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ABSTRACT

Within Industry 4.0, Prognostics and Health Management
(PHM) holds great potential due to its ability to bring deep
insights into the current state of manufacturing equipment.
When developing PHM competences in higher education, it
is desirable to train students in the development and utiliza-
tion of the algorithms commonly adopted for PHM analy-
ses. Despite the widespread of PHM datasets, education in
PHM is complicated by the unavailability of a platform that
standardizes the data format into a unified metamodel. To
cope with this, XRepo 2.0 is proposed: a big data informa-
tion system that allows professors to share PHM sensor data
in a standard format within an experimental and educational
context. In this work, a metamodel is introduced to repre-
sent PHM datasets, and the Hadoop framework is integrated
with a document database to enable the management of the
large amount of data available today. MapReduce process-
ing engine is utilized to enable teachers to pre-process the
data on the cloud infrastructure, which is a crucial aspect for
the assessment of the algorithms developed by the students.
Finally, a prototype of XRepo 2.0 is deployed on the Azure
Cloud and validated with respect to functionality and perfor-
mance criteria. Given the importance of PHM within Industry
4.0, we expect that XRepo 2.0 will contribute to the unifica-
tion and sharing of selected sensor data with the academic
community for the development of competences in PHM.

1. INTRODUCTION

Current maintenance strategies have progressed from break-
down maintenance to preventive and then to prognostics and
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health management (Martin, 1994). Breakdown Maintenance
is the earliest form of maintenance, where no actions are taken
to maintain the equipment until it breaks and consequently
needs a repair or replacement. In the 1950s, Preventive Main-
tenance strategies were introduced and require maintenance
on a time (or usage) interval regardless of the health condi-
tion of the asset. Later, Prognostics and Health Management
(PHM, also known as Predictive Maintenance) emerged and
is defined as a condition-driven preventive maintenance pro-
gram.

The research field of PHM has grown significantly due to the
Industry 4.0 movement and to the advancements in data ac-
quisition, gathering, storing, and analytics (Lee, Ardakani,
Yang, & Bagheri, 2015). Prognostics and Health Manage-
ment holds the potential to estimate the current health state
and predict the future states of machinery, granting important
insights into decision-making processes (Lee, Lapira, Yang,
& Kao, 2013). To realize this potential, it is necessary to
store, process and analyze the large amount of data that is col-
lected from the many different sensors available today in ma-
chinery through the use of the big data (Lee, Lapira, Bagheri,
& Kao, 2013). Given the above, it becomes highly advanta-
geous for engineering students to be trained in PHM.

Concerning education in traditional maintenance engineering
(i.e. breakdown and preventive maintenance), different text-
books are already available; e.g. (Ebeling, 2004; Ben-Daya,
Kumar, & Murthy, 2016; Moubray, 2001). However, few
textbooks can be found on PHM given the novelty of the ap-
proach; e.g. (Mobley, 2002; Kim, An, & Choi, 2016). PHM
textbooks explain general concepts such as the PHM princi-
ples and the different sensors that can be utilized for the PHM
analyses. However, practical exercises are not presented lim-
iting the development of competencies in PHM. Therefore,
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professors and researchers find themselves developing PHM
case studies and sharing the sensed data. Examples of such
shared data are the Case Western Reserve University Data for
rolling bearings (Loparo, 2012), the Milling dataset from the
BEST lab at UC Berkeley (Agogino & Goebel, 2007), and
the Uniandes unbalanced shaft dataset (Barbieri, Sanchez-
Londono, Cattaneo, Fumagalli, & Romero, 2020) amongst
others. The available PHM datasets present data in different
formats complicating their input into data processing engines;
e.g. Matlab, Python, etc. Furthermore, these datasets con-
tain heterogeneous context information without guaranteeing
their inclusion of all the information necessary for the PHM
analysis. A platform that standardizes the format of PHM
datasets would be desirable.

Nowadays, a big data information system for sharing PHM-
related datasets in education is not a available. This educa-
tional information system should enable professors and stu-
dents to easily access sensor data from multiple sources, pre-
senting their corresponding contextual metadata with a ho-
mogeneous format/metamodel. In fact, PHM data are shared
with heterogeneous data formats and lack of metadata de-
scribing the particular experimental context (Ardila et al.,
2020); e.g. the date of acquisition, and the health condition
associated to the equipment, amongst others. Thus, the lack
of a big data architecture – offering access to data with a stan-
dard format and contextual metadata – represents an issue for
education in PHM, and would be desirable for the unification
and sharing of the case studies currently available for devel-
oping competencies in PHM.

The design and implementation of such system – referred
to as XRepo 2.0 – is the focus of this work. Here, the au-
thors propose a big data information system where professors
and students are able to upload and access PHM sensor data,
along with metadata that describes the experimental and ed-
ucational contexts of the setting. In this way, users do not
need to worry about the heterogeneity of sensor data and the
handling of big data, and educators can solely focus on de-
veloping PHM competences in students through pedagogical
activities.

According to the ISO-13374 normative, the following func-
tionalities related to the data management and processing can
be implemented within an information system for PHM:

• Data Acquisition: data acquired from sensors and de-
vices are stored.

• Data Manipulation: mathematical transformations are
applied to maintain the valuable parts of the collected
data while removing their unwanted components; e.g.
noise etc. Furthermore, features are extracted for the sub-
sequent analyses.

• State Detection: the asset state is identified (i.e. healthy
or faulty) and – in case of faults – these are detected,

isolated and classified.
• Health Assessment: the actual health condition of the as-

set is quantified.
• Prognostics Assessment: the future health condition is

predicted. This functionality also implies the calculation
of the asset Remaining Useful Life (RUL).

• Advisory Generation: easy-to-use and effective visual-
ization tools are developed to present the maintenance
information and support the decision-making process.

A complete information system for PHM education should
provide all the aforementioned functionalities. However, in
this design iteration XRepo 2.0 only deals with the Data Ac-
quisition one due to the complexity of the problem.

A number of technical challenges have been identified for the
introduction of PHM strategies within the maintenance pro-
cess of an enterprise (Galar & Kans, 2017). A subset of these
challenges are relative to the acquisition and management of
PHM data, and are also faced in the implementation of a big
data information system for education. These are:

• Data Integration: data coming from different sensors must
sometimes be analyzed. Information from multiple sources
should be acquired and integrated.

• Data Heterogeneity: PHM data that has previously been
made available for research and education tend to express
contextual metadata using different syntax and seman-
tics.

• Data Search Usability: data might be stored without a
logical way to navigate. This results in datasets which
cannot easily be comprehended and analyzed.

• Data Volume: large volumes of data are generated when
a system is monitored through multiple sensors with high
sampling rates over extended periods of time.

The architecture proposed within this work is built atop XRepo
1.0 (eXperiments Repository). XRepo 1.0 is an information
system that allows users to store and share PHM datasets in a
standard format within an experimental context (Ardila et al.,
2020). The first version of the XRepo information system fo-
cused on the first three aforementioned challenges. Whereas,
XRepo 2.0 has the following main novelties with respect to
the former version:

1. Educational metamodel: XRepo 1.0 was born as an in-
formation system for sharing PHM data, while XRepo
2.0 is targeted to education. Therefore, the XRepo 1.0
architecture has been modified and new contextual meta-
data has been added to its domain model with the objec-
tive to fit educational scenarios. The introduced educa-
tional metamodel has been developed through the review
of available PHM datasets, and the elicitation of needs
relative to education in PHM.
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2. Big data: considering their potential to store, process and
analyze large volumes of data (Lee, Lapira, Bagheri, &
Kao, 2013), the present work aims to use big data tech-
nologies to address the ’Data Volume’ challenge.

