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ABSTRACT 

This paper presents a health assessment methodology, as 

well as specific residual processing and figure of merit 

algorithms for anemometers in two different configurations.  
The methodology and algorithms are applied to data sets 

provided by the Prognostics and Health Management 

Society 2011 Data Challenge.  The two configurations 

consist of the “paired” data set in which two anemometers 

are positioned at the same height, and the “shear” data set 

which includes an array of anemometers at different heights.  

Various wind speed statistics, wind direction, and ambient 

temperature information are provided, in which the 

objective is to classify the anemometer health status during 

a set of samples from a 5 day period.  The proposed health 

assessment methodology consists of a set of data processing 
steps that include: data filtering and pre-processing, a 

residual or difference calculation, and a k-means clustering 

based figure of merit calculation.  The residual processing 

for the paired data set was performed using a 

straightforward difference calculation, while the shear data 

set utilized an additional set of algorithm processing steps to 

calculate a weighted residual value for each anemometer.  

The residual processing algorithm for the shear data set used 

a set of auto-associative neural network models to learn the 

underlying correlation relationship between the anemometer 

sensors and to calculate a weighted residual value for each 

of the anemometer wind speed measurements.   A figure of 
merit value based on the mean value of the smaller of the 

two clusters for the wind speed residual is used to determine 

the health status of each anemometer.  Overall, the proposed 

methodology and algorithms show promise, in that the 

results from this approach resulted in the top score for the 

PHM 2011 Data Challenge Competition.  Using different 

clustering algorithms or density estimation methods for the 

figure of merit calculation is being considered for future 

work. 

1. INTRODUCTION 

One of the fundamental requirements for data interpretation, 

model development, and system monitoring is the need to 

have properly working and calibrated sensory data 

(Venkatasubramanian, Rengaswamy, Yin, K., & Kavuri, 

2003).  Considering the importance of properly working 

sensors, there is considerable research in the area of sensor 

fault detection and diagnosis with a diverse set of 

applications ranging from automotive (Capriglione, Liguroi, 
Pianese, & Pietrosanto, 2003),  aerospace (Patton, 1991), to 

nuclear power plants (Hines & Garvey, 2006).  The wind 

energy in particular, is quite reliant on obtaining accurate 

sensor measurements of wind speed, since this ultimately is 

one of the inputs used to estimate the energy production for 

a given site (Petersen, Mortensen, Landberg, Hujstrup, & 

Frank, 1998).  During feasibility studies of potential wind 

turbine sites, anemometers placed on meteorological towers 

are used to provide information on the long term wind speed 

characteristics.  Historical wind speed data is one of the 

inputs provided to sophisticated meteorological models that 
provide an estimation of the energy production for a given 

site.  Errors in the wind speed measurements can have 

significant effects on the estimated energy production which 

could affect the return on investment for a given site or 

whether the site is financed (Murakami, Mochida, & Kato, 

2003).   

Recent work in the area of anemometer fault detection 

includes the work by Kusiak, Zheng, and Zhang (2011), 

which propose a virtual sensor method using a multilayer 

perceptron neural network.  This study also discusses the 

use of a wavelet de-noising method for data pre-processing 

and a control chart based on the residuals calculated from 
the predicted and measured wind speed.  A more classical 

statistical approach was discussed in the work by Beltran, 

Llombart, & Guerrero (2009), in which a metric was derived 

from the difference in the 10 minute wind speed average 

data between two anemometers in close proximity.  In 

addition to this prior work, a recent study by Clark, Clay, 

Goglia, Hoopes, Jacobs, and Smith (2009) was done to 
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investigate the root cause of NRG #40 anemometers reading 

slower than the actual wind speed.  The study discussed 

statistical metrics, signatures of anemometers with excess 

measurement error, calibration methods, and a physical 

explanation of the potential failure mode that was believed 

to be the cause of the sensor measurement error.  

The paper is organized in the following manner: after the 

introduction, Section 2 describes the problem statement for 

the 2011 Prognostics and Health Management Society Data 

Challenge.  This is followed by an overview of the 

algorithms used for the shear and paired data sets in Section 

3.  More detailed descriptions of the filtering and data 

normalization methods are described in Section 4.  The 

residual processing method using auto-associative neural 

network models is presented in Section 5.  Section 6 

describes the use of k-means clustering and the figure of 

merit health value.  Lastly, conclusions and future work are 

discussed in Section 7 and Section 8 respectively.   

