCbc/FCdf 
Bicoherence 

feature, FCbc 

Defect frequency 

feature, FCdf 

Inner race 1439 85 16.9 

Outer race 282 164 1.7 

Cage 817 23 35.5 

Table 3. Fisher criterion values 

 
(a) 

 
(b) 

 

Figure 9. Outer race defect; (a) defect frequency feature, 

SNR=5dB; (b) bicoherence feature, SNR=-5dB 

5. CONCLUSIONS 

The bicoherence technology based on the envelope analysis 

is implemented and experimentally validated in this paper. 

The proposed technology employs the spectral kurtosis for 

identification of frequency bands for demodulation/envelope 

extraction. 
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The technology is successfully validated on experimental 

laboratory vibration data related to undamaged bearings and 

low levels  of the following bearing faults: 

 outer race local damage 

 inner race local damage 

 ball and cage local damages 

 
(a) 

 
(b) 

 

Figure 10. Cage defect; (a) defect frequency feature, 

SNR=5dB; (b) bicoherence feature, SNR=-5dB 

 

A comparison is made between the implemented technology 

and the classical demodulation technology in terms of the 

Fisher criterion of the diagnostic feature. By using 

laboratory experimental data for three kinds of bearing 

defects, it has been shown that the implemented technology 

offers a gain of 1.7, 16.9 and 35.5 times in terms of the 

Fisher criterion for outer race, inner race and cage/ball 

defects respectively.  

Since the implemented technology involves HOS 

calculation just around the bearing defect frequencies, the 

technology is computationally fast and could easily be 

incorporated into portable condition monitoring instruments 

for on-field applications. 
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