3. Online processing: considering that the information sys-
tem is able to manage big data, XRepo 2.0 allows teach-
ers to pre-process the data before sharing them with stu-
dents. This functionality offers the possibility for profes-
sors to process large volumes of data online, without the
need to locally download and manage them.

Given the above, the article is structured as follows: Section
2 presents a state-of-the-art analysis of related work. Sec-
tion 3 summarizes the requirements and the design decisions
that guided the development of XRepo 2.0. Section 4 shows
the implementation of XRepo 2.0, and Section 5 describes
an evaluation of the information system. Finally, Section 6
presents the conclusions and offers possible paths for future
research.

2. RELATED WORK

Considering that the main novelties of this work are the in-
troduction of an educational metamodel for PHM datasets
and the generation of a big data information system for PHM
datasets, the state-of-the-art is divided into the analysis of: (i)
PHM datasets (Section 2.1); (ii) big data information systems
(Section 2.2).

2.1. PHM Datasets

Multiple sources of PHM datasets are available in the liter-
ature and on the web. These sources can be classified as:
web-based data-science environments, maintenance-focused
big data platforms, and individual datasets available online
for download.

Concerning web-based data-science environments, Kaggle1

is the most famous platform that enables users to find and
publish datasets. Kaggle has been adopted by different com-
panies to upload their datasets with the purpose of challeng-
ing the Kaggle community to develop effective machine learn-
ing algorithms that can properly classify their data (Garcia
Martinez & Walton, 2014). Given that the datasets uploaded
to Kaggle come from different domains, a single data format
and contextual metadata is not utilized. Therefore, Kaggle
and web-based data-science environments in general do not
address the data heterogeneity challenge tackled into XRepo
2.0.

Attempts to create maintenance-focused big data platforms
can be found as the six step framework for data-driven main-
tenance (O’Donovan, Leahy, Bruton, & O’Sullivan, 2015),
and the big data platform for maintenance data with data anal-
ysis capabilities (Yu, Dillon, Mostafa, Rahayu, & Liu, 2020).

1https://www.kaggle.com/

Even if these platforms enable the sharing of PHM datasets,
a metamodel to standardize the format and the contextual in-
formation of the data is not utilized.

Finally, individual datasets can also be found online available
for download. These datasets present heterogeneity both in
the format and in the contextual information of the data. Next,
few of the available PHM datasets are illustrated.

The content of PHM datasets for educational purposes should
be studied from two perspectives: experimental and educa-
tional. Regarding the experimental context, different datasets
are available in the internet. Examples of them are relative
to: i) bearing failures (from NASA (Lee, Qiu, Yu, Lin, & Ser-
vices, 2007), the Case Western Reserve University (Loparo,
2012), and PRONOSTIA (Nectoux et al., 2012)); ii) cut-
ting blade degradation from OCME (Von Birgelen, Buratti,
Mager, & Niggemann, 2018); iii) milling machines from
BEST lab (Agogino & Goebel, 2007); and iv) unbalanced
shaft from Uniandes (Barbieri et al., 2020). By analyzing and
comparing these datasets, we figured out the following con-
textual metadata: system operative ranges, system operative
condition, start and end date time of each acquisition, utilized
sensors, measured variables, and sensor sampling frequency.
However, none of the aforementioned datasets presents all
this information in a unified manner (Ardila et al., 2020). In
our opinion, this is determined by the lack of an information
system for unifying and sharing the available PHM datasets.
The existence of such a platform would encourage users to
define this information – rather than omitting important con-
textual metadata. In (Ardila et al., 2020), XRepo information
system was proposed for standardizing the contextual meta-
data of PHM datasets.

Less information is available when looking for contextual
metadata from an educational perspective. Online guides and
tutorials can be found concerning PHM, such as the Azure ‘AI
Guide for Predictive Maintenance’ (Azure, 2020). However,
there is a lack of research concerning platforms, architectures
or information systems for education in PHM. One attempt at
creating an architecture for PHM education might be found in
(Kans, Campos, & Håkansson, 2020). Here, authors describe
a PHM framework for a remote laboratory. This framework
uses the MIMOSA standard for defining both the contextual
metadata and the functional layers of the framework. How-
ever, their implementation is limited to a physical test-bench,
while a platform to upload data and run different algorithms
is listed as future work. Finally, no education-specific con-
siderations are made regarding either: a) the MIMOSA-based
contextual metadata they use; b) the algorithms that they wish
to implement to process the data.

Given the lack of an educational metamodel for sharing PHM
datasets, this work will introduce an educational contextual
metadata for PHM datasets.
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2.2. Big Data Information Systems

According to (Lee, Lapira, Bagheri, & Kao, 2013), a man-
ufacturing information system is characterized by 5C func-
tions: Connection (sensor and networks), Content (correla-
tion and meaning), Cloud and big data (data on demand and
anytime), Community (sharing and social), and Customiza-
tion (personalization and value). Different technologies and
architectures are next illustrated for the presented 5C func-
tions, showing the lack of an information system for sharing
PHM datasets in an educational environment.

Connection A wide variety of communication protocols
are currently available to enable machinery to communicate
among themselves and with a central server. Some of these
open-source protocols are MTConnect2, the OPC Unified Ar-
chitecture (OPC-UA)3, the Constrained Application Protocol
(CoAP)4 and MQTT5. However, in this design iteration of
XRepo, data will be uploaded as batch files and the integra-
tion of streaming processing protocols will be investigated in
future works.

Content and customization As stated previously, the con-
tents of PHM datasets in an education-focused information
system should include both experimental and educational
context metadata. The big data PHM architectures were
found to either be too broad in scope without proposing a
given data metamodel; i.e. web-based data-science environ-
ments and maintenance-focused big data platforms. Finally,
individual datasets do not use a standard metamodel at all.
The development of a metamodel that contains experimental
and education metadata, and enables for the description of
data from various PHM sources is then necessary.

Cloud and big data Nowadays, different commercial so-
lutions are available for processing big data. For instance,
RapidMiner (Kotu & Deshpande, 2014) provides an inte-
grated environment for data preparation, machine learning,
deep learning, text mining, and predictive analytics. In the
context of PHM, Watchdog Agent (Djurdjanovic, Lee, & Ni,
2003) from the Center for Intelligent Maintenance Systems
(IMS) enables PHM analytics by providing algorithms for
signal processing and feature extraction, health assessment,
performance prediction, and fault diagnosis. However, these
platforms allow the data processing but they do not provide
a data model – including contextual metadata – that can be
straightforwardly exploited for education in PHM.