2. PROBLEM  STATEMENT 

The 2011 Prognostics and Health Management Society 

(PHM Society 2011) presented a data challenge problem 

dealing with this increasingly important topic of 

anemometer fault detection.  Two different types of data 

sets titled the “paired data set” and the “shear data set” was 

provided for developing and evaluating anemometer fault 

detection algorithms.  The paired data set consisted of data 

collected from two anemometers at the same height.  

Statistics from the two wind speed sensors, a wind direction 

measurement, and ambient temperature reading were 
provided.  The statistics were calculated from a 10 minute 

time period and consisted of the mean, standard deviation, 

maximum, and minimum for each parameter.  Data from 

paired anemometers in a nominal healthy condition were 

provided in 12 training data sets that comprised of 25 days 

worth of data.  The competition also provided 420 test data 

files, in which each file contained 5 days worth of data.  

These test files were used to test the accuracy of the 

developed algorithm by the contest participants, in which 

the actual healthy state was unknown to the contest 

participants.  In the test files, either one of the anemometers 

could be in a healthy or degraded state; the objective was to 
provide a correct healthy classification for both 

anemometers (PHM Society 2011). 

The shear data set differed from the paired anemometer data 

set, in that there were either 3 or 4 anemometers and each 

anemometer was at a different height on the meteorological 

tower.  Height information was provided for each 

anemometer and statistics from each anemometer were 

provided after processing the wind speed measurements in a 

10 minute data block.  As with the paired data set, the wind 

direction statistics and the ambient temperature statistics 

were also provided.  In total, 28 or 23 parameters were 
provided in each data shear data file, the difference in the 

number of parameters is due to certain sites only having 3 

anemometers instead of 4 anemometers.  A total of 7 

training data sets that comprised of 25 days worth of data 

were provided for the shear data set; the training data sets 

provided data from anemometers in a healthy condition.   

Test files were also provided in which the health condition 
of the anemometers were unknown to the contest 

participants.   The test files consisted of 225 files, with each 

file representing 5 days worth of data.  The objective in the 

shear data set was to determine whether the set of 

anemometers were all in a nominal healthy state or one or 

more of anemometers had a fault and were exhibiting 

excessive measurement error.  Unlike the paired data set, it 

was not required to determine which anemometer was 

experiencing a fault.  The requirements for the shear 

anemometer data set were to detect whether the system was 

in either a healthy or abnormal health state (PHM Society 

2011). 

3. ANEMOMETER HEALTH ASSESSMENT METHODOLOGY 

The overall approach for assessing the health state of an 

anemometer consists of a series of algorithmic processing 

steps.  These steps include data pre-processing, a residual 

calculation, and ultimately a decision on the health status 

based on a figure of merit metric.  The health assessment 

algorithms developed for the shear and paired data sets 

follow that step by step processing methodology; however 

considering the unique aspects of both data sets, there are 

specific differences with regards to data normalization and 

the residual calculation.  Section 3.1 and section 3.2 
presents an overview of the methodology for assessing the 

health condition of the shear anemometers and paired 

anemometers respectively.  More specific details of each 

processing module along with intermediate results from 

each step are shown in the subsequent sections to further 

illustrate the anemometer health assessment method.  

3.1. Algorithm for Shear Data Set 

A flow chart of the health assessment algorithm for the 

anemometer shear data is provided in Figure 1.  The 

algorithm used in this study has a training and monitoring 

phase, in which the training phase is developed using shear 

anemometer data from a nominal healthy state.  The initial 
step in the training process is to perform data filtering.  The 

data filtering step is designed to remove instances in which 

icing could occur as well as to remove other data samples in 

which there could be erroneous readings in wind speed, 

temperature, or other sensor measurements.  The data 

normalization step is a specific step designed for the shear 

data and is based on the wind profile power law (Peterson, 

& Hennessey Jr., 1977).  This normalization procedure uses 

the power law equation to place each of the shear 

anemometer wind speed measurements at a common 

reference height.   
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The data normalization step reduces the variation due to 

elevation; however an auto-associative neural network is 

used to further model the relationship and correlation 

structure between the anemometer wind speed statistics.  In 

this study, multiple baseline data sets were available for 

model training and this provided the opportunity to have 
multiple auto-associative neural network models.  The 

training of the auto-associative neural network models 

completes the training process and the algorithm can then be 

deployed in its monitoring phase.   

