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ABSTRACT 

Traditionally, capacity and resistance have been used as the 

features to determine the state of health of lithium-ion 

batteries.  In the present study, two additional features, the 

length of time of the constant current and the constant 

voltage phases of charging were used as additional 

indicators of state of health.  To compare the 

appropriateness of each state of health feature, batteries 

were subjected to different discharge profiles and tested to 

failure.  For each cycle, capacity, resistance, length of the 

constant current charge time and length of the constant 

voltage charge time were measured and compared based on 

their usefulness to estimate the state of health.  Lastly, all 

the features were combined to give a fusion result for state 

of health estimation.    

1. INTRODUCTION  

Lithium-ion batteries have become an integral part of daily 

life.  They are used in virtually all portable electronic 

devices and are becoming the battery of choice for hybrid 

and plug in electric vehicles.  With the growing hybrid 

electric vehicle market, the use of batteries is expected to 

increase rapidly over the next few decades.  Therefore, the 

reliability and maintenance associated with large scale 

battery usage must be managed.  Battery management 

systems can assist in maintenance procedures by evaluating 

a battery’s state of health (SOH).  The SOH of a battery is a 

measure that describes how much the battery has degraded 

in health over the course of its life, and is often evaluated by 

the battery’s internal resistance or its ability to deliver a 

given amount of charge.  After a battery is assembled, it 

undergoes internal side reactions, which consume lithium 

and lead to gaseous and non-conductive byproducts that 

hinder the amount of electrical charge that can be stored by 

the battery.  These reactions are accelerated by different 

usage and environmental conditions.  Eventually, the charge 

storage capability (capacity) of the battery degrades below 

its required level of performance, to where it can no longer 

perform its intended functions.  Battery management 

systems must be able to predict when the batteries are 

approaching the threshold of remaining useful performance 

(RUP), so that users are provided adequate warning for  

battery replacement. 

Traditionally, SOH and RUP have been evaluated with data 

measured during discharge.  He (2011) used the discharge 

current integrated over time to calculate the maximum 

capacity during each charge/discharge cycle.  The capacity 

decay with cycle number was modeled by a sum of 

exponentials equation, and then RUP measurements were 

predicted by extrapolating the model with a Bayesian Monte 

Carlo method.  Andre (2013) incorporated SOH into a 

framework using a duel Kalman filter and support vector 

machine approach where SOH was updated with capacity 

and internal resistance measurements calculated by the 

change in voltage during pulsed discharge.  Eddahech 

(2012) utilized equivalent series resistance from impedance 

spectroscopy measurements to determine SOH and 

predicted degradation behavior with recurrent neural 

networks.  Other research Du (2010) & Schmidt (2010) has 

described similar methods that utilize capacity and internal 

resistance as features to determine SOH.  However, 

influences such as temperature, vibration, and un-foreseen 

usage profiles give rise to uncertainties that are not 

addressed in these methods.  

Rather than continue to increase the complexity and fidelity 

of SOH methods to improve accuracy, this paper minimizes 

factors that cause noise in SOH measurements by using 

multiple SOH features including ones taken from charging 

data.  Unlike discharge, charge conditions are controlled and 

predictable.  During charging, the same protocol is used 

throughout the entire life of the battery which eliminates 

uncertainties in the usage profile.  Many charging circuits 

are designed so that the device’s electronics are powered by 

the charger’s power supply (rather than the battery).  This 

allows battery charging to go undisturbed, even if the device 

is being used. 

When determining SOH features, the method of charging 

utilized by a particular device should be considered. For this 

study, the conventional constant current constant voltage 
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(CCCV) charging protocol will be assumed.  The CCCV 

protocol can be easily implemented in practice by a number 

of commercially available integrated circuits such as Linear 

Technology’s LT1512 or Texas Instrument’s bq24157.  The 

CCCV protocol uses a variable resistance to supply a 

constant current to the battery until a maximum threshold 

voltage is reached.  Then, a constant voltage is applied to 

the battery until the current drops to a minimum threshold 

value.  This charging method is preferred over constant 

voltage charging because by applying a constant voltage 

across the battery the current is allowed to float.  This 

floating state leaves the battery vulnerable to high current 

charging which could reduce operational life and 

compromise safety.  Instead CCCV applies a constant 

voltage charge at the end of the constant current charge as a 

“top off” to assure the battery has reached its maximum 

state of charge.  