2www.mtconnect.org
3opcfoundation.org/about/opc-technologies/opc-ua
4tools.ietf.org/html/rfc7252
5mqtt.org

To integrate the processing functionalities with data repre-
sentation, customized platforms have been proposed and are
built atop existing open-source technologies from the big
data ecosystem (Wan et al., 2017). For instance, (Wang,
Fan, Huang, & Li, 2019) develop an architecture for the
aviation manufacturing made of Apache Kafka6, Apache
Storm7, Apache HBase8, and Hadoop Distributed File Sys-
tem (HDFS)9. (Canizo, Onieva, Conde, Charramendieta, &
Trujillo, 2017) integrate Apache Spark10, Apache Kafka,
Apache Mesos11 and HDFS to predict failures on wind tur-
bines using a data-driven solution deployed in the cloud.
Even if the presented platforms are able to process and store
PHM data, they present contextual metadata that are not tar-
geted to education.

Community When developing the first version of XRepo,
different datasets were studied (Ardila et al., 2020). These
datasets are available in the internet and can be downloaded
without any restrictions. This functionality is ideal within a
research-oriented perspective. However, functionalities such
as different access permissions for different users (e.g. in-
structors, students, etc.) become relevant within an educa-
tional setting. For instance, an instructor might want to hide
certain contextual metadata to students for evaluation pur-
poses; e.g. the health condition of an asset, etc. These
requirements can not be fulfilled if datasets are freely and
fully available for downloading. Instead, our platform has
the added value of customizable download permissions.

Discussion The presented state of the art demonstrates the
lack of a big data information system that unifies and shares
the case studies currently available for developing competen-
cies in PHM. Datasets are currently shared in the internet
without standard formats, contextual metadata and permis-
sions. Few information systems have been proposed by in-
tegrating technologies from the big data ecosystem, but these
are not targeted to education. In this work, we take inspiration
from the technologies utilized within these works to develop
a big data information system for education in PHM.

3. XREPO REDESIGN PROCESS

In this section, the process that guided the development of the
architecture of XRepo 2.0 is summarized.

The definition of an architecture can be divided into three
steps (Li, Verhagen, & Curran, 2020): requirements, frame-
work, and architecture. The requirements step (Section 3.1)

6kafka.apache.org
7storm.apache.org
8hbase.apache.org
9hadoop.apache.org
10spark.apache.org
11mesos.apache.org
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involves the identification of the needs that the architecture
must fulfill. The framework step (Section 3.2) requires the
developer to define a set of functional layers able to fulfill the
identified requirements. Finally, the architecture step (Sec-
tions 3.3-3.4) involves assigning a specific technological so-
lution to the previously selected functional layers.

3.1. Requirements

The requirements identified to boost the potential of XRepo
2.0 in education are depicted in this section. The main fea-
tures introduced within XRepo 1.0 (Ardila et al., 2020) are
maintained, since: (i) is able to share PHM data in a standard
format; (ii) utilizes a data experimental context built by com-
paring PHM datasets currently available in the internet; (iii)
fulfills the data integration, heterogeneity, and search usabil-
ity challenges defined in section 1. Since large amounts of
data are nowadays collected from the many different sensors
available in machinery, the ’Data Volume’ challenge is also
expected to be fulfilled with XRepo 2.0.

Given that our research targets education, new functional re-
quirements have appeared. In PHM education, it is funda-
mental to provide students with labeled and unlabeled data
(Barbieri et al., 2020). Here, labeled data refers to sen-
sor data associated with the health condition of the equip-
ment, whereas unlabeled data refers to sensor data without the
equipment condition. While students use labeled data for the
generation of PHM classification models, unlabeled data are
utilized for evaluating the accuracy of the developed model.
The instructor knows the health state of the unlabeled data
and uses this information for the assessment. This means that
instructors must be able to pre-process the PHM data for gen-
erating different subsets that are labeled or unlabeled. With
XRepo 1.0, instructors had to download the data to their local
(often resource-limited) environment and pre-process them
to obtain the subsets. This task might overload instructors’
workstations and is time-consuming. Furthermore, it should
be possible to categorize datasets by taking into account dif-
ferent aspects, such as: i) the PHM competences that instruc-
tors desire to develop in students (Li et al., 2020) (e.g. di-
agnostics, prognostics, etc.); ii) the role of the data within
the pedagogical activity (Barbieri et al., 2020) (either labeled
or unlabeled data); iii) the analyzed failure and mechanical
system. These education-oriented considerations brought the
need to complement the XRepo 1.0 domain model with an
educational context, as the original model was mainly de-
voted to the experimental part of the data; see Section 4.1
for further details. Finally, given its educational purpose, we
consider that the new version of XRepo should be built atop
open-source / free technologies and must allow concurrent
connection of final users.

Based on the aforementioned target situation, we elicitated a
list of requirements for XRepo 2.0 by integrating the chal-

lenges shown in section 1 with the 5C functions illustrated in
section 2. These requirements are:

1. Data integration, heterogeneity, and search usability: the
platform must continue to fulfill the challenges achieved
with the first XRepo version, and represent the data types
commonly used in PHM analyses; i.e. single value and
timeseries data (Jardine, Lin, & Banjevic, 2006).

2. Data Volume: the platform must fulfill the data volume
challenge – not previously addressed in XRepo 1.0 – by
implementing big data technologies for the storage, pro-
cessing and analysis of data.

3. Connection: data must be uploaded and downloaded as
batch files with an established format.

4. Content: data must be represented with two contextual
metadata:
(a) Experimental context: must implement the experi-

mental context defined in XRepo 1.0.
(b) Educational context: data must be categorized tak-

ing into account different aspects, such as the PHM
competences that will develop on the student, the
role of the data within the pedagogical activity,
and the analyzed failure and mechanical system,
amongst others.

5. Cloud: instructors must be able to pre-process the data
for generating different subsets, such as labeled and un-
labeled subsets.

6. Community:
• Number of users: a number of 1000 concurrent

users was established. This value takes into account
the number of potential users present in our univer-
sity and academic partners.

• Platform access: the information system must al-
low the assignment of roles to users for them to ac-
cess to the different functionalities. For instance,
professors can modify data, while students can only
download them.

7. Customization: apart from the categorization of the data
using different aspects, instructors must be able to extend
the default categories by introducing additional custom
fields.

8. Open-source / free software: given its educational pur-
pose, XRepo 2.0 must be built atop open-source / free
software.

3.2. Framework

With the objective to define a framework able to fulfill the
identified requirements, selected Industry 4.0 frameworks
have been analyzed. Given the large number of frameworks
available in the literature (Kritzinger, Karner, Traar, Henjes,
& Sihn, 2018), only frameworks then deployed into archi-
tectures have been considered. In particular, the following
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frameworks were analyzed: Sezer et al.’s low cost approach
to PHM (Sezer, Romero, Guedea, Macchi, & Emmanouilidis,
2018), Redelinghuys et al.’s six layer architecture for Digital
Twins (Redelinghuys, Basson, & Kruger, 2019), Schroeder
et al.’s AutomationML-based architecture (Schroeder, Stein-
metz, Pereira, & Espindola, 2016), and Kans’ architecture for
a remote condition monitoring lab (Kans et al., 2020). Af-
ter analyzing these frameworks, we noticed that all presented
the functional layers shown in Figure 1. Therefore, these four
functional layers were selected for the XRepo 2.0 framework
which consists of:

• Devices and Sensors: involves data acquisition from
physical sensors, which can potentially come from dif-
ferent vendors. This means that data coming from this
layer may exist in heterogeneous formats.

• Integration and Translation: comprises the integration
of data coming from multiple sources and with different
formats, and their translation into a single data format.