 

Figure 1.  Algorithm Flow Chart for Shear Data Set 

In the shear data set, a given monitored shear data set file 

consisted of either 3 or 4 anemometers and  each data file 

comprised of 720 samples and a duration of 5 days.   Thus, 

the data processing and health decision is performed on data 
from that 5 day period for a monitored shear anemometer 

set.  The initial step for the monitored shear anemometers 

consist of performing the same data filtering and 

normalization that were used in the training set.  A weighted 

residual calculation is performed using the auto-associative 

neural network models; a weighted approach is used in 

order to favor results from training models that more 

accurately predict the anemometer wind speed statistics.  

The residuals for the mean wind speed for each anemometer 

are then further processed in a k-means figure of merit 

calculation.  The motivation for using a k-means clustering 
method is that prior literature suggested that the 

anemometers display a bimodal behavior in one of its failure 

modes and experience slowdown for a certain range of 

directions and wind speeds (Hale, Fusina, & Brower, 2011).  

Thus, the residuals might be quite small in a particular speed 

or direction regime and could be potentially quite higher in 

a different regime subset.  A figure of merit calculation is 

performed for each anemometer, and a decision on the 

health status for each anemometer is made on whether the 

figure of merit value exceeds the threshold.   

3.2. Algorithm for Paired Data Set 

The health assessment algorithm used for the paired data set 

can be considered a subset of the one used for the shear data 
set; in that the algorithm used for the paired data set does 

not require the additional data normalization or auto-

associative neural network based residual processing.  The 

flow chart in Figure 2 shows the processing steps for the 

anemometer paired data, in which the initial step includes a 

data filtering step to remove data instances when icing takes 

place as well as other erroneous samples.   Considering that 

the paired data set consists of anemometers at the same 

height, it is not necessary to use the wind profile power law 

for normalizing the data to a common reference height.   

Although it is conceivable to train an auto-associative neural 

network for the paired anemometers; the initial rationale 
was that this would be too complex of a modeling approach 

for this situation.  A direct comparison between the wind 

speed mean values provides a simple but an effective way of 

inferring the health state of the wind speed sensor.  The 

approach used in this study calculates the difference 

between the wind speed mean values, denoted as d12 and d21, 

and uses the difference signals as a surrogate for the residual 

signal used in the shear data set.  The same k-means figure 

of merit calculation used in the shear health assessment 

algorithm is than applied to the difference signal.   

 

Figure 2. Algorithm Flow Chart for Paired Data Set 

The primary focus of the health assessment algorithm for 
the paired data set was to provide a fault detection capability 

with the assumption that one of the anemometers was in a 
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nominal healthy condition.  However, during the course of a 

data file that represents a 5 day period, there potentially 

could be a cluster in which one anemometer was reading 

significantly lower than normal and another cluster where 

the other anemometer was reading significantly lower than 

normal.   In this scenario, both figures of merit values could 
exceed the threshold and both anemometers would be 

reported as being in a degraded health state.   

4. DATA PRE-PROCESSING  

The subsequent processing steps in the health assessment 

algorithms for the shear and paired data set depend on 

quality data inputs.  In both instances, data filtering is 

performed to remove erroneous data samples and provide a 

more suitable data set for further processing.  An additional 

data normalization step is performed for the shear data set in 

order to place all wind speed measurements at a common 

reference height.  Sections 4.1 and 4.2 provide the more 

specific details regarding the data pre-processing.  

4.1. Data Filtering 

The filtering routine is done to remove samples in which 

icing could be occurring and also for filtering out samples in 

which there are erroneous senor values.  For removing 

instances in which icing is occurring, there is a variety of 

parameters that could be used to infer this condition; the 

wind speed direction standard deviation statistic in 

particular is quite useful for filtering out icing events.  

Considering that various statistics are calculated for each 10 

minute data block, a value of zero in the wind speed 

direction standard deviation would imply that there is no 
variation in the wind speed direction for a 10 minute time 

period.  Physically this is not possible and this condition of 

no variation in the wind speed direction is one of the key 

parameters that can be used for filtering out samples in 

which icing could occur.  

The filtering settings used for the shear and paired data sets 

are provided in Table 1 and Table 2 respectively.  For a 

given sample for the paired data set, it would have to satisfy 

all the listed ranges shown for the wind speed means, 

ambient temperature, wind direction mean, and wind 

direction standard deviation.  It was observed in both the 

paired and shear training data sets that instances in which 
the wind direction were quite low resulted in more sudden 

changes in wind speed mean values.  This resulted in larger 

differences between anemometer wind speed readings 

during these more abrupt changes.  Considering this aspect, 

the filtering routine includes logic for the wind direction 

mean parameter to remove these samples in which the wind 

direction is below 50 degrees.  It was also observed in the 

training data sets that the initial samples in each data file 

contained erroneous sensor values, thus the filtering routine 

also removed the first 20 samples.   