The SOH features extracted from the charging data were the 

length of the constant current charge time (CCCT) and the 

constant voltage charge time (CVCT).  The availability of 

CCCT and CVCT as indicators for SOH was first suggested 

by Ramadass (2004) who modeled the changes in charging 

behavior due to capacity fade in lithium-ion batteries.  The 

model predicted that increased resistance and decreased 

diffusion at the electrode/electrolyte interface decreases the 

rate at which lithium can be sufficiently intercalated into the 

anode during charging. Therefore, this model predicts that 

as the battery degrades, the CVCT will increase to 

accommodate the extra time needed for lithium-ions to 

diffuse into the graphite anode.  Conversely, due to material 

degradation in the electrodes, the number of lithium 

insertion sites decrease with increased cycling.  With less 

insertion sites, the time required for the cell to reach its 

maximum potential during charging decreases, suggesting 

that the CCCT will decrease as the battery undergoes more 

cycles.    

The remainder of this paper describes the experimental 

procedure for performing lifecycle testing on three batteries.  

Then, SOH with respect to cycle number is evaluated using 

each of the four features (CCCT, CVCT, internal resistance, 

and capacity) for all of the batteries.  Lastly, the features are 

systematically compared to determine their appropriateness 

for describing the true health status of the battery.  

2. EXPERIMENTAL METHOD 

Three prismatic 1.1Ah lithium-ion batteries were tested.  

LiCoO2 mixed with carbon as a conductive additive was 

used as the cathode, while layered graphite bound together 

with polyvinylidene fluoride was used as the anode.  An 

electrolyte with equal parts ethylene carbonate (EC) and 

dimethyl carbonate (DMC), with LiPF6 as the lithium salt, 

provided the medium for ion transport between the two 

electrodes.  The batteries underwent cycle life testing, where 

the same constant current constant voltage (CCCV) 

charging protocol was used for each battery during every 

charge cycle.  Constant current charging was performed 

with a current of 0.55A until the voltage of the battery 

reached 4.2V, and then the constant voltage phase was 

initiated, where the voltage was held at 4.2V until the 

current fell to below 0.05A.   

For each of the three batteries, a different discharge profile 

was used for cycle life testing Table 1.  While the charge 

profile is the same for each battery, the particular discharge 

characteristics can have a residual effect on the following 

charge profile.  To investigate how the method of discharge 

effects the following charge profile one of the batteries was 

programmed to discharge with varying current rates each 

cycle, while another battery was programmed to vary the 

depth of discharge each cycle.  The first battery, to be 

denoted as battery A for the remainder of this paper, 

underwent a simple constant current discharge at 0.55A.  

The cut-off voltage denoting the end-of-discharge was set as 

2.7V.  The second battery, battery B, underwent a constant 

current discharge, but the current rate was changed every 

cycle such that during the first cycle, the battery was 

discharged at a current of 0.11A; during the second cycle, 

0.22A; during the third, 0.55A; during the fourth, 1.1A; 

during the fifth, 1.65A; and during the sixth cycle, the 

battery was discharged at 2.2A.  This profile was repeated 

so that the battery was discharged at each current rate over 

every six cycle interval.  For battery C the depth of 

discharge effect was evaluated by sporadically changing the 

cut-off voltage during discharge over the course of the cycle 

life.  This caused the initial open circuit voltage at the 

beginning of the charging stage to be different for different 

cycles throughout the lifetime of the battery.  Figure 1 

shows the voltage profile of the battery over the course of 

44 charge/discharge cycles.  It can be seen that the cut-off 

voltage during discharge was periodically changed to 

simulate the user putting a battery on its charger before the 

battery has reached a fully depleted state.  

 
Figure 1 Various depth of discharge for battery C  
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Table 1 Charge/discharge profiles 

Figure 2 shows a typical current and voltage profile of the 

batteries for one charge/discharge cycle.  It can be seen that 

a cycle is made up of three stages.  During discharge, the 

current is denoted as a negative value and the voltage 

decreases non-linearly until it reaches a pre-designated cut-

off voltage.  During constant current charging, the current is 

held constant with a floating voltage until the voltage 

reaches its designated maximum charging voltage, at which 

point constant voltage charging begins.  When the battery is 

held at a constant voltage, its current will decrease until it 

approaches a current that counter-acts the self-discharging 

current or until it reaches a predesigned cut-off value (as 

was the case in this test).  The discharge capacity was found 

by integrating the discharge current by time; the resistance 

was found by applying a small current pulse at the end of 

charging, measuring the change in voltage and then dividing 

dV by the magnitude of the current pulse; CCCT was found 

by measuring the length of time that the battery remained in 

the constant current phase of charging; and CVCT was 

found by measuring the length of time that the battery 

remained in the constant voltage phase of charging.         