• Storage and Processing: concerns storing and organizing
high volumes of data in the cloud by following big data
paradigms.

• Application: the front-end that either users or other soft-
ware platforms use to interact with the stored data.

Within this work, only the ’Storage and Processing’ and ’Ap-
plication’ layers have been implemented. Whereas, the ’De-
vices and Sensors’ and ’Integration and Translation’ are left
as future work.

Figure 1. Selected functional layers for the XRepo 2.0 frame-
work

3.3. Architecture: Design decisions

The design decisions taken for implementing the functional
layers tackled within this work are next illustrated.

3.3.1. Integration and Translation

Even if the ’Integration and Translation’ layer is not imple-
mented in this work, the format of the data outputs from this
layer must be specified for the design of the ’Storage and Pro-
cessing’ and ’Application’ layers.

Three standard formats were analyzed for this purpose: OGC-
O&M (Open Geospatial Consortium, 2020), SHDR used by
the MTConnect platform (MTConnect Institute, 2019), and
MIMOSA’s OSA-CBM (Lebold & Byington, 2002). When

sending single value and waveform data, the three data for-
mats were found to represent this information in a ’time,
value’ form. However, these values are written as verbose
XML files, meaning that data transmission channels are un-
necessarily overloaded and a significant portion of storage is
wasted. As such, storing data as simple [time, value] vectors
was found to be sufficient.

Other than these [time, value] pairs, the data must be linked to
their context information. On the one hand, the indication of
the whole context information – along with each [time, value]
pair – would make the format too verbose. On the other hand,
some context information must be specified to differentiate
data from different sensors. As such, the following decisions
were taken:

• ID: each uploaded dataset must contain an ID, either on
its first line or as a parameter during the upload opera-
tion. The ID is utilized to link the uploaded dataset to an
experimental and educational context, previously defined
within the XRepo information system.

• Sensor and variable information: each [time, value] pair
must contain a tag indicating the sensor utilized for the
acquisition and the sensed variable. This information
will be utilized to filter the data based on the utilized sen-
sor and/or acquired variable.

An example of data following the defined specifications is
shown in Figure 2. Here, ’accel’ is used as sensor tag,
while ’x accel’ and ’y accel’ respectively indicate two differ-
ent sensed variables. It must be noticed that data are down-
loaded from XRepo 2.0 with the same format shown in Fig-
ure 2. Therefore, this format constitutes the standard data
format utilized to interface with XRepo 2.0.

Figure 2. Example of the data syntax interpretable from the
XRepo 2.0 ’Storage and Processing’ functional layer

3.3.2. Storage and Processing

The big data ecosystem has a multitude of architectural op-
tions and technologies, each of them with its unique features.
(Sahal, Breslin, & Ali, 2020) review the strengths and weak-
nesses of existing open-source big data technologies and pro-
pose a methodology for selecting the most appropriate ones
based on the studied scenario. In this work, Sahal et al.’s
methodology was utilized to define the XRepo 2.0 archi-
tecture. In the methodology, the big data ecosystem is di-
vided into four technical areas: Queue management systems,

6
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Processing platforms, Storage, and Streaming SQL engines.
Given the scope of this work and the queue management re-
quired by the aforementioned ’Integration and Translation’
layer, only processing and storage concerns were analyzed.
Thus, streaming SQL engines are not discussed. Design de-
cisions were taken by mapping the needs of XRepo 2.0 to a
set of predefined high level functional requirements proposed
by (Sahal et al., 2020). Next, the design decisions taken for
the storage and processing functionalities are illustrated.

Storage Three types of storage models are available for
the big data ecosystem (Sahal et al., 2020): File system,
Document-based and Column-based. Since XRepo 2.0 re-
quires the storage and manipulation of plain text, the ’File
system’ storage model is selected. Moreover, the ’Document-
based’ storage model is also utilized since in future XRepo
2.0 will be integrated with transmission protocols. In sum-
mary, both ’File System’ and ’Document-based’ are selected
as storage models.

Concerning the data schema, three types are available (Sahal
et al., 2020): Structured, Semi-structured, and Unstructured.
A Semi-structured data schema is selected since XRepo 2.0
receives and stores data files with a defined format.

Processing Three types of processing models are available
(Sahal et al., 2020): batch, streaming, and hybrid. In XRepo
2.0, all the processing operations are launched by the users
from a graphical interface by selecting the datasets to be pro-
cessed. The described functionality requires a batch process-
ing model.

3.3.3. Application

In XRepo 2.0, the application layer is implemented as a Web
system and the main principle to guide its design was selected
as usability. This objective will be achieved by defining ele-
ments with ’self-explaining’ headers and contents. Moreover,
background tasks will be implemented to keep the platform
responsive to the user, even while data are being processed.
Any action that a user performs on the data (e.g. uploading,
searching, executing an algorithm, etc.) will be queued and
performed on the background.

3.4. Architecture: Implementation Technologies

The last step of Sahal et al.’s methodology (Sahal et al., 2020)
is to compare functional requirements against the features and
capabilities of the different big data implementation technolo-
gies. Based on this analysis, Hadoop was selected as big data
storage and processing platform since matches all the rele-
vant aforementioned design decisions, and has a comprehen-
sive documentation and active community of users and devel-
opers. In addition, Hadoop provides a MapReduce process-

ing engine that will be used from teachers to pre-process the
data before sharing them with students. To complement the
big data storage functionality with a Document-based storage
model, MongoDB12 was selected to store metadata related to
the sensor data hosted in Hadoop. The use of this document
database will enable to filter sample files based on defined cri-
teria. To implement this filtering functionality, a MapReduce
search will be triggered on the HDFS repository.

4. XREPO 2.0: BIG DATA

XRepo stands for eXperiments REPOsitory and is a platform
to collect, standardize and store experimental data (Ardila et
al., 2020). This work extends the functionality of XRepo 1.0
in two aspects: i) storage of high volumes of structured and
unstructured experimental data; ii) execution of MapReduce
algorithms to organize said data for teaching purposes; iii)
integration of an educational context to the already imple-
mented experimental one. To this end, the domain model
initially proposed for XRepo 1.0 was extended. Decisions
were taken with respect to storage and processing concerns,
and implemented into a new prototype. This led to the ar-
chitecture presented in Figure 3. In the figure, components
are grouped in the following functional layers: i) Web User
Interface (UI): groups all the front-end and web components;
ii) Security Layer: handles all the authentication and access
to services and information; iii) Logic Layer: groups all the
service endpoints and the business logic components; iv) Big
Data Repository: provides the back-end to store and access
the unstructured data; v) Data adapters: handle transforma-
tions from external data formats to the XRepo data model.
It is worth noting that the logic layer accesses the semi-
structured data stored in the database.

The components already implemented in XRepo 1.0 are
shown in Figure 3 with light gray and white boxes, and are:

• Web UI: user can utilize the functionalities of the plat-
form through this interface. One of these functionalities
is the upload of sample files generated by the Experiment
Data Adapters.

• Experiment Data Adapters: take data from third party
systems and convert them into the XRepo data model.

• Target System and Experiment Managers: create, re-
trieve, update or delete users, target systems, and experi-
ments.

• Sampling Search: search for data that fulfills certain cri-
teria.

• Sample file load/search: upload and find data as batch
files.