The filtering routine for the shear and paired data set is quite 

similar, the major differences include that the paired data set 

filtering routine includes the anemometer wind speed 

standard deviation parameter.  A low wind speed standard 

deviation would imply very little variation in the wind speed 

mean for a 10 minute period, which could imply icing.  
However, it was noted that including the anemometer wind 

speed standard deviation for the shear data set filter 

removed too many samples in a few of the test files, thus 

this setting was only used for the paired data set filtering 

routine. 

 

 

 

Figure 3. Raw and Filtered Out Samples – Training Set 6 for 

Shear Data Set 

Parameter Filter Settings 

Anemometer Mean 1 0.5 m/s – 26 m/s 

Anemometer Mean 2 0.5 m/s – 26 m/s 

Anemometer 1 Standard Deviation Greater than 1 m/s 

Anemometer 2 Standard Deviation Greater than 1 m/s 

Ambient Temperature Mean -40 oC  - 120 oC 

Wind Direction Mean Greater than 50 degrees 

Wind Direction standard deviation Greater than 0 degrees 

Table 2. Filtering Settings for Paired Data Set 
 

Parameter Filter Settings 

Anemometer Mean 1 0.5 m/s – 26 m/s 

Anemometer Mean 2 0.5 m/s – 26 m/s 

Anemometer Mean 3 0.5 m/s – 26 m/s 

Ambient Temperature Mean -40 oC  - 120 oC 

Wind Direction Mean Greater than 50 degrees 

Wind Direction standard deviation Greater than 0 degrees 

Table 1. Filtering Settings for Shear Data Set 
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An example of how the filtering removes potentially icing 

events and erroneous data samples is shown in Figure 3.  

This example is from a shear training data set in which all 3 

anemometer sensors are in a nominal healty condition; 

however, there is still a substantial amount of samples 

higlighted in green that are filtered out.  The top plot 
highlights that the wind speed mean can have some extreme 

high or low values, as indicated by the outlier value near 

100 and some of the values near or at zero.  The middle plot 

shows the second anemometer wind speed mean reading 

and one can observe that there are several instances in 

which both anemometers are reading at or near zero.  These 

near zero readings are likely due to icing.  The wind 

direction standard deviation is shown in the bottom most 

plot and this parameter is also zero during these suspected 

icing samples.  This example highlights that the filtering 

algorithm provides an adequate detection of icing and 

outlier samples.   

4.2. Data Normalization 

The data preprocessing for the shear data set includes an 

additional step of data normalization in order to compare the 

wind speed measurements at a common reference height.  In 

prior work in the literature, the wind speed profile has been 

modeled as a logarithmic relationship and also by a power 

law model (Peterson et al, 1977).  The use of the logarithmic 

equation includes an additional aerodynamic surface 

roughness parameter that depends on the site location; this 

was not provided in this study and thus only the power law 

equation was used for data normalization.  The power law 
equation is described by Eq. (1), in which u1 and z1 are the 

wind speed and height at a known reference point and u2 

and z2 are the wind speed and height at a location of interest.  

The exponent P is a constant that is based on prior 

experimental studies and regression fitting; a value of 1/7 is 

a common value for this constant and one that is used in this 

study (Hsu, Meindl, & Gilhousen, 1994).  
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For data normalization, each wind speed measurement is 

corrected to a height of 49 m.  In Eq. (1), this would imply 

that z2 is assigned a value of 49, while u1 and z1 are the 

known wind speed measurement and elevation for a given 

anemometer and u2 is the corrected wind speed 

measurement at a height of 49 meters.  An example of 

normalization process is illustrated in Figure 4 and Figure 5.  

Figure 4 is from the first shear training data set and is 
comparing the wind speed for anemometers 1 and 4.   With 

regards to the numbering convention, anemometers 1-4 are 

sorted from the highest to the lowest height and in this 

example have a height of 59, 50, 30, and 10 meters 

respectively.  As one can observe, there is significant 

differences in the raw wind speed values for anemometer 1 

and 4, these two anemometers have the largest difference in 

elevation.  Figure 5 shows the normalized wind speed mean 

values for anemometer 1 and 4 from the same training data 

set.  From visual observation, one can observe that the 

differences in the normalized wind speed values are lower 
when compared with the raw data.   