 

Figure 2 Charge-Discharge current and voltage profile 

3. RESULTS AND DISCUSSION 

Figure 3 shows each feature plotted versus cycle number for 

battery A.  Because, this sample underwent constant current 

discharge at the same rate and the same depth of discharge 

for each cycle, it can be considered the simplest test case.  

 

Figure 3 Each feature plotted for battery A, a. capacity b. 

resistance c. CCCT d. CVCT 

Capacity and CCCT are nearly identical in form.  Both 

features degrade in an exponential fashion as cycle number 

increases.  Conversely, CVCT and resistance show a general 

increasing trend as cycle number increases.  However, there 

were spans over the course of the battery’s cycle life where 

Battery Charge Profile Discharge Profile 

A CCCV
Constant current discharge at 

0.55A from 4.2V to 2.7V

B CCCV

Varying discharge current 

alternating between 0.11A, 

0.22A, 0.55A, 1.1A, 1.65A, 2.2A 

each cycle from 4.2V to 2.7V

C CCCV

Constant current discharge at 

0.55A varying cut off voltage 

randomly between 4.2V and 2.7V 

b. 

c. 

d. 

a. 
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resistance and CVCT displayed decreasing behavior.  At 

around 700 cycles CVCT begins to drop sharply.  Between 

cycles 300 and 400, resistance has a general decreasing 

behavior with increasing cycle number and after cycle 600 

the resistance does not change with cycle number at all.  

Additionally, there is a substantial degree of noise that 

accompanies the CVCT and resistance measurements.  

These qualitative observations suggest that for the simple 

constant current, constant depth of discharge case, capacity 

and CCCT are more suitable indicators for SOH.   

Besides inherent noise and the consistency of feature 

trending, the length of time required to measure each feature 

can be used as a metric to evaluate the quality of a SOH 

feature.  It is desirable that SOH measurements be 

performed quickly so that updates can be made in a 

reasonable time.  An additional drawback of long SOH 

measurement times is that long measurements are 

susceptible to influencing factors such as dynamic discharge 

rates and temperatures.  Battery A was discharged at half of 

its rated capacity; therefore the time required to measure the 

capacity is equivalent to twice the measured capacity during 

each cycle.  Resistance can be measured almost instantly as 

dV can be found with a short current pulse.  At the 

beginning of life, discharge capacity requires the most 

amount of time to measure.  However, as the battery loses 

the ability to store charge, capacity and CCCT require less 

time to be measured while the time required to measure 

CVCT increases. 

Figure 4 shows the value of SOH calculated at each cycle 

from each of the four features for battery A.  The SOH in 

the features that decrease as cycle number increases 

(capacity and CCCT) were given by equation (1):  

     
  

         
                                 (1) 

where F is the given feature at a cycle number indicated by 

the subscript.  Therefore at cycle k the SOH is the value of 

the feature divided by the average of feature F over the first 

five cycles.  Averaging F over the first five cycles gave a 

general value of F that could be considered “healthy.”  

Taking the averaging over the first five cycles reduces error 

that could be apparent from only using the first cycle as the 

healthy state.  If more than 5 cycles are used, there is a risk 

that degraded data will be included into the healthy state.   

For CVCT and resistance which generally increase as cycle 

number increases, SOH was calculated by equation (2):  

     (
  

         
)
  

                            (2) 

 

Figure 5 shows each feature plotted for battery B which 

underwent discharge at 6 different current rates.  It is clear 

that the discharge capacity and CCCT are dependent on the 

rate of discharge.  Diffusion limited effects Du (2010) at the 

electrolyte/electrode interface prevent the full capacity from 

being utilized as the discharge current rate increases.  In 

order to account for this dependency, a model relating 

capacity and CCCT to discharge rate would need to be 

incorporated into the SOH estimation procedure such as 

demonstrated in Schmidt (2010).  However, model based 

SOH estimation requires recalibration over cycle life and 

between individual cells.  As complexity in the discharge 

profile increases, the CVCT and resistance features become 

more appealing as they are not dependent on the specific 

discharge rate.  At around 350 cycles, a peak in CVCT and 

resistance is observed.  This peak could be indicative of 

specific internal degradation mechanisms that are not as 

apparent in the discharge capacity and CCCT.  However, it 

is possible that this peak could trigger a false alarm as the 

premature rise in resistance and CVCT correspond to a 

reversible drop in SOH as shown in Figure 7.  

 

Figure 4 SOH calculated from each feature for battery A 

 Figure 6 and Figure 8 show the features and corresponding 

SOH for battery C which was tested by keeping the 

discharge current constant at 0.55A but sporadically 

changing the depth of discharge throughout cycle life.  