Since additional components were developed (dark grey
boxes in Fig. 3), the already existing components were
12www.mongodb.com
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Figure 3. XRepo 2.0 architecture: diagram of the software
components

adapted to be integrated with the new ones. It is worth not-
ing that the light grey components required more adjustments
than the white ones. The four new components incorporated
into the architecture are: Big Data Repository, Hadoop Man-
ager, Laboratory Management, and Tag Manager. All these
components are accessed by the user through the Web UI,
and are protected using profiles and roles.

The aforementioned new components are detailed in the re-
maining of this section which is structured as follows: sec-
tion 4.1 shows the developed domain model which supports
both the experimental and educational context of the data,
and the big data functionality. Section 4.2 explains the func-
tionality of the big data repository. Section 4.3 details how
the big data processing was implemented using MapReduce
functions. Finally, Section 4.4 depicts the management com-
ponents referred to as Hadoop Manager, Laboratory Manage-
ment, and Tag Manager; see Figure 3.

4.1. Domain Model

The XRepo 1.0 domain model (Ardila et al., 2020) has been
extended to represent the educational context and support the
big data functionality. This results in a new domain model
shown in Figure 4. Due to the introduction of the big data
storage, the ’Sample’ data is directly stored in the HDFS,

while all the other components of the model are stored in
MongoDB. The figure illustrates in dark gray color new in-
corporated elements, in light gray color deeply modified ele-
ments, and in white color elements which were slightly mod-
ified or not modified at all.

The elements reused from the previous version of XRepo are:

• Organization: the main hierarchical classification of the
data. This element indicates the owner of the data; e.g.
university, research center, etc.

• TargetSystem: a physical system with sensors that can be
monitored. This includes an ’operative range’ that iden-
tifies the conditions under which the system can operate.

• Experiment: a technical sheet for a window of observa-
tion under specific operative conditions.

• Sampling: a set of data taken from the ’TargetSystem’
in a given experiment. If the experiment includes data
collected in different conditions, each of them will be-
long to a different ’Sampling’. An ’OperativeCondition’
is assigned to each ’Sampling’, along with the ’Device’
used for the data acquisition, and the utilized ’Sensor’
specified with the unit of the acquired variable.

• Sample: a single data value; i.e. [time, value] pair. A
’Sampling’ consists of many samples.

Regarding the samplings, the main change implemented in
this XRepo design iteration is the representation of their file
locations. These are stored in the model as lists of proper-
ties, where each property points to a file URL on the HDFS
system. The lists are owned by the ’Sampling’ and ’Subset’
concepts as indicated in Figure 4.

Next, the elements added to the original domain model for
integrating the educational context of the data are illustrated:

• Laboratory: the big data functionality centers around this
concept. It groups the data that teachers want to share
with students. The data can be organized into two sub-
sets: labeled and unlabeled. Each subset is generated
using a MapReduce algorithm.

• Algorithm: this concept stores the mapper and reducer
scripts that the system will use to run MapReduce over
the samplings. Each algorithm is named as Labeled or
Unlabeled indicating the type of subset that it will pro-
duce. A Laboratory can be associated to maximum two
algorithms, i.e., a labeled and/or an unlabeled algorithm.

• SubSet: represents the result of running a MapReduce
algorithm over the samplings. The output data is stored
in a file on HDFS and is accessed by the students through
a shared link. These subsets are named as Labeled or
Unlabeled depending on the algorithm utilized for their
generation.
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• Failure Mode and Analysis purpose tag libraries: these
are predefined tags associated to common scenarios
found on PHM analysis. These tags can be extended by
the administrator. The ’Failure Mode’ tags represent the
standard classification of failure types that a sampling
can represent. For instance, the following tags can be
used to label a rolling bearing sampling (Cerrada et al.,
2018): outer raceway failure, inner raceway failure, or
healthy bearing. In turn, ’Analysis Purpose’ Tags are as-
sociated to laboratories and depicts the educational pur-
pose of a given laboratory. According to (Li et al., 2020),
these purposes are: fault diagnosis, prognostic assess-
ment and health management.

Figure 4. Domain model of XRepo 2.0: integration of the
experimental (right-hand side of the figure) and educational
context (left-hand side of the figure)

4.2. Big Data Repository

Experimental data are stored on a plain text format on HDFS.
When the user uploads a file via the Web UI, the system first
validates if the file satisfies the format, and then sends them
to the HDFS using the Hadoop Network File System (NFS)
gateway. This gateway allows to access to the HDFS from
remote servers using the NFS protocol. All the HDFS files are
organized using a folder hierarchy. The MongoDB database
is used to keep track of the folder structure and the location of
the files. XRepo provides access to the HDFS files by listing
them in the Web UI. In this way, the end user can directly
download the files through the Web UI, without the need to
interact with the HDFS.

4.3. Big Data Processing

MapReduce is the engine used to process the data stored on
the HDFS. MapReduce is native to Hadoop and provides a
powerful paradigm to analyze a vast amount of information
(Condie et al., 2010). In this design iteration, XRepo 2.0 is
deployed on a single node pseudo-distributed Hadoop con-
figuration. However, this can be scaled up to a multi-node
distributed configuration to support larger datasets. Two com-
ponents execute two types of MapReduce tasks provided by
XRepo 2.0. Their execution is controlled by the Hadoop
Manager, which is described in section 4.4. These two com-
ponents are:

• Search Hadoop: samplings can be filtered by target sys-
tem, tags and operative range. User can also select a date
range for filtering the samplings. As the date informa-
tion is stored on the HDFS files, the system launches a
default MapReduce task to select the samples within the
selected date range.

• MapReduce Hadoop: users can execute custom MapRe-
duce algorithms to generate subsets of the data. Prior
to this operation, users need to copy and paste the algo-
rithms – developed and tested in their local development
environment – to the Web UI, and send them to the sys-
tem storage for the subsequent execution. When a given
algorithm is associated to a laboratory, it can be execute
over the associated samplings to produce either a labeled
or unlabeled subset.

4.4. Management Components

The following components enable the system to organize and
keep track of the execution of MapReduce tasks:

• Hadoop Manager: controls and monitors the execution
of the aforementioned MapReduce algorithms by using
SSH13 remote commands. This action is launched from
the Web UI and reaches the Hadoop server. The execu-
tion status is displayed on the Web UI through a progress
bar.

• Laboratory Management: this component controls the
Create, Read, Update and Delete (CRUD) operations as-
sociated to laboratories, algorithms and subsets.

• Tag Manager: allows to classify the data by using the
’Failure Mode’ and ’Analysis Purpose’ tags.

4.5. Prototype

The proposed architecture has been implemented through a
prototype. The prototype is deployed on the Azure Cloud14

by using three virtual machines respectively hosting the Web
Application server, the Big Data server, and the Database
server; see Figure 5. The computation resources (i.e., RAM,
13www.ssh.com/ssh
14azure.microsoft.com
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CPU and disk size) assigned to each machine are shown in
table 1. The Web UI is built on top of JHipster15 which is
a framework that integrates Java Spring Boot back-end ser-
vices16, Angular web front-end17, and Gradle Build system18.
Hadoop 3.1.6 is used as the Big Data storage and processing
system. Python 3.0 is chosen as scripting language to write
and execute MapReduce algorithms. Finally, MongoDB is
utilized as database.