 

Figure 4. Shear Training Set 1 - Raw Wind Speed Mean 

Signals 

 

Figure 5. Shear Training Set 1 - Normalized Wind Speed 

Mean Signals 

In order to quantify the differences in the wind speed 

measurements, the Root Mean Square Error (RMSE) is 

shown in each plot.  The RMSE can be calculated between 

two anemometers by using Eq. (2), in which N is the 

number of samples in a data file and u1 and u2 are the wind 

speed mean values for the two anemometers considered in 

the calculation (Mohandes, Rehman, & Halawani, 1998).  
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The RMSE value for the normalized wind speed data in 

Figure 5 is much smaller than the RMSE value for the raw 

data in Figure 4; indicating that the normalization provided 

some measure of correcting for the different anemometer 

elevations.   

 ( )
2/1

N

1i

2

21 )i(u)i(u*
N

1
RMSE 








−= ∑

=

 (2) 

5. RESIDUAL BASED FEATURE EXTRACTION 

5.1. Difference Signal 

The residual based feature extraction for the paired data set 

does not involve any data normalization nor does it use 

auto-associative neural network models.  The difference 

signals are used as a surrogate for the residuals and are 

defined by Eq. (3) and Eq. (4).  They are simply the 

difference between the wind speed mean signals (u1 and u2) 

for the paired anemometers.  The k-means based figure of 

merit calculation further processes these two difference 

signals to determine the health state of both anemometers.   

 2112 uud −=  (3) 

 

 1221 uud −=  (4) 

An example of anemometers in a nominal healthy condition 

is illustrated in Figure 6, in which the wind speed mean 
values for each sample are matching very closely.  The 

further processing of this data file by the difference signal 

and the figure of merit calculation resulted in this data file 

being classified in the healthy condition.    

 

 

Figure 6. Wind Speed Mean Signals for Paired Test File 2 – 

Example of Anemometers in Nominal Healthy Condition 

 

Figure 7. Wind Speed Mean Signals for Paired Test File 25 

– Example of Second Anemometer Reading Slower 

 

The signature that is exhibited when one of the paired 

anemometers is not working properly is highlighted in 

Figure 7.  In this example, there are significant differences 

in the mean wind speed values for the two paired 

anemometers. However, these large differences are 
observed for only a portion of the samples.  The observation 

that the signature only appears for a portion of the samples 

provides the motivation for clustering the difference signal 

and calculating a metric based on the cluster that contains 

information on the lagging sensor.   

5.2. Auto-Associative Residual Processing 

When a dynamic model of the system is not available a 

priori, the use of data driven health monitoring algorithms 

becomes a suitable alternative for monitoring the system 

health state (Schwabacher, 2005).  Although there are 

various regression or distance from normal based metrics 

that are available, the use of auto-associative neural network 
(AANN) has some intriguing characteristics that make it 

particular suitable for this application.  Its ability to learn 

non-linear correlation relationships and calculate residual 

values for each sensor provides a means to calculate a 

system health value.  In addition, contribution plots for each 

sensor can also be used to provide diagnostic information 

(Thissen, Melssen, & Buydens, 2001).  These attractive 

attributes of an auto-associative neural network have seen 

its usage for health monitoring span a diverse set of 

applications; from diesel engines (Antory, Kruger, Irwin, & 

McCullough, 2005) sensor health diagnostics and 
calibration (Xu, Hines, & Uhrig,  1999), to commercial 

aircraft engines (Hu, Qiu, &  Iyer, 2007).   

The theory and mathematics for the AANN were first 

described by Kramer (1991) and this method is effectively a 

way to perform non-linear principal component analysis.  
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Although principal component analysis (PCA) has been 

used in a variety of applications for process monitoring by 

using Hotellings’ T2 statistic and the residual square 

prediction error statistic (SPE); its assumption of the signals 

being linearly correlated is not satisfied in many engineering 

systems.  An auto-associative neural network provides a 
similar framework, but has the ability to learn the non-linear 

correlation relationship among sensor variables.  In this 

application, the underlying correlation relationship between 

the shear anemometer sensors is potentially non-linear; this 

is suggested by the power or logarithmic equations used to 

relate wind speed height and speed.  The auto-associative 

neural network is applied after data normalization is done to 

correct for the wind speed height.  However, the difference 

in the anemometer wind speed values in Figure 5 implies 

that the underlying relationship is not completely described 

by the power law.  An auto-associative neural network can 

be used to further learn the sensor correlation relationship. 