Again, capacity and CCCT show a heavy dependence on 

depth of discharge which would need to be accounted for by 

increased model complexity and constant recalibration.  

CVCT also appears to display a relationship with depth of 

discharge that changes as cycle number increases.  Without 

compensation for depth of discharge, the SOH estimations 

for capacity, CVCT and CCCT are inaccurate.  However, 

the resistance measurements for battery C are highly 

favorable, even more so than in the simplest test conditions 

shown in battery A.  The resistance increases linearly 

throughout the entire cycle life with less noise than what 

was found in batteries A and B.  However, because this 

linear trend in resistance increase is not consistently found 

in all batteries, relying solely on resistance can result in 

inaccurate SOH estimations. 
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Figure 5  Each feature plotted for battery B, a. capacity b. 

resistance c. CCCT d. CVCT 

 

 

 

 
Figure 6 Each feature plotted for battery C, a. capacity b. 

resistance c. CCCT d. CVCT 

a. 

b. 

c. 

d. 

a. 

b. 

c. 

d. 
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Figure 7 SOH calculated from each feature for battery B 

 

Figure 8 SOH calculated from each feature for battery C 

3.1 Fusion Results 

The results from comparing four different features at 

different cycle life conditions have indicated that there is no 

universal feature that can be used for accurate SOH 

estimation unless sufficient model adaptation is applied.  

However, each of the four features described can be 

extracted from battery data in a straight forward matter 

regardless of the complexity of the discharge conditions.  

Rather than construct a new model for each battery which 

would require sufficient cycle life testing and parameter 

initialization, the four features described in this paper can 

instead be combined through a generalized fusion method.   

To perform data fusion each SOH feature   
  described by 

Eq.(1) and Eq.(2) where i indicates each of the 4 features 

described in this paper and c indicates the cycle number, is 

combined using a weighted average.  During each cycle c, 

the distribution of the SOH features is characterized by the 

beta function.  The beta function is chosen because it has the 

same range as SOH (01), it is flexible for characterizing a 

wide range of probability distribution functions, and it is a 

conjugate prior probability distribution allowing for easy 

Bayesian updating.  Therefore, SOH is characterized at each 

cycle c by:  

            
                

      
 

In order to determine the parameters α and β, the mean of 

the beta function is set equal to the weighted mean of the 

observed features:  

 

   
 

∑     
 
   

∑   
 
   

                                    (3) 

where wi corresponds to the weight of each feature.  For 

each cycle the values of α and β are determined from Eq.(3):  

   ∑   
   

 
 

   
 

   ∑   
      

  
 

   
 

After the distribution of SOH is determined for a particular 

cycle, the point value of SOH for a given cycle number is 

found by taking the maximum likelihood of            : 

                         

After each cycle the weights are updated based on the 

following equation: 

  
      

     |       
 |  

Final smoothing of the SOH metric was performed with a 

10 cycle window moving average.  Figure 9 shows the 

results of parameter fusion for battery A, B and C.  By 

fusing all four of the parameters, the SOH with cycle 

relationship becomes more linear and less noisy than any 

one of the parameters by itself.  The exception of this is in 

the case of Battery C in which resistance proved to be an 

accurate representation of SOH.  However, because 

resistance is not a reliable metric across all batteries, there is 

a clear advantage in using parameter fusion for SOH 

estimation.  Out of all the test parameters, the cut-off 

voltage had the most influence on the SOH metric as seen 

by the variability in battery C.  This can be accounted for by 

increasing the window of the moving average.  

 

Figure 9 Fusion of the four parameters using the median 
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4. CONCLUSIONS  

Capacity and resistance are typically the only features used 

for determining SOH in lithium-ion batteries.  However, 

these features do not accommodate for the dependency on 

user profiles and environmental conditions.  Typical 

approaches to SOH estimation introduce adaption schemes 

which require a deep understanding of input to output 

relationships and Gaussian noise parameters.  Additionally, 

many researchers fail to acknowledge the inconsistency in 

the trend of resistance increase with battery degradation.  

Rather than continue to increase model fidelity and 

enhanced model adaption for state estimation, this paper 

demonstrates the effectiveness of increasing the number of 

features extracted from battery.  By considering data taken 

during the charging profile of the battery, it was found that 

the length of time the battery spent in each of the constant 

current and constant voltage phases of charging correlated 

to state of health.  To create a single metric of state of health 

the two features taken from the charging data were fused 

with resistance and discharge capacity.  Using all four 

features the distribution of SOH was characterized by 

equating the weighted mean of the features to the mean of 

the Beta distribution.  The fused SOH measure was found 

by taking the maximum likelihood of the resulting 

distribution and then updating each of the weights.  
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