Figure 5. Deployment diagram of XRepo 2.0 on the Azure
Cloud

Table 1. Resources of the deployed architecture nodes

Node VM Type RAM vCPUs Disk
BigData,
Application
Server

D2 v2 7 GB 2 SSD

DataBase D3 v2 14 GB 4 SSD

Next, the Graphical User Interface (GUI) is illustrated for the
main introduced functionalities:

• Algorithm: user can create, update and delete algorithms,
as well as viewing the full list of algorithms currently
available on the application. Algorithms uploaded by
other users can also be displayed. Figure 6 illustrates
how XRepo 2.0 display a list view of the introduced al-
gorithms. The edition option (dark blue button) allows

15www.jhipster.tech
16spring.io
17angular.io
18gradle.org

the user to associate laboratories to the algorithm. The
green button launches the execution of the algorithm over
the sampling data of the associated laboratory. It can be
noticed that XRepo adds a scaffolding that helps users to
get rid of the Hadoop technology complexity.

Figure 6. XRepo 2.0 GUI: algorithms list

• Laboratory: allows the user to create and edit laboratory
entities; see Figure 7. Teachers can share to students la-
beled and unlabeled subsets generated by the execution
of the MapReduce algorithms. The subsets will be avail-
able to download until a date established by the profes-
sor.

• MapReduce reports: allow the users to monitor the
progress and status of MapReduce tasks currently run-
ning on the system; see Figure 8. It is worth noting that
these tasks are associated to the executions of MapRe-
duce algorithms.

• Shared subsets: once a subset is generated by an algo-
rithm associated to a laboratory sampling, students can
access the labeled/unlabeled subsets and download them
directly from the user interface; see Figure 9.

5. VALIDATION

XRepo 2.0 prototype was validated from two fronts: func-
tionality (Section 5.1), and performance intended as load ca-
pability (Section 5.2). Then, the XRepo 2.0 verification of
the requirements identified in Section 3.1 is illustrated in Sec-
tion 5.3. Finally, the threads to the validity of the process are
discussed in Section 5.4.

5.1. Functionality Tests

The functionality tests focused on validating the base func-
tionality of XRepo 2.0, along with checking the integrity of
the data uploaded to the information system.
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Figure 7. XRepo 2.0 GUI: Laboratory Edit functionality

5.1.1. Objectives

• Verify data upload and management functionalities.
• Verify data integrity.

5.1.2. Methodology

This validation was performed using vibration data for clas-
sifying different unbalanced levels of a mechanical transmis-
sion actuated with an induction motor; see (Barbieri et al.,
2020). A translator was created to convert data from the orig-
inal case study to the standard XRepo format. After having
uploaded the data to the platform, the validation of the man-
agement functionalities consisted in the following steps:

1. Manually fill the metadata associated to the samples to be
uploaded; i.e. Organization, TargetSystem, Experiment
and Sampling.

2. Upload of the samples to XRepo 2.0.
3. Filter the samples by date range to obtain a subset of the

data in XRepo 2.0.
4. Introduce a MapReduce algorithm to XRepo 2.0 for cre-

ating a labeled subset from the samples.
5. Execute the introduced MapReduce algorithm to gener-

ate the subset.
6. Visually explore the results of the MapReduce algorithm

to validate the integrity of the obtained subset.
7. As a teacher, share a subset with the students.

Figure 8. XRepo 2.0 GUI: MapReduce report view

Figure 9. XRepo 2.0 GUI: Shared subsets

8. As a student, download the shared data.

Concerning step 4, the introduction of a MapReduce algo-
rithm was tested through the creation of a labeled subset that
included about 70% of the data of a given dataset. A ’Map-
per’ code was first developed to randomly assign to each sam-
ple an integer value between 1 to 100. Then, a ’Reducer’ code
screened the samples whose associated random number was
higher than an established threshold.

With respect to the data integrity validation, the data initially
obtained from the acquisition device were compared with the
data downloaded from XRepo 2.0. If XRepo 2.0 granted data
integrity, the two datasets would be the same. To quickly val-
idate the integrity of the two datasets without the need to in-
dividually compare each sample, the following features were
calculated:

• Time domain: root mean square (RMS).
• Frequency domain: amplitude at the motor frequency

(about 30 Hz).

These values constitute the main features for detecting unbal-
anced shafts (Barbieri et al., 2020). Obtaining the same value
from the two datasets would imply data integrity, since these
features are computed using all the samples of the datasets.
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5.1.3. Results and Analysis

Both the data uploading and management functionalities
passed the tests by using the files from the unbalanced shaft
case study.

Regarding the data integrity validation, two different datasets
from the case study were uploaded to XRepo 2.0: ”No unbal-
ance” and ”Highest unbalance” (Barbieri et al., 2020). The
information was then downloaded through the Web UI, and
data analysis was performed on both the original dataset and
the dataset downloaded from XRepo 2.0. This analysis in-
volved the calculation of the two aforementioned features
(i.e. amplitude at motor frequency and RMS) for the two
datasets. As shown in Table 2, the values obtained from the
two datasets were equivalent.

In a nutshell, the manual validations and data comparisons
showed that that XRepo 2.0 behaves as expected from the
functional and data integrity perspectives.

Table 2. Calculated time and frequency domain features. The
equivalence of the original data and the ones uploaded to
XRepo 2.0 can be appreciated.

Dataset No unbalance Highest unbalance
Peak RMS Peak RMS

Original 2.18 5.33 20.93 36.25
XRepo 2.0 2.18 5.33 20.93 36.25

5.1.4. Discussion

From a user viewpoint, the platform was able to perform the
expected functionalities and guarantee data integrity. In ad-
dition, many usability benefits were found with respect to the
previous version of XRepo and other data repositories avail-
able on the Internet (Lee et al., 2007; Loparo, 2012; Nectoux
et al., 2012; Von Birgelen et al., 2018; Agogino & Goebel,
2007; Barbieri et al., 2020):

• Filter capability: the ability to search for data that fulfills
certain criteria was especially useful when downloading
files that belong to a certain timeframe or a certain oper-
ative condition.

• Laboratories: the ability to create different laboratories
with different purposes from a single sampling enables
the potential to use the same dataset for different educa-
tional purposes.

• Data upload: regarding the uploading process, being
able to select a target sampling for an uploaded file in-
stead of hard coding the sample ID in the file was a clear
advantage over the previous version of XRepo.

• Data format: having a single standardized format al-
lows domain experts to easily translate the data from the
XRepo format to third party formats; e.g. the one re-
quired by Mathwork’s Matlab.

• Progress bar: most launched procedures (e.g., file up-
loading, algorithm execution, etc.) can be tracked with a
progress bar from the Web UI. This information becomes
important while handling files with large dimensions.

Some opportunities of improvement were found in the proto-
type during the execution of the tests and will be addressed as
future work:

• Generation of subsets: it is currently not possible to cre-
ate labeled and unlabeled subsets whose intersection is
null.

• Delete datasets from the UI: the current Web UI does not
allow to delete previously uploaded data. The ’delete’
functionality may be required in cases where files are un-
necessary, duplicated or uploaded by mistake.

• Default template for data context: it was found that cre-
ating multiple samplings or laboratories requires the user
to introduce certain metadata multiple times. A default
template functionality would be useful.

• Data context visualization tree: having a tree view of all
the currently created elements (e.g. Organization, Sys-
tem, etc.) might be useful to verify that all the elements
are correctly nested.