The AANN model structure consisted of 5 layers, an input 

layer, mapping layer, bottle neck layer, de-mapping layer, 

and an output layer as shown in Figure 8.  One of its 

interesting aspects is that the network is trained with the 

same inputs and targets and thus the network is performing 

an identity mapping in which the output layer is providing 

an approximation of the inputs.  The structure of the 

network used in this study follows the suggested 

configuration provided by Kramer (1991) and consists of 4 

transfer functions.  In sequential order, they consist of a tan-

sigmoid transfer function, a linear transfer function, a tan-
sigmoid transfer function, and a linear transfer function.    

 
Figure 8. Auto-Associative Neural Network (9-5-3-5-9), σ 
is for tan-sigmoid transfer functions, L for linear transfer 

functions, x are inputs to the network and y are outputs of 

the network 

Although the network structure uses the same transfer 

functions, there were some minor differences in the auto-

associative neural network models for the 3 or 4 sensor 

shear anemometer configurations.  The inputs for the 

network consisted of the wind speed mean, maximum, and 

minimum values for each anemometer; this provided 12 and 

9 inputs for the 3 and 4 shear anemometer configurations 

respectively.  The structure of the AANN model used in this 
study was configured so that the numbers of nodes in the 

mapping layer were the same as the number of nodes in the 

de-mapping layer.  The number of mapping and de-mapping 

nodes consisted of 5 and 7 for the 3 and 4 anemometer 

configurations.  In both configurations, the bottle neck layer 

consisted of 3 nodes.  The number of bottleneck nodes 

represents the intrinsic dimension of the data in a similar 

sense to the number of principal components retained in 

linear PCA (Kramer, 1991). 

As an additional extension of using the AANN models for 

anemometer health assessment, it was postulated that it 

might be advantageous to have an ensemble of training 
models.  This could provide a way of giving more weight to 

training models that provide a more accurate sensor 

prediction for a given anemometer shear test data file.  The 

rationale for considering this aspect is that there are several 

un-modeled sources of variation.  Variation due to 

manufacturing, site topography, and installation, could 

potentially impact the AANN model accuracy.   

 

Figure 9. Flow Chart of Weighted Residual Calculation 

Using a weighted approach allows one to weight training 

models that might more closely represent the test data set. 

This can reduce variances due to other factors and allows 

one to assume that the deviation from the model is due to 

anomalous anemometer sensor behavior.  A conceptual 

diagram of the weighted residual approach is highlighted in 
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Figure 9 and the details of the calculation procedure are 

further described in this section. 

The baseline files provided for the shear anemometer data 

set consisted of two training baseline files for the three 

anemometer configuration and five training baseline files 

for the 4 anemometer configuration.   The weighted AANN 
residual approach consisted of having 7 trained AANN 

models for each of the baseline files, with 2 being assigned 

to the three anemometer configuration and 5 assigned to the 

4 anemometer configuration.  For a given test file, the 

residuals for each anemometer sensor statistic would be 

calculated for each model that matched the anemometer 

configuration for a given test file.   

The residuals for each sensor statistic are weighted by a 

weight vector that is calculated from the sum of square error 

value as shown in Eq. (5) and Eq. (6).  In this calculation, 

SSEk is the sum of square error for kth AANN model, and rijk 

is the residual based on the predicted AANN value and the 
actual sensor statistic value for the ith data sample, the jth 

sensor, and the kth AANN model.  In addition, N is the 

number of samples in the data file, and p and m is the 

number of input parameters and AANN models 

respectively.  The weight for each model is calculated by 

taking the models SSEk value and dividing that quantity by 

the summation of all the reciprocal SSEk values.  The 

weighted residual is then calculated by taking the weights 

for each model multiplied by the residuals as shown in Eq. 

(7).  This provides a residual value for each sensor statistic 

that includes aspects from each training model, but provides 
more weight in training models that more closely match the 

test data set.   
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In order to evaluate the generalization of the AANN models 

and the weighted residual processing, the baseline data sets 

were randomly divided into a training set and a calibration 

set, in which the training set consisted of 70% of the 

available samples in a given baseline data file.  An example 

of how well the predicted sensor statistic values match the 

actual values are shown in Figure 10 for the first shear 

baseline data file.  In this example, the blue curve represents 

the weighted predicted value from the AANN models and 

the red samples are the actual wind speed mean values.  A 

measure of the model fit can be assessed by the root mean 

square error value (RMSE).  In this example, the RMSE 

value is significantly lower when the AANN models are 

used as opposed to the results in Figure 5 that were obtained 
with only data pre-processing and normalization.     