• Usability: some usability improvements to the uploading
process may be implemented; e.g. select multiple files at
once for the upload, or select a file to be uploaded by
dragging it from the user desktop to the Web UI.

5.2. Load Tests

This section illustrates the test of the most critical functional-
ities of XRepo 2.0 from a performance perspective.

5.2.1. Objective

Get insights about the performance and resource consumption
of XRepo 2.0 when executing their most critical functionali-
ties, through the simulation of user concurrency during time
ranges.

5.2.2. Methodology

Figure 10 illustrates the steps followed to perform this vali-
dation. Each step is next detailed:

Figure 10. Methodology for the Load Tests

1. Selection of the test tool: Apache JMeter 5.319 was se-
lected as test tool taking into account the following crite-
ria:

19jmeter.apache.org
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• Flexibility for setting up test scenarios.
• Documentation made available by developers’ com-

munities.
• Use in a large number of software testing projects.

2. Design of test scenarios: the functionalities of ’Samples
Upload’ and ’Samples Search’ were identified as criti-
cal for the final users. Therefore, the designed load test
scenarios focused on these two functionalities. Based on
the educational context targeted by XRepo 2.0, we esti-
mated the number of users that concurrently may request
the two functionalities. Table 3 presents the number of
users and rise time – time the test tool spends to send
the requests to the platform – estimated for each test.
Three test scenarios were created for the two function-
alities taking into account that input parameters and us-
age can vary. The three test scenarios where executed in
parallel to simulate concurrent users performing different
actions within XRepo 2.0.

Table 3. Number of users and rise time selected for the con-
current test scenarios of the ’Samples Upload’ and ’Samples
Search’ functionalities

No. Test Scenario Number of users Rise time
1 Upload File Samples 500 1 second

2 Search for date
with all fields 200 1 second

3 Search for dates
with some fields 300 1 second

Total 1000 simul-
taneous users 3 seconds

3. Test environment preparation: for the load testing pro-
cess, the XRepo 2.0 components were deployed in the
prototype infrastructure presented in Section 4.5. Before
running the load tests, the information created in the data
sources during the functionality tests was eliminated for
restoring the environment to its original state. Files of
1.5MB were uploaded to test the ’Samples Upload’ func-
tionality.

4. Running Load Test: the designed test scenarios were run
and reports were generated based on the execution re-
sults; i.e., Comma Separated Value (CSV) files.

5. Results analysis: based on the reports, the performance
and resource consumption of XRepo 2.0 were analyzed.

5.2.3. Results and Analysis

The test took 19 minutes and 17 seconds to be executed. The
results and analysis are presented based on two criteria: per-
formance and resource consumption.

Performance Table 4 summarizes the platform response
time (average, minimum, and maximum) and inflection point

Table 4. Performance results for the concurrent test scenarios
of the ’Samples Upload’ and ’Samples Search’ functionalities

No. Test scenario Inflection
point

Response Time
Success (ms)

1 Upload File
Samples 372 requests

Avg.: 271536.9651
Max: 482327
Min: 45003

2
Search for
dates with
all fields

59 requests
Avg.: 161559.1379
Max: 232456
Min: 63965

3
Search for
dates with
some fields

91 requests
Avg.: 172511.4444
Max: 232690
Min: 67318

for each test scenario. The response time (or latency) covers
the network delay and overall processing time of the platform
components. The inflection point corresponds to the max-
imum number of requests that the server is able to process
before starting to return errors. These errors are commonly
due to exceeded platform capacity. These results brought ev-
idence on the following aspects:

• The parallel execution of the three test scenarios con-
tributed to reach higher response times more rapidly.

• Response times increase over time as more requests are
sent.

• In the current set environment, the overall inflection
point is of 522 requests disparately distributed among
the tested scenarios. Thus, the inflection point is more
rapidly reached in the ’Search’ functionalities with re-
spect to the ’Upload’ ones. ’Search’ functionalities use
MapReduce functions that run faster with large files of
minimum 300MB. In contrast, we had at our disposal
files whose size is smaller (i.e. 1.5MB size) compared
with that of standard Big Data files. As a consequence,
the HDFS repository performance was hampered.

Resource consumption Table 5 summarizes the resource
consumption of the three architecture nodes referred to as Big
Data server, Database server, and Application server; see Sec-
tion 4.5. The table shows the results of monitoring the CPU,
Memory and Disk usage of said nodes during the execution
of the tests. The following behaviours can be observed in the
reports:

• CPU usage of the database server did not exceed 40%.
This is obtained considering that the studied function-
alities trigger database operations (mainly updates and
queries) which are not particularly resource-intensive.

• The Web application server had several CPU consump-
tion spikes going up to 100% and lasting over long peri-
ods of time. These peaks were reached when the server
received a high number of concurrent requests. At these
points, the server increased its CPU utilization to the
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Table 5. Server Results for the concurrent test scenarios of
the ’Samples Upload’ and ’Samples Search’ functionalities

Server CPU
% used

Memory
% used

Disk I/O
% used

Big data
Avg.: 10.104
Max: 81.772
Min: 0

Avg.: 16.964
Max: 17.623
Min: 14.78

Avg.: 0.263
Max: 82.4
Min: 0

Database
Avg. 5.321
Max: 31.658
Min: 0

Avg: 8.161
Max: 8.574
Min:7.423

Avg: 0.072
Max: 14.44
Min: 0

Web App
Avg: 60.508
Max: 100
Min: 0

Avg: 31.340
Max: 35.574
Min: 16.561

Avg.: 0.150
Max: 86.97
Min: 0

maximum available to try to resolve as many requests
as possible.

• The value of 86.97% on disk usage in the Web server
represents an outlier during the execution of the tests.
The reason is that the server temporally stores in its disk
drive (SSD) the links and file paths required by the NFS
gateway to access to the HDFS during the uploading of
the sample files.

• Across the execution of the tests, the Big Data server ex-
perienced different CPU usage spikes that reached 82%
of CPU usage, followed by a normalization. During the
high peaks, the server received a high number of re-
quests associated to MapReduce searches over the up-
loaded sample files.

5.2.4. Discussion

The concurrent test scenarios allowed to establish the XRepo
2.0 platform capacity, i.e. a maximum of 522 requests per
second distributed among the most critical system function-
alities.

Increasing response times is an expected behavior in load
testing. The results provided evidence on the behaviour of
each architecture node when the number of concurrent re-
quests increases in time. The database server has enough re-
sources to deal with more requests. In turn, the HDFS server
is able to manage a number of requests that range from 50 to
90. Finally, the application server was the most critical block-
ing point of the architecture. In future work, some strategies
may be applied to improve the behaviour of the Big Data and
Web application servers:

• Containers: deploy the Web application components in
containers instead of virtual machines. This allows to
horizontally scale the Web server in a straightforward
fashion depending on the user demand.

• Load balancer: introduce a load balancer to distribute
the requests among the different containers. Here, it
is important to configure policies that check the type
of requests and the available resources to make a good

distribution of the requests among the Web application
servers.

• Size of files: increase the size of files that users upload
in the platform, since the behavior of the HDFS server is
optimal with large files. Currently, the platform supports
the upload of files with a maximum size of 1.5GB. The
reason to this is a limitation on the Web browser. If the
file size increased, it would be necessary to make further
development at front-end level. For instance, a native
client should be created to send files to the platform in
background, even if the Web browser is closed.