 

Figure 10. Shear Training Set - AANN Predicted and 

Measured Wind Speed Mean Values 

 

 

Figure 11. Wind Speed Predicted and Measured Value– 

Anemometers in Nominal Healthy Case (Shear Test File 1) 

The trained AANN models and weighted residual 

processing method were then applied to the shear test files; 

example plots are shown in Figure 11 and Figure 12.  In 

Figure 11, the results are for the first shear testing in which 

the predicted anemometer 1 wind speed mean and the actual 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

 

9 

anemometer 1 wind speed value are shown.  Notice that the 

predicted and actual values match for the entire data set and 

the RMSE value is quite low.  This is an example file in 

which the anemometers were considered to be in a healthy 

state.   

 

Figure 12. Wind Speed Predicted and Measured Value -

Detected Faulty Case (Shear Test File 220) 

An example of the anemometers in a degraded state is 

provided in Figure 12.  In this example, there is a noticeable 

difference in the predicted and measured anemometer wind 

speed mean values for the second anemometer.  The RMSE 

value for this case is also quite high.  The bimodal fault 

signature is also observed, since the sensor is only lagging 

for a portion of the data samples.  This highlights the 

motivation for clustering the residual signal, since the 

signature is only present for a particular subset of the 

operating conditions. 

6. FIGURE OF MERIT 

6.1. K-means Clustering 

There are a variety of techniques used in data mining and 

artificial intelligence for clustering and density estimation 

(Jain, Murty, & Flynn, 1999).  In this study, the k-means 

algorithm was used for partitioning the residual or 

difference wind speed mean values into two clusters.  

Density estimation using Gaussian mixture modeling was 

originally considered; however, the computation time 

became burdensome given the number of data files that had 

to be processed, and the k-means algorithm provided a more 

efficient way of determining the data clusters.  The k-means 

clustering algorithm aims to partition the data set into a set 
of n clusters, where n is the number of clusters specified and 

its objective function is to minimize the within cluster sum 

of squares (Pollard, 1981).  The algorithm is iterative in 

nature, in that it is initialized with a random set of centroids 

and through the iteration process updates the center 

locations in order to reduce the within cluster sum of 

squares distance.  The interested reader is referred to the 

work by Hartigan and Wong (1979) for a more detailed 

description of the k-means algorithm.   

Although the k-means clustering does not guarantee a global 

solution, 5 replications are used in this study in order to 

select the lowest local minimum that is obtained for the 5 

replications.  The mean value is calculated in each cluster 

and the minimum value of the two clusters is stored and 

denoted as the figure of merit value.  There is an additional 

logic rule to prevent a small sample cluster from being 

included.  If the sample size of one of the two clusters is 

below 60 samples, the mean of the other cluster is stored as 

the figure of merit value.  A small cluster could be due to a 

small amount of outlier samples that potentially made it 

through the data filtering screening.  The motivation for 
selecting the cluster with the minimum mean value is based 

on the prior literature that suggest that a degraded 

anemometer would be reading slower than normal (Clark et 

al, 2009).  

 

Figure 13.  Wind Speed Residual Histogram and K-Means 

Clustering Result –File 220 Shear Data Set 

An example of the k-means clustering result is provided in 

Figure 13.  This result is from the residual wind speed signal 

for the system in a degraded health state.  The histogram of 

the residual wind speed shows a bi-modal distribution in the 

top plot; the clustering result in the bottom graph indicates 

the two clusters that were determined using the k-means 

clustering.  Considering that the figure of merit value is 

based on the mean value of the smaller of the two clusters, 

the k-means clustering provide a way of focusing on the 
samples when the anemometer is lagging.  If one were to 

calculate statistics on the entire distribution without 
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clustering, the algorithm would be less sensitive to the fault 

signature. 

6.2. Figure of Merit Results 

The previous section described how the figure of merit 

values were processed for both the shear and paired data 

sets; however the algorithm ultimately has to provide a 
decision statement on the health condition of each file.  This 

required setting thresholds for the shear and paired figure of 

merit values.  The literature suggests that an anemometer 

that is experiencing an increased level of friction and 

reading slower than normal could have an error of 1.5% to 

3.0% and sometimes as high of a bias as 6% (Hale et al, 

2011).  The thresholds were based on selecting a value 

within that error range.  The figure of merit thresholds for   

the shear anemometers were set at -0.35m/s for the three 

highest anemometers and a threshold of -0.5m/s for the 

anemometer at the lowest elevation.  The anemometer at the 

lowest elevation was set with a more conservative threshold 
since it was believed that the AANN predicted values had 

more error for this anemometer.  One should note that many 

of the shear files only had 3 anemometers, so in many 

instances only the first 3 thresholds are used.  Considering 

that a fault is based on a lagging anemometer, a fault is 

declared if any of the figure of merit values are below its 

threshold and healthy otherwise.  An example result for the 

figure of merit values is provided in Figure 14; this result is 

for the first anemometer for the shear data set.  In this 

example, one can observe that the majority of the files are 

above the threshold.  In total, 62 of the 255 shear 
anemometers were considered to be in a faulty state. 

   

 

Figure 14. Figure of Merit Results for Shear Data Set 

The figure of merit thresholds for both paired anemometers 

were set at -0.375m/s respectively.  If the figure of merit 

value for a paired anemometer is below the threshold, that 

anemometer is considered in a failed condition and healthy 

otherwise.  Although the algorithm is based on the 

difference signal and detecting degraded behavior for one of 

the anemometers; there were a few occurrences when the 

algorithm detected that both anemometers were in a failed 

state.  This can occur if both anemometers are lagging but 
not in the same operating regime regarding wind speed or 

direction.   

The figure of merit results for the paired data set is shown in 

Figure 15.  The results show that the majority of files for the 

paired data set are detected in a healthy state.  The paired 

health assessment algorithm detected 50 files with a 

degraded first anemometer, 43 files with a degraded second 

anemometer, and 325 files were classified as being in a 

healthy state.  Only 2 files were detected as having both 

paired anemometers in a degraded state.  This could be an 

indication that the algorithm was only suited for 

anemometer fault detection if there is at least one 
anemometer in a baseline state.    

 

 

Figure 15. Figure of Merit Results for Paired Data Set 

7. CONCLUSIONS 

This paper introduced a health assessment methodology for 

assessing the condition of anemometers in two different 

configurations.  The methodology consisted of a series of 

algorithmic processing steps from data filtering, to a 

residual calculation, to a k-means figure of merit health 

value.  Although the algorithms for the shear and paired data 
sets were quite similar, the use of an auto-associative neural 

network and additional data normalization were performed 

by the shear health assessment algorithm.  The algorithms 

for the paired and shear data sets resulted in the most 

accurate results for the Prognostics and Health Management 

Society 2011 Data Challenge.  This highlights its potential 

merits for anemometer fault detection.  In a general sense, 

this algorithm could be applied to many other sensor health 

monitoring applications. In particular, the use of auto-

associative neural networks and the k-means clustering 
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approach would be advantageous when redundant sensors 

are not available and the sensors can have an intermittent 

fault signature.  The weighted residual processing using 

multiple baseline models is also useful for handling unit to 

unit variances since it weights training models that more 

accurately match the monitored unit.  Extension of this 
health assessment algorithm can be approached in two 

directions; refinement for the specific case of anemometer 

fault detection, and also reconfiguring the algorithm for 

other applications.   

8. SUGGESTIONS FOR FUTURE WORK 

The proposed health assessment algorithm for the shear and 

paired anemometers provided encouraging results and there 

are several refinements considered for future work.  The 

algorithm used for assessing the paired anemometers was 

tuned for the situation in which at least one of the two 

anemometers was in a healthy state.  The inclusion of the 

wind speed variance information is being considered for 
future work in developing an algorithm that can detect that 

both paired anemometers are in a degraded state.  This 

would provide a necessary extension to the proposed 

framework and would provide a way of detecting sensor 

problems without assuming that at least one of the reference 

measurements is in a healthy state.   

Regarding refinements in the individual processing 

modules, a natural staring place would be the data filtering 

and normalization steps.  These ultimately provide the 

inputs for all further processing, and improvement in 

removing samples due to icing or outlier values would 
likely aid the algorithms health monitoring accuracy.  The 

use of an auto-associative neural network for calculating 

residuals can be compared with other residual processing 

methods, including the use of kernel principal component 

analysis methods as well as the traditional PCA methods.  

Also, the weighted residual processing method could be 

compared to selecting the top 1 or 2 models; the method for 

fusing the residual values is one area for further research.     

Although k-means was initially used for clustering the 

residual signal, density estimation using a mixture of 

Gaussians or other clustering techniques can be considered.  

In addition, evaluation of this proposed algorithm on other 
applications would further test its ability to generalize and 

work for other engineering systems.   
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