5.3. Level of Requirement Satisfaction

Finally, how XRepo 2.0 fulfills the requirements identified in
Section 3.1 is summarized as follows:

1. Data integration, heterogeneity, and search usability !
the three presented challenges are achieved from XRepo
2.0 considering that: (i) samples can be integrated within
previously defined experimental contexts; (ii) a standard
format has been established for the uploading and down-
loading of the data; (iii) MapReduce routines can be run
for filtering the data by given criteria.

2. Data Volume ! the big data challenge was achieved
by: (i) integrating the Hadoop framework with the Mon-
goDB document database; (ii) using the processing capa-
bilities of MapReduce. However, the big data function-
ality was tested with data available in the internet whose
size varied from around 1MB to 1.5GB per file; see (Lee
et al., 2007; Loparo, 2012; Nectoux et al., 2012; Von
Birgelen et al., 2018; Agogino & Goebel, 2007; Barbieri
et al., 2020). In the near future, it is desirable to execute
additional tests to evaluate XRepo 2.0 operation under
scenarios of larger data volume; i.e., terabytes of infor-
mation.

3. Connection ! datasets are uploaded and downloaded as
batch files with a standard format; see Figure 2.

4. Content:
(a) Experimental context ! all PHM data in XRepo 2.0

are assigned to an experimental context by attaching
a sampling ID to the data.

(b) Educational context ! an educational context for
the PHM data was integrated with the experimen-
tal one. Now, data can also be categorized via:
(i) ’Analysis Purpose’ tags: indicating the compe-
tences that students will foster by analyzing said
data; (ii) Subset: representing the role of the data
within the pedagogical activity (i.e. labeled, unla-
beled data); (iii) ’Failure Mode’ tags: showing the
analyzed failure and mechanical system.

5. Cloud ! a batch processing model was implemented
through MapReduce. Instructors can now pre-process
the data online, before sharing it with students.
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6. Community:
• Number of users ! load tests indicated that the

overall throughput of the system is 522 requests per
second, as opposed to the projected 1000. However,
this is a good starting point taking into account that
the tested functionalities are currently used by 1 in-
structor and about 60 students enrolled in a PHM
course of the University of los Andes. We consider
to reach the initially planned number of users by ap-
plying the strategies mentioned in Section 5.2.4.

• Platform access ! several roles with different per-
missions to the platform functionalities can be as-
signed to the users of the information system.

7. Customization ! instructors can add additional fields to
the ’Analysis Purpose’ and ’Failure Mode’ tags. More-
over, customized subsets can be generated, apart from
the labeled and unlabeled ones.

8. Open-source / free software ! the main components of
the architecture are based on Hadoop and MongoDB,
both of which are free to use and open-source.

5.4. Threats to Validity

With respect to the functionality validation, a detected risk
is that the platform developers tested the functionality, thus
likely causing closed and faultless workflows. To reduce this
risk, we asked domain users to perform functionality tests to
determine whether or not a specific functionality met the ini-
tial requirements. The datasets used in the validations came
from two sources: i) unbalanced shaft dataset developed from
the authors (Barbieri et al., 2020); ii) datasets publicly avail-
able in the internet. The unbalanced shaft dataset served as
a controlled scenario to demonstrate the integrity of the data
uploaded to XRepo 2.0. The datasets available in the internet
served to test the platform capacity, since these files have a
higher size compared to the unbalanced shaft one. The for-
mat of these datasets had to be adjusted to the XRepo 2.0
one. However, this change does not represent a threat, since
the transformation step was carried out by domain users not
involved in the XRepo 2.0 software development.

6. CONCLUSION AND FUTURE WORK

Given the importance of Prognostics and Health Manage-
ment within Industry 4.0, it becomes highly advantageous for
engineering students to be trained in PHM. However, datasets
to develop competences in PHM are currently shared using
experimental contexts with different information and without
education-oriented metadata for the definition of pedagogi-
cal activities. Given that, the objective of this research work
was to develop a big data information system for education
in PHM where professors and students are respectively able
to upload and access PHM sensor data with a standard for-
mat and contextual metadata. The objective has been reached

by introducing XRepo 2.0: an information system built us-
ing open-source software from the big data ecosystem, and
implementing a domain model able to represent both the ex-
perimental and educational context of the data. A prototype
of XRepo 2.0 has been deployed on the Azure Cloud and val-
idated with respect to functionality and performance criteria.
The validation process demonstrated the ability of XRepo 2.0
to share PHM data within educational scenarios and estab-
lished a maximum platform capacity of 522 users concur-
rently working on the system.

The proposed information system provides three main bene-
fits with respect to: (i) XRepo 1.0; (ii) PHM big data plat-
forms proposed in literature; (iii) the current practice of di-
rectly sharing PHM datasets without standard format and
contextual metadata. These are:

1. Educational metamodel: apart from the standard data
format and experimental context established in XRepo
1.0, data can be categorized with different criteria tar-
geted to boost XRepo 2.0 in education, such as the PHM
competences that will develop on the student, the role of
the data within the pedagogical activity, and the analyzed
failure and mechanical system, amongst others.

2. Big data: the presented information system is able to
manage large amount of data by integrating the Hadoop
framework with the MongoDB document database.

3. Online processing: considering that the information sys-
tem is able to manage big data, XRepo 2.0 provides the
ability for teachers to execute customized MapReduce al-
gorithms with the objective to pre-process the data before
sharing them with students.

This work contributes to education in PHM since has the ob-
jective to unify and share selected sensor data for the devel-
opment of competences in PHM. Moreover, the design deci-
sions taken for its implementation and the utilized technolog-
ical solutions may be customized and adapted from an enter-
prise for the acquisition and sharing of PHM data within the
company.

Notably, the proposed information system constitutes a pre-
liminary concept that in the future should be further validated
and improved. Some future works identified are:

• Streaming processing: currently the data is manually col-
lected and uploaded in the information system through
the Web UI. It is desirable to directly send the data from
the physical equipment to XRepo 2.0. The processing of
live feeds of data should be investigated by either adopt-
ing a lambda architecture (Wang et al., 2019) or captur-
ing and messaging protocols such as MQTT20.

• Online processing for students: in the current version
of XRepo 2.0, online processing is only allowed to in-
structors. In future work, this functionality may also be

20mqtt.org
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extended to students for facilitating the analysis process
making it independent from the computational resources
available from the students.

• Functionality improvements: during the functionality
tests, few opportunities of improvements were identified,
such as the generation of subsets whose intersection is
null and the implementation of a visualization tree for
the data context, amongst others.

• Big data improvements: during the load tests, few op-
portunities of improvements were identified, such as the
utilization of containers instead of virtual machines for
the Web application, the introduction of a load balancer
to distribute the requests among the different containers,
and the efficient processing of files with small dimen-
sions.

OPEN SOURCE REPOSITORY

XRepo 2.0 information system is available for
download under the GNU GPLv3 license at:
github.com/SELF-Software-Evolution-Lab/
StandardIoTDataManager. This repository includes
a README.md file detailing the required steps to install
XRepo 2.0 on a machine that will act as a server. It also
contains a wiki with tutorials on how to use XRepo 2.0 once
installed